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Abstract

Population genetic modeling can enhance Bayesian phylogenetic inference by providing
a realistic prior on the distribution of branch lengths and times of common ancestry.The
parameters of a population genetic model may also have intrinsic importance, and
simultaneous estimation of a phylogeny and model parameters has enabled
phylodynamic inference of population growth rates, reproduction numbers, and effective
population size through time. Phylodynamic inference based on pathogen genetic
sequence data has emerged as useful supplement to epidemic surveillance, however
commonly-used mechanistic models that are typically fitted to non-genetic surveillance
data are rarely fitted to pathogen genetic data due to a dearth of software tools, and
the theory required to conduct such inference has been developed only recently. We
present a framework for coalescent-based phylogenetic and phylodynamic inference
which enables highly-flexible modeling of demographic and epidemiological processes.
This approach builds upon previous structured coalescent approaches and includes
enhancements for computational speed, accuracy, and stability. A flexible markup
language is described for translating parametric demographic or epidemiological models
into a structured coalescent model enabling simultaneous estimation of demographic or
epidemiological parameters and time-scaled phylogenies. We demonstrate the utility of
these approaches by fitting compartmental epidemiological models to Ebola virus and
Influenza A virus sequence data, demonstrating how important features of these
epidemics, such as the reproduction number and epidemic curves, can be gleaned from
genetic data. These approaches are provided as an open-source package PhyDyn for the
BEAST phylogenetics platform.

Introduction

Mechanistic models guided by expert knowledge can form an efficient prior on epidemic
history when conducting phylodynamic inference with genetic data [1]. Parameters
estimated by fitting mechanistic models, such as the reproduction number Ry, are
important for epidemic surveillance and forecasting. Compartmental models defined in
terms of ordinary or stochastic differential equations are the most common type of
mathematical infectious disease model, but in the area of phylodynamic inference,
non-parametric approaches based on skyline coalescent models [2] or
sampling-birth-death models [3] are more commonly used. Methods to translate
compartmental infectious disease models into a population genetic framework have been
developed only recently [4-8]. We address the gap in software tools for epidemic
modeling and phylogenetic inference by developing a BEAST package, PhyDyn, which
includes a highly-flexible mark-up language for defining compartmental infectious
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disease models in terms of ordinary differential equations. This flexible framework
enables phylodynamic inference with the majority of published compartmental models,
such as the common susceptible-infected-removed (SIR) model [9] and its variants,
which are often fitted to non-genetic surveillance data. The PhyDyn model definition
framework supports common mathematical functions, conditional logic, vectorized
parameters and the definition of complex functions of time and/or state of the system.
The PhyDyn package can make use of categorical metadata associated with each
sampled sequences, such as location of sampling, demographic attributes of an infected
patient (age, sex), or clinical biomarkers. Phylogeographic models designed to estimate
migration rates between spatial demes |10H12] are special cases within this modeling
framework, and more complex phylogeographic models (e.g. time-varying or
state-dependent population size or migration rates) can also be easily defined in this
framework.

The development of PhyDyn was influenced by and builds upon previous efforts to
incorporate mechanistic infectious disease models in BEAST. The bdsir BEAST
package [13] implements a simple SIR model which is fitted using an approximation to
the sampling-birth-death process. The phylodynamics BEAST package [14] includes
simple deterministic and stochastic SIR models which can be fitted using coalescent
processes. More recently, the Epilnf package has been developed which can fit
stochastic SIR models using an exact likelihood with particle filtering [15]. These
epidemic modeling packages are, however, limited to unstructured populations (no
spatial, risk-group, or demographic population heterogeneity). Other packages have
been developed for spatially structured populations with a focus on phylogeographic
inference, especially with the aim of estimating pathogen migration rates between
discrete spatial locations [16]. The MultiTypeTree BEAST package [10] implements the
exact structured coalescent model with multiple demes and with constant effective
population size in each deme and constant migration rates between demes. Two BEAST
packages, BASTA [17] and MASCOT [11] have been independently developed to use
fast approximate structured coalescent models related to approaches developed in [5].
These packages mirror the functionality of MultiType Tree, enabling estimation of
time-invariant effective population sizes and migration rates between spatial demes.

The PhyDyn BEAST package provides new functionality to the BEAST
phylogenetics platform by implementing much more complex structured epidemic
models. In a general compartmental model, neither the effective population size nor
migration rate between demes need be constant, and in more general frameworks,
coalescence is also allowed between lineages occupying different demes. The package
includes a flexible mark-up language for compartmental models including common
mathematical functions making it simple to develop models which incorporate
seasonality or which deviate from the simplistic mass-action premise of basic SIR,
models. The PhyDyn model mark-up language supports vectorised parameters (e.g. an
array of transmission rates or population sizes) and simple conditional logic statements,
so that epidemic dynamics can change in a discrete fashion, such as from year to year or
in response to a public-health intervention. Commonly used phylogeographic models
based on the structured coalescent are a special case of the general compartmental
models implemented in the PhyDyn package, and extensions to the basic
phylogeographic model can be implemented, such as by allowing effective population
size to vary through time in each deme according to a mechanistic model.

Design and Implementation

In this framework, first described in [5], we define deterministic demographic or
epidemiological processes of a general form which includes the majority of
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compartmental models used in mathematical epidemiology and ecology. Defining 64
compartmental models within this form facilitates interpretation of the population 6
genetic model developed in the next section. Let there be m demes, and the population e
size within each deme is given by the vector-valued function of time Yi.,,(¢). We may 67

also have m’ dynamic variables Y7, (t) which are not demes (hence do not correspond e
to the state of a lineage), but which may influence the dynamics of Y. The dynamics of e

Y arise from a combination of births between and within demes, migrations between 70
demes, and deaths within demes. We denote these as deterministic matrix-valued n
functions of time and the state of the system, following the framework in [5]: 72

e Births: Fi.m1.m(t,Y,Y’). This may also correspond to transmission rates between 7

different types of hosts in epidemiological models. 7
e Migrations: G1.m,1:m(t,Y,Y”). These rates may have non-geographic 7
interpretations in some models (e.g. aging, disease progression). 76
e Deaths: p1.,(t,Y,Y”). These terms may also correspond to recovery in 7
epidemiological models. 78

The elements Fy;(---) describe the rate that new individuals in deme [ are generated by
individuals in deme k. For example, this may represent the rate that infected hosts of
type k transmit to susceptible hosts of type I. The elements Gy (- --) represent the rate
that individuals in deme k£ change state to type [, but these rates do not describe the
generation of new individuals. With the above functions defined, the dynamics of Y (¢)
can be computed by solving a system of m + m’ ordinary differential equations:

Vi(t) = —p(t) + Z(Flk(t) + Gik(t) — Gr(t)) (1)
1=1
The PhyDyn package model markup language requires specifying the non-zero 7
elements of F(t), G(t) and p(t). There are multiple published examples of simple 80
compartmental models developed in this framework [18-23]. In the following sections, 81

we give examples of simple compartmental models related to infectious diease dynamics s
and show how these models can be defined within this framework. We provide examples &3
of models fitted to data from seasonal human Influenza virus and Ebola virus as well as s
a simulation study. 8

Seasonal human Influenza model %

We model a single season of Influenza A virus (IAV) H3N2 and apply this model to 102
HA-1 sequences collected between 2004 and 2005 in New York state [24L25]. We build
on a simple susceptible-infected-recovered (SIR) model which accounts for importations
of lineages from the global reservoir of TAV, which we will see is a requirement for good
model fit to these data (Figure [I). This model has two demes: The first deme
corresponds TAV lineages circulating in New York, and the second deme corresponds to
the global TAV reservoir. The global reservoir will be modeled as a constant-size
coalescent process. Within New York state, new infections are generated at the rate
BI(t)S(t)/N where (3 is the per-capita transmission rate, I(¢) is the number of infected
and infectious hosts, S(¢) is the number of hosts susceptible to infection, and

N =S5+ I+ R is the population size. R(t) denotes the number of hosts that have been
infected and are now immune to this particular seasonal variant. With the above
definitions, we define the matrix-valued function of time:

F(t) = ﬂI(t)Sgt)/N@) yzovr (2)
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Fig 1. Compart-mental diagram representing structure of models for seasonal human
Influenza (A) and Ebola virus models (B and C). Solid lines represent flux of hosts
between different categories. Dash lines represent migration. Dotted lines represent

births (transmission).

Note that births within the reservoir do not vary through time and depend on the

effective population size in that deme N,..
Additionally, we model deaths from the pool of infected using

- [24]

Births balance deaths in the reservoir population.

3)

Finally, we model a symmetric migration process between the reservoir and New

York:

G(t) = [n 1 Mo(t)}

(4)

where 7 is the per-capita migration rate. Note that migration between the reservoir and

New York are balanced and do not effect the dynamics of I(t) over time.

These three processes lead to the following differential equation for the dynamics of

1(t) .
I(t) = BI(#)S(8)/N(t) —~I()

Below, we show a fit of this model where the following parameters are estimated:
e Migration rate n; prior: lognormal (log mean=1.38, log sd = 1)
e Recovery rate 7; prior: lognormal(log mean = 4.8, log sd = 0.25)
e Reproduction number Ry = 3/7; prior: lognormal( log mean 0, log sd = 1)

e Reservoir size N,; prior: lognormal( log mean = 9.2, log sd = 1)

e Initial number infected in September 2004; prior: lognormal( log mean = 0, log sd

=1)

e Initial number susceptible in September 2004; lognormal( log mean = 9.2, log sd

=1)

Note that the model only had one informative prior, which was for the recovery rate,

and was based on the previous study of viral shedding by Cori et al. [26]

Ebola Virus in Western Africa

We develop a susceptible-exposed-infected-recovered (SEIR) model (Figure [1|) for the
2014-2015 Ebola Virus (EBOV) epidemic in Western Africa and apply this model to
phylogenies previously estimated by Dudas et al. [27]. Phylogenies estimated by Dudas

are randomly downsampled to n = 400 to alleviate computational requirements.
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According to the SEIR model, infected hosts progress from an uninfectious exposed
state (E) to an infectious state (I) at rate o which influences the generation-time
distribution of the epidemic. Infectious hosts die or recover at the rate ;. The SEIR
model has the following form:

d

B = BOI(6) ~10E() )

— I =E(t) —nl(t) (6)

where [5(t) is the per-capita transmission rate. In a typical mass-action model, we would
have B(t) oc S(¢)/(S(t) + E(t) + I(t) + R(t)), however in order to demonstrate the
flexibility of this modeling framework, we will instead use a simple linear function,
B(t) = at + b, and in general a wide variety of parametric and non-parametric functions
could be used within the BEAST package to model the force of infection.

There are two demes in this model corresponding to the potential states of an
infected hosts. The birth matrix with demes in the order (E,T) is

0 0
7= (s o "

The migration matrix encapsulates all processes which may change the state of a lineage
without leading to coalescence of lineages, and this includes progression from E to I:

6w =g ™o ®)

And finally removals are modeled using

wlt) = [71? (t)} ©)

Note that the parametric description of () does not require us to model dynamics of
S(t) or R(t).

The parameters estimated and priors for this model are
e (1) slope a, prior: Normal(0, 40)
e [(t) intercept b, prior: lognormal(log mean = 4.6, log sd = 1)

e Initial number infected (beginning of 2014), prior: lognormal (log mean=0, log sd

In order to reconstruct an epidemic trajectory which closely matched the absolute
numbers of cases through time, we include additional variables that could influence the
relationship between effective population size and the true number of infected hosts. For
this purpose we developed a second EBOV model which included higher variance in the
offspring distribution, reasoning that a higher variance in the number of transmissions
per infected case would lead to higher estimates of the epidemic size |28]. The
superspreading model (Figure [1)) includes two infectious compartments, I; and I, with
per-capita transmission rates S(t) and 73(t) respectively. The factor of 7 > 1 represents
a transmission risk ratio for the second infectious deme. We specify that a constant
fraction pp, progress from E to I, with the remainder going to I;. With demes in the
order (F, I;, I1,), the birth, migration, and death matrices for the superspreading model
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are as follows:

00
0 of,
00

(1 - phr)’YOE(t)

0
F(t)= | B{)L(?)
| 7B () In(t)
[0
G(t) = |0 0
0 0

u(t) = | nh(t)
_71 Ih (t)

Additional parameters and priors for the superspreading model are

0

phr’VOE(t)

e 7, prior: lognormal( log mean = 1, log sd = 1)

® pp,, fixed at 20%

Simulation model

0
0

We developed a simulation model with four demes in order to evaluate the ability of
BEAST to identify and estimate birth rates, migration rates, and transmission risk

ratios. This model includes two types of hosts, with low and high transmission risk.
Additionally, each type of host progresses through two stages of infection, where the

first stage is short but has higher transmission rate. The four demes are denoted

Yoi, Y11, Yon, Y1 where the first subscript denotes stage of infection and the second

subscript denotes transmission risk level. The birth matrix is

puf (woYor(t) /W ()
F(t) — plf(t)yll(t)/W(t)
puf (H)wownYou(t) /W (t)

puf (O wrY1n(t) /W (1)

In this model, a proportion p; of all transmissions go to the low risk group.
Transmissions from stage 1 are proportional to the transmission risk ratio wg > 1.

0
0
0
0

(1 —po) f(t)woYor (t) /W (1)
(1 =p) f()Yu(t)/W(t)
(1= p) f(t)wown Yor (t) /W (t)
(1 —=p) f(O)wnY1n(t) /W (1)

o o oo

Transmissions from the high risk group are proportional to the transmission risk ratio
wp, > 1. The variable W () = woYy + Y1 + wowpYon + wp Y1, normalizes the
proportion of transmissions attributable to each deme. The variable f(t) gives the total

number of transmissions per unit time, and for this we use a SIRS model:
f(t) = B(Yo + Y1 + Yo + Y1,)S/N

where S(¢) is the number susceptible governed by the following equation

S =—f(t) +nS(0) — nS(t)

and 7 is the per-capita rate of non-disease related mortality.
The migration matrix captures the disease stage-progression process:

Y0 Y01 (t)

G(t) =

0
0
0
0

0
0
0
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The death matrix is

nYo:(t)
(n+y)Yu(t)
771/0h
(n +v1)Y1n(t)

u(t) =

To generate simulated data, we simulated epidemics using Gillespie’s exact algorithm
over a discrete population and an initial susceptible population of two thousand
individuals. A random sample of n = 250 was collected between times 100 and 250 and
the history of transmissions was used to reconstruct a genealogy. BEAST PhyDyn was
then used to estimate

e (3, prior: lognormal (log mean=-1.6, log sd = 0.5)

e wp, prior: uniform( 0, 50)

e wp, prior: uniform( 0, 50)

e The initial number infected, prior: lognormal (log mean=0, log sd = 1)

Note that BEAST PhyDyn is fitting deterministic models to data generated from a
noisy stochastic process and some error should be expected due to this approximation.
Supporting figure shows a comparison of a single noisy simulated trajectory and a
solution of the deterministic model under the true parameters. All simulation code and
BEAST XML files are available at
https://github.com/emvolz/PhyDyn-simulations!

Modeling the coalescent process conditioning on a complex
demographic history

In this section we review the approximate structured coalescent model described in [5]
and describe extensions designed to improve accuracy and reduce computational cost.
The new model was first implemented in the rcolgem R package (2014) [29]. A special
case of this model for phylogeography (constant N, in demes and constant migration
rate matrix) was independently developed by Mueller et al. [11].

The probability that a lineage ¢ in a bifurcating roooted genealogy G is in deme
k € 1:m at time ¢ will be denoted p;(t). Usually the state of a lineage will be
observed at the time of sampling ¢;, so that p;x(¢;) is a point density. We compute the
likelihood by solving a system of differential equations for the ancestral states

P1:(2n—2),1:m and computing the expected coalescent rate between each pair of lineages.

Let A(t) denote the set of extant lineages at time ¢. The expected number of
lineages in each deme as a function of time is

A= pust) (13)

i€A(t)

Given lineages ¢ and j € A(t) , the rate of coalescence between the pair of lineages is a
function of the ancestral state vectors p; 1., (t) [5,30]

i N Pik (t)p;1(t) + pji(H)pir ()
Mol = k; ; Fial) Ya(0)Yi(0) (14)

= p”i,l:’”’LF(t)pjyl:nq/ + p_ly',l:wzF(t)p’i»117n (15)
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where p; 1., is a vector with elements p;(¢)/Y%(t). Note that A;; = Aj;. We will also
define the rate

5"L'j = p;,l:mF(t)ijim (16)

which is the rate that a lineage i begets a lineage j conditioning on the states of ¢ and j.
And we will refer to the rate

Aoty = > N (17)

J#LIEA()

which is the rate that ¢ begets any other extant lineage. The total rate of coalescence at
time ¢ is

Alt) = Y i) (18)

using the convention that i = 0 for all 4.

The probability p(G|M) of a given labeled genealogy given a demographic history
M = (F,G,Y), described in previous publications [5,[30], is that of a point process with
intensity A(t) multiplied by the the multinomial density with probabilities A;;(¢)/A(t) for
all pairs of lineages ¢ and j which coalesce. The form of this likelihood is shared by all
structured coalescent models and will not be reviewed further, however approximations
to the structured coalescent differ in how ancestral state vectors are derived. In the
original publication by Volz [5] in 2012, the following approximation (denoted “com12”)
was presented which required the solution of the following differential equations:

d “om com
PRI () = e 1 (19)

where R is the m x m matrix with elements

rig () = (el DA

RE™2(t) = = 0 R (1)
£k

+Gu()/Yi(t), kF#1 (20)

Note the inclusion of the term %(gl(t) in equation which was an approximation

intended to account for the fact that only lineages not ancestral to the sample could
cause a lineage to change state without resulting in coalescence. The form of this
equation was found to provide an accurate approximation to the lineages through time
in [5], when solving the system of equations

d
T AW®) = R A(t) (21)
Here we describe an improved continuous time Markov chain (CTMC) model for
p;(t) which employs a different strategy for conditioning on the absence of coalescent
events along each lineage. Let p; represent an augmented state vector where p;r = pix
for k <m + 1 and p; m+1 represents the probability that lineage ¢ has coalesced. Note

that m + 1 is an absorbing state which occurs at the rate A;.(t) (equation . The

152
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m + 1 x m + 1 rate matrix R has elements
Ryi(t) = (Fie(t) + Gue (1) /Yi(t), i k#Lk<m+1l<m+1

Remir(t) = Y > Fu®pu®)pa(t), ifk<m+1 (22)
JFiJEA() 1=1

Ry(t)=0, ifk=m+1
Rir(t) = = R

1#k
With P(t) representing the (m 4 1) x (2n — 2) matrix of state vectors with columns
(P1,-++ ,Pan—2), we can solve for the state vectors with the following system of equations
d - .
S B(t) = R'(1)P(1) (23)

using the convention that p;;(t) = 0 for all lineages i ¢ A(t).

Note that if the rate of coalescence is non-zero over the history a lineage,
Zzlzl Dir. < 1. If the ancestor node of a lineage i occurs at a time T}, we derive p;(T;)
by renormalizing the distribution computed from equation which provides the state
vector conditional on the event that no coalescence was observed:
Pik

pik (1) = ———
( ) l_pi,m+1

(24)
In |11], a system of equations equivalent to was derived for the special case of a
phylogeographic model, which corresponds to non-zero diagonal F'(t), time-invariant

Y (t) and non-zero off-diagonal G(t), and this system was found to provide a very close
approximation to the stochastic structured coalescent.

Unfortunately, the system of equations [23| can be slow to solve since it requires
recursion over extant lineages (twice) and m + 1 ancestral states (equation . We
therefore provide an additional approximation which greatly reduces computational cost
and is closely related to the approach described in [5]. We define Q(¢,T") to be the
m + 1 X m + 1 matrix of transition probabilities such that

PIesi(T) = Q'(t, T) PT**!(1) (25)

and Q(t,t) = I is the identity matrix. We can approximate the number of lineages in
each deme over the interval using

A1) = Q'(t, T)A(t) (26)
where t < 7 < T. Finally, we can modify equation [22|to use the vector A(7), avoiding
the need to sum over extant lineages:

RPNt = (Fu(t) + Gue(0)/ Vi), k#Lk<m+1,l<m+1
A(t)

Rijj;:ikl(t) = pdc(t)F];(t)W, k <m -+ 1 (27)
R/{:laSt(t):Oa k:m+

RE 1)

- Ry

1£k
And Q(¢,T) is computed by solving the equations

Q) = R QU 7) (28)
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Therefore only m? + m differential equations need to be solved over every internode
interval. Note that Rga;:_l(t) — Ry, m+1(t) = F} pi, so that this fast approximation will
slightly over-estimate the probability that a lineage coalesces over an interval.

We will denote the model based on equations comP and the model based on

equations [27] com@Q. Performance of com@ and comP is explored in simulations below.

Results

With simulated data, BEAST PhyDyn recovers the correct transmission risk ratios and
transmission rates using both the comP model (equation and the faster

com(@ model . Figure [2| compares estimates across twenty simulations using both
variants. The running time of the com(@) model was approximately five times faster
than comP in these simulations with trees that have 250 samples and four demes.
Good coverage of parameter estimates was observed with the comP model. Across 60
parameter estimates (three parameters not counting initial conditions and twenty
simulations), estimates did not cover the true value two times. The com@ model failed
to cover in five of 60 estimates. Greater bias was observed with the com(@) model, with
the greatest bias observed for the wy, parameter (cf equation mean estimate 3.63,
truth:5). However the com() model also had superior precision, with a posterior root
mean square error of 2.4 versus 4.8 observed with the comP model. A similar but less
pronounced pattern of bias and precision was observed for other parameters. A
complete summary of simulation results is available at
https://github.com/emvolz/PhyDyn-simulations!

Human Influenza A /H3N2

The seasonal influenza SIR model which accounts for importations from the global
reservoir was applied to 102 HA /H3N2 sequences collected from New York state during
the 2004-2005 flu season. These data were previously analyzed using non-parametric
models by [24]. Figure [3| shows the estimated posterior effective number of infections
over the course of the influenza season, and the time of peak prevalence is correctly
identified around the end of 2004. We also compared the model-based estimates to
non-parametric estimates generated in BEAST using a conventional non-parametric
Bayesian skyline model which is also shown in Figure[3] The skyline model does not
detect a decrease in prevalence towards the end of the influenza season and does not
identify the time of peak prevalence. Use of a well-specified parametric compartmental
model imposes a strong prior on the epidemic trajectory which leads to the correct
identification of the shape and timing of the epidemic curve.

We estimated the reproduction number Ry = 1.16 (95%CI: 1.07-1.30). This value is
similar to many previous estimates based on non-genetic data for seasonal influenza in
humans which according to the recent review in [31] have an interquartile range of
1.18-1.27 for H3N2. Bettancourt et al. [32] estimated Ry = 1.22 for the 2004-05 H3N2
seasonal influenza epidemic in the entire USA using weekly case report data. An
uninformative prior was used for Ry in the BEAST /PhyDyn analysis.

Ebola virus in Western Africa

We applied the SEIR and superspreading-SEIR models to Ebola virus phylogenies based
on data first described by [27] and subsequently analyzed in [33]. These phylogenies
were estimated from whole genome sequences collected 2014-2015 during the West
African Ebola epidemic. We derived the maximum clade credibility tree from the
analysis by [27] and extracted a subtree based on sampling four hundred lineages at
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Fig 3. The estimated effective number of H3N2 human influenza infections in
2004-2005 in New York State. A. Estimates obtained using the parametric seasonal
influenza model described in the text. B. Effective population size estimated using a
conventional Bayesian skyline analysis.
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Fig 4. Model-based estimates of cumulative infections through time for the 2014-15
Ebola epidemic in Western Africa. Estimates are shown for the SEIR model (A) and
the model which includes super-spreading (B). The red line show the cumulative
number of cases reported by WHO [33].
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Fig 5. Estimated effective number of infections through time using the superspreading
SEIR model for the 2014-15 Ebola epidemic in Western Africa. The red vertical line
shows the time of peak prevalence inferred from WHO case reports. The vertical dashed
line shows the model estimated time of peak prevalence. The red trajectory shows the
proportion of infections in the high-transmission-rate compartment.
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random. The BEAST PhyDyn package was used to fit the models with fixed tree
topologies and branch lengths. We also ran the analysis using a fixed tree estimated by
maximum likelihood and the treedater R package as described in [33|, finding similar
results.

We estimated similar reproduction numbers using both models. With the SEIR
model, we estimate Ry = 1.47(95%CI: 1.41-1.53). With the superspreading-SEIR model,
we estimate Ry = 1.52(95%CI:1.48-1.54). Note that uninformative priors were used for
parameters determining Ry. As anticipated, the model fits provide substantially
different estimates of the cumulative number of infections. Figure [4 shows the estimated
cumulative infections through time using both models alongside the cumulative number
of cases reported by WHO and compiled by the US CDC [33|. Both models provide
similar estimates regarding the relative numbers infected through time and the time of
epidemic peak. Using the superspreading model, the time of peak incidence is estimated
to have occurred on November 25, 2014. According to WHO reports, this occurred only
three days later on November 28 (Figure

Estimates of cumulative infections with the superspreading model are consistent
with WHO data, whereas results with the SEIR model are not. The superspreading
model accomodates an over-dispersed offspring distribution (the number of transmission
per infection), thereby decreasing effective population size per number infected and
yielding larger estimates for the number infected [28]. We estimate the transmission risk
ratio parameter (ratio of transmission rates between high and low compartments) to be
8.1 (95%CT: 6.68-10.73). This implies that a minority of 10% of infected individuals are
responsible for 43%-54% of infections.

Formal model comparison methods such as Bayesian stepping-stone approaches [34]
are not yet supported by the PhyDyn package, but we note that a much higher mean
posterior likelihood was found using the superspreading model (-1006.9) than with the
SEIR model (-1068.5).

Availability and Future Directions

The PhyDyn package, source code, documentation and examples can be found at
https://github.com/mrc-ide/PhyDyn. The PhyDyn package greatly expands the
range of epidemiological, ecological, and phylogeographic models that can be fitted
within the BEAST Bayesian phylogenetics framework. Extensions enabled by this
package include models with parametric seasonal forcing, non-constant parametric
migration or coalescent rates between demes, state-dependent migration or coalescent
rates, and discrete changes in migration or coalescent rates in response to perturbation
of the system (e.g. a public health intervention). The package also provides a means of
utilizing non-geographic categorical metadata which is usually not considered in
phylodynamic analyses, such as clinical or demographic attributes of patients in a viral
phylodynamics application [19].

We have demonstrated the utility of this framework using data from Influenza and
Ebola virus epidemics in humans, finding epidemic parameters and epidemic trajectories
consistent with other surveillance data. In both of these examples, simple structured
models were fitted, but notably without using any categorical metadata associated with
sampled sequences. This demonstrates potential advantages of structured coalescent
modeling even in the absence of informative metadata. In the case of human Influenza
A virus, the fitted model included a deme which accounted for evolution in the
unsampled global influenza reservoir, which allowed estimation of epidemic parameters
within the smaller sub-region which was intensively sampled. The use of a parametric
mass-action model allowed PhyDynto correctly detect the time of epidemic peak and
epidemic decline, whereas non-parametric skyline methods did not detect epidemic
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decline in this case. And in the application to the Ebola virus epidemic in Western 254
Africa, models included un-sampled ‘exposed’ categories which accounted for realistic 255
progression of disease among patients, as well as a ‘super-spreading’ compartment which 256
accounted for over-dispersion in the number of transmissions per infected case. 257

In developing PhyDyn, the focus has been on developing a highly flexible framework  2ss
which is also computationally tractable for moderate sample sizes and model complexity. s

But flexibility and computational efficiency has come at the cost of some realism, 260
notably in the deterministic nature of the models included in this framework. Future 261
extensions may utilize stochastic epidemic models such as those described by [30]. 262
Other directions for future development include semi-parametric modeling, such as 263
models with a spline-valued force of infection [22] or models utilizing Gaussian 264
processes [35], and approaches for utilizing continuous-valued metadata [36]. 265
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Supporting information 256
S1 Fig. Comparison of stochastic and deterministic trajectories. The 267
stochastic epidemic simulation is shown in black and the deterministic ODE model is 268
shown in red. 269
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