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Abstract

Population genetic modeling can enhance Bayesian phylogenetic inference by providing
a realistic prior on the distribution of branch lengths and times of common ancestry.The
parameters of a population genetic model may also have intrinsic importance, and
simultaneous estimation of a phylogeny and model parameters has enabled
phylodynamic inference of population growth rates, reproduction numbers, and effective
population size through time. Phylodynamic inference based on pathogen genetic
sequence data has emerged as useful supplement to epidemic surveillance, however
commonly-used mechanistic models that are typically fitted to non-genetic surveillance
data are rarely fitted to pathogen genetic data due to a dearth of software tools, and
the theory required to conduct such inference has been developed only recently. We
present a framework for coalescent-based phylogenetic and phylodynamic inference
which enables highly-flexible modeling of demographic and epidemiological processes.
This approach builds upon previous structured coalescent approaches and includes
enhancements for computational speed, accuracy, and stability. A flexible markup
language is described for translating parametric demographic or epidemiological models
into a structured coalescent model enabling simultaneous estimation of demographic or
epidemiological parameters and time-scaled phylogenies. We demonstrate the utility of
these approaches by fitting compartmental epidemiological models to Ebola virus and
Influenza A virus sequence data, demonstrating how important features of these
epidemics, such as the reproduction number and epidemic curves, can be gleaned from
genetic data. These approaches are provided as an open-source package PhyDyn for the
BEAST phylogenetics platform.

Introduction 1

Mechanistic models guided by expert knowledge can form an efficient prior on epidemic 2

history when conducting phylodynamic inference with genetic data [1]. Parameters 3

estimated by fitting mechanistic models, such as the reproduction number R0, are 4

important for epidemic surveillance and forecasting. Compartmental models defined in 5

terms of ordinary or stochastic differential equations are the most common type of 6

mathematical infectious disease model, but in the area of phylodynamic inference, 7

non-parametric approaches based on skyline coalescent models [2] or 8

sampling-birth-death models [3] are more commonly used. Methods to translate 9

compartmental infectious disease models into a population genetic framework have been 10

developed only recently [4–8]. We address the gap in software tools for epidemic 11

modeling and phylogenetic inference by developing a BEAST package, PhyDyn, which 12

includes a highly-flexible mark-up language for defining compartmental infectious 13
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disease models in terms of ordinary differential equations. This flexible framework 14

enables phylodynamic inference with the majority of published compartmental models, 15

such as the common susceptible-infected-removed (SIR) model [9] and its variants, 16

which are often fitted to non-genetic surveillance data. The PhyDyn model definition 17

framework supports common mathematical functions, conditional logic, vectorized 18

parameters and the definition of complex functions of time and/or state of the system. 19

The PhyDyn package can make use of categorical metadata associated with each 20

sampled sequences, such as location of sampling, demographic attributes of an infected 21

patient (age, sex), or clinical biomarkers. Phylogeographic models designed to estimate 22

migration rates between spatial demes [10–12] are special cases within this modeling 23

framework, and more complex phylogeographic models (e.g. time-varying or 24

state-dependent population size or migration rates) can also be easily defined in this 25

framework. 26

The development of PhyDyn was influenced by and builds upon previous efforts to 27

incorporate mechanistic infectious disease models in BEAST. The bdsir BEAST 28

package [13] implements a simple SIR model which is fitted using an approximation to 29

the sampling-birth-death process. The phylodynamics BEAST package [14] includes 30

simple deterministic and stochastic SIR models which can be fitted using coalescent 31

processes. More recently, the EpiInf package has been developed which can fit 32

stochastic SIR models using an exact likelihood with particle filtering [15]. These 33

epidemic modeling packages are, however, limited to unstructured populations (no 34

spatial, risk-group, or demographic population heterogeneity). Other packages have 35

been developed for spatially structured populations with a focus on phylogeographic 36

inference, especially with the aim of estimating pathogen migration rates between 37

discrete spatial locations [16]. The MultiTypeTree BEAST package [10] implements the 38

exact structured coalescent model with multiple demes and with constant effective 39

population size in each deme and constant migration rates between demes. Two BEAST 40

packages, BASTA [17] and MASCOT [11] have been independently developed to use 41

fast approximate structured coalescent models related to approaches developed in [5]. 42

These packages mirror the functionality of MultiTypeTree, enabling estimation of 43

time-invariant effective population sizes and migration rates between spatial demes. 44

The PhyDyn BEAST package provides new functionality to the BEAST 45

phylogenetics platform by implementing much more complex structured epidemic 46

models. In a general compartmental model, neither the effective population size nor 47

migration rate between demes need be constant, and in more general frameworks, 48

coalescence is also allowed between lineages occupying different demes. The package 49

includes a flexible mark-up language for compartmental models including common 50

mathematical functions making it simple to develop models which incorporate 51

seasonality or which deviate from the simplistic mass-action premise of basic SIR 52

models. The PhyDyn model mark-up language supports vectorised parameters (e.g. an 53

array of transmission rates or population sizes) and simple conditional logic statements, 54

so that epidemic dynamics can change in a discrete fashion, such as from year to year or 55

in response to a public-health intervention. Commonly used phylogeographic models 56

based on the structured coalescent are a special case of the general compartmental 57

models implemented in the PhyDyn package, and extensions to the basic 58

phylogeographic model can be implemented, such as by allowing effective population 59

size to vary through time in each deme according to a mechanistic model. 60

Design and Implementation 61

In this framework, first described in [5], we define deterministic demographic or 62

epidemiological processes of a general form which includes the majority of 63
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compartmental models used in mathematical epidemiology and ecology. Defining 64

compartmental models within this form facilitates interpretation of the population 65

genetic model developed in the next section. Let there be m demes, and the population 66

size within each deme is given by the vector-valued function of time Y1:m(t). We may 67

also have m′ dynamic variables Y ′1:m′(t) which are not demes (hence do not correspond 68

to the state of a lineage), but which may influence the dynamics of Y . The dynamics of 69

Y arise from a combination of births between and within demes, migrations between 70

demes, and deaths within demes. We denote these as deterministic matrix-valued 71

functions of time and the state of the system, following the framework in [5]: 72

� Births: F1:m,1:m(t, Y, Y ′). This may also correspond to transmission rates between 73

different types of hosts in epidemiological models. 74

� Migrations: G1:m,1:m(t, Y, Y ′). These rates may have non-geographic 75

interpretations in some models (e.g. aging, disease progression). 76

� Deaths: µ1:m(t, Y, Y ′). These terms may also correspond to recovery in 77

epidemiological models. 78

The elements Fkl(· · · ) describe the rate that new individuals in deme l are generated by
individuals in deme k. For example, this may represent the rate that infected hosts of
type k transmit to susceptible hosts of type l. The elements Gkl(· · · ) represent the rate
that individuals in deme k change state to type l, but these rates do not describe the
generation of new individuals. With the above functions defined, the dynamics of Y (t)
can be computed by solving a system of m+m′ ordinary differential equations:

Ẏk(t) = −µk(t) +
m∑
l=1

(Flk(t) +Glk(t)−Gkl(t)) (1)

The PhyDyn package model markup language requires specifying the non-zero 79

elements of F (t), G(t) and µ(t). There are multiple published examples of simple 80

compartmental models developed in this framework [18–23]. In the following sections, 81

we give examples of simple compartmental models related to infectious diease dynamics 82

and show how these models can be defined within this framework. We provide examples 83

of models fitted to data from seasonal human Influenza virus and Ebola virus as well as 84

a simulation study. 85

Seasonal human Influenza model 86

We model a single season of Influenza A virus (IAV) H3N2 and apply this model to 102
HA-1 sequences collected between 2004 and 2005 in New York state [24,25]. We build
on a simple susceptible-infected-recovered (SIR) model which accounts for importations
of lineages from the global reservoir of IAV, which we will see is a requirement for good
model fit to these data (Figure 1). This model has two demes: The first deme
corresponds IAV lineages circulating in New York, and the second deme corresponds to
the global IAV reservoir. The global reservoir will be modeled as a constant-size
coalescent process. Within New York state, new infections are generated at the rate
βI(t)S(t)/N where β is the per-capita transmission rate, I(t) is the number of infected
and infectious hosts, S(t) is the number of hosts susceptible to infection, and
N = S + I +R is the population size. R(t) denotes the number of hosts that have been
infected and are now immune to this particular seasonal variant. With the above
definitions, we define the matrix-valued function of time:

F (t) =

[
βI(t)S(t)/N(t) 0

0 γNr

]
(2)
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A BNr

Fig 1. Compartmental diagram representing structure of models for seasonal human
Influenza (A) and Ebola virus models (B and C). Solid lines represent flux of hosts
between different categories. Dash lines represent migration. Dotted lines represent
births (transmission).

Note that births within the reservoir do not vary through time and depend on the 87

effective population size in that deme Nr. 88

Additionally, we model deaths from the pool of infected using

µ(t) =

[
γI(t)
γNr

]
(3)

Births balance deaths in the reservoir population. 89

Finally, we model a symmetric migration process between the reservoir and New
York:

G(t) =

[
0 ηI(t)

ηI(t) 0

]
(4)

where η is the per-capita migration rate. Note that migration between the reservoir and 90

New York are balanced and do not effect the dynamics of I(t) over time. 91

These three processes lead to the following differential equation for the dynamics of
I(t)

İ(t) = βI(t)S(t)/N(t)− γI(t)

Below, we show a fit of this model where the following parameters are estimated: 92

� Migration rate η; prior: lognormal (log mean=1.38, log sd = 1) 93

� Recovery rate γ; prior: lognormal(log mean = 4.8, log sd = 0.25) 94

� Reproduction number R0 = β/γ; prior: lognormal( log mean 0, log sd = 1) 95

� Reservoir size Nr; prior: lognormal( log mean = 9.2, log sd = 1) 96

� Initial number infected in September 2004; prior: lognormal( log mean = 0, log sd 97

= 1) 98

� Initial number susceptible in September 2004; lognormal( log mean = 9.2, log sd 99

=1) 100

Note that the model only had one informative prior, which was for the recovery rate, 101

and was based on the previous study of viral shedding by Cori et al. [26] 102

Ebola Virus in Western Africa 103

We develop a susceptible-exposed-infected-recovered (SEIR) model (Figure 1) for the 104

2014-2015 Ebola Virus (EBOV) epidemic in Western Africa and apply this model to 105

phylogenies previously estimated by Dudas et al. [27]. Phylogenies estimated by Dudas 106

are randomly downsampled to n = 400 to alleviate computational requirements. 107
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According to the SEIR model, infected hosts progress from an uninfectious exposed
state (E) to an infectious state (I) at rate γ0 which influences the generation-time
distribution of the epidemic. Infectious hosts die or recover at the rate γ1. The SEIR
model has the following form:

d

dt
E = β(t)I(t)− γ0E(t) (5)

d

dt
I = γ0E(t)− γ1I(t) (6)

where β(t) is the per-capita transmission rate. In a typical mass-action model, we would 108

have β(t) ∝ S(t)/(S(t) + E(t) + I(t) +R(t)), however in order to demonstrate the 109

flexibility of this modeling framework, we will instead use a simple linear function, 110

β(t) = at+ b, and in general a wide variety of parametric and non-parametric functions 111

could be used within the BEAST package to model the force of infection. 112

There are two demes in this model corresponding to the potential states of an
infected hosts. The birth matrix with demes in the order (E, I) is

F (t) =

[
0 0

β(t)I(t) 0

]
(7)

The migration matrix encapsulates all processes which may change the state of a lineage
without leading to coalescence of lineages, and this includes progression from E to I:

G(t) =

[
0 γ0E(t)
0 0

]
(8)

And finally removals are modeled using

µ(t) =

[
0

γ1I(t)

]
(9)

Note that the parametric description of β(t) does not require us to model dynamics of 113

S(t) or R(t). 114

The parameters estimated and priors for this model are 115

� β(t) slope a, prior: Normal(0, 40) 116

� β(t) intercept b, prior: lognormal(log mean = 4.6, log sd = 1 ) 117

� Initial number infected (beginning of 2014), prior: lognormal (log mean=0, log sd 118

= 1) 119

In order to reconstruct an epidemic trajectory which closely matched the absolute
numbers of cases through time, we include additional variables that could influence the
relationship between effective population size and the true number of infected hosts. For
this purpose we developed a second EBOV model which included higher variance in the
offspring distribution, reasoning that a higher variance in the number of transmissions
per infected case would lead to higher estimates of the epidemic size [28]. The
superspreading model (Figure 1) includes two infectious compartments, Il and Ih, with
per-capita transmission rates β(t) and τβ(t) respectively. The factor of τ > 1 represents
a transmission risk ratio for the second infectious deme. We specify that a constant
fraction phr progress from E to Ih, with the remainder going to Il. With demes in the
order (E, Il, Ih), the birth, migration, and death matrices for the superspreading model
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are as follows:

F (t) =

 0 0 0
β(t)Il(t) 0 0
τβ(t)Ih(t) 0 0

 , (10)

G(t) =

0 (1− phr)γ0E(t) phrγ0E(t)
0 0 0
0 0 0

 , (11)

µ(t) =

 0
γ1Il(t)
γ1Ih(t)

 (12)

Additional parameters and priors for the superspreading model are 120

� τ , prior: lognormal( log mean = 1, log sd = 1) 121

� phr, fixed at 20% 122

Simulation model 123

We developed a simulation model with four demes in order to evaluate the ability of
BEAST to identify and estimate birth rates, migration rates, and transmission risk
ratios. This model includes two types of hosts, with low and high transmission risk.
Additionally, each type of host progresses through two stages of infection, where the
first stage is short but has higher transmission rate. The four demes are denoted
Y0l, Y1l, Y0h, Y1h where the first subscript denotes stage of infection and the second
subscript denotes transmission risk level. The birth matrix is

F (t) =


plf(t)w0Y0l(t)/W (t) 0 (1− pl)f(t)w0Y0l(t)/W (t) 0
plf(t)Y1l(t)/W (t) 0 (1− pl)f(t)Y1l(t)/W (t) 0

plf(t)w0whY0h(t)/W (t) 0 (1− pl)f(t)w0whY0l(t)/W (t) 0
plf(t)whY1h(t)/W (t) 0 (1− pl)f(t)whY1h(t)/W (t) 0


In this model, a proportion pl of all transmissions go to the low risk group.
Transmissions from stage 1 are proportional to the transmission risk ratio w0 > 1.
Transmissions from the high risk group are proportional to the transmission risk ratio
wh > 1. The variable W (t) = w0Y0l + Y1l + w0whY0h + whY1h normalizes the
proportion of transmissions attributable to each deme. The variable f(t) gives the total
number of transmissions per unit time, and for this we use a SIRS model:

f(t) = β(Y0l + Y1l + Y0h + Y1h)S/N

where S(t) is the number susceptible governed by the following equation

Ṡ = −f(t) + ηS(0)− ηS(t)

and η is the per-capita rate of non-disease related mortality. 124

The migration matrix captures the disease stage-progression process:

G(t) =


0 γ0Y0l(t) 0 0
0 0 0 0
0 0 0 γ0Y0h(t)
0 0 0 0



6/17

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2018. ; https://doi.org/10.1101/268052doi: bioRxiv preprint 

https://doi.org/10.1101/268052
http://creativecommons.org/licenses/by/4.0/


The death matrix is

µ(t) =


ηY0l(t)

(η + γ1)Y1l(t)
ηY0h

(η + γ1)Y1h(t)


To generate simulated data, we simulated epidemics using Gillespie’s exact algorithm 125

over a discrete population and an initial susceptible population of two thousand 126

individuals. A random sample of n = 250 was collected between times 100 and 250 and 127

the history of transmissions was used to reconstruct a genealogy. BEAST PhyDyn was 128

then used to estimate 129

� β, prior: lognormal (log mean=-1.6, log sd = 0.5) 130

� w0, prior: uniform( 0, 50) 131

� wh, prior: uniform( 0, 50) 132

� The initial number infected, prior: lognormal (log mean=0, log sd = 1) 133

Note that BEAST PhyDyn is fitting deterministic models to data generated from a 134

noisy stochastic process and some error should be expected due to this approximation. 135

Supporting figure shows a comparison of a single noisy simulated trajectory and a 136

solution of the deterministic model under the true parameters. All simulation code and 137

BEAST XML files are available at 138

https://github.com/emvolz/PhyDyn-simulations. 139

Modeling the coalescent process conditioning on a complex 140

demographic history 141

In this section we review the approximate structured coalescent model described in [5] 142

and describe extensions designed to improve accuracy and reduce computational cost. 143

The new model was first implemented in the rcolgem R package (2014) [29]. A special 144

case of this model for phylogeography (constant Ne in demes and constant migration 145

rate matrix) was independently developed by Mueller et al. [11]. 146

The probability that a lineage i in a bifurcating roooted genealogy G is in deme 147

k ∈ 1 : m at time t will be denoted pik(t). Usually the state of a lineage will be 148

observed at the time of sampling ti, so that pik(ti) is a point density. We compute the 149

likelihood by solving a system of differential equations for the ancestral states 150

p1:(2n−2),1:m and computing the expected coalescent rate between each pair of lineages. 151

Let A(t) denote the set of extant lineages at time t. The expected number of
lineages in each deme as a function of time is

Ak(t) =
∑

i∈A(t)

pik(t) (13)

Given lineages i and j ∈ A(t) , the rate of coalescence between the pair of lineages is a
function of the ancestral state vectors pi,1:m(t) [5, 30]

λij(t) =
m∑

k=1

m∑
l=1

Fkl(t)
pik(t)pjl(t) + pjl(t)pik(t)

Yk(t)Yl(t)
(14)

= ρ′i,1:mF (t)ρj,1:m + ρ′j,1:mF (t)ρi,1:m (15)
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where ρi,1:m is a vector with elements pik(t)/Yk(t). Note that λij = λji. We will also
define the rate

λ̃ij = ρ′i,1:mF (t)ρj,1:m (16)

which is the rate that a lineage i begets a lineage j conditioning on the states of i and j.
And we will refer to the rate

λ̃i·(t) =
∑

j 6=i,j∈A(t)

λ̃ij(t) (17)

which is the rate that i begets any other extant lineage. The total rate of coalescence at
time t is

λ(t) =
∑

i,j∈A(t)

λ̃ij(t) (18)

using the convention that λ̃ii = 0 for all i. 152

The probability p(G|M) of a given labeled genealogy given a demographic history
M = (F,G, Y ), described in previous publications [5, 30], is that of a point process with
intensity λ(t) multiplied by the the multinomial density with probabilities λij(t)/λ(t) for
all pairs of lineages i and j which coalesce. The form of this likelihood is shared by all
structured coalescent models and will not be reviewed further, however approximations
to the structured coalescent differ in how ancestral state vectors are derived. In the
original publication by Volz [5] in 2012, the following approximation (denoted “com12”)
was presented which required the solution of the following differential equations:

d

dt
pcom12
i (t) = Rcom12(t)′pi(t) (19)

where R is the m×m matrix with elements

Rcom12
kl (t) = (Flk(t)

Yl(t)−Al(t)

Yl(t)
+Glk(t))/Yk(t), k 6= l (20)

Rcom12
kk (t) = −

∑
l 6=k

Rcom12
kl (t)

Note the inclusion of the term Yl(t)−Al(t)
Yl(t)

in equation 20, which was an approximation

intended to account for the fact that only lineages not ancestral to the sample could
cause a lineage to change state without resulting in coalescence. The form of this
equation was found to provide an accurate approximation to the lineages through time
in [5], when solving the system of equations

d

dt
A(t) = Rcom12(t)′A(t) (21)

Here we describe an improved continuous time Markov chain (CTMC) model for
pi(t) which employs a different strategy for conditioning on the absence of coalescent
events along each lineage. Let p̃i represent an augmented state vector where p̃ik = pik
for k < m+ 1 and p̃i,m+1 represents the probability that lineage i has coalesced. Note

that m+ 1 is an absorbing state which occurs at the rate λ̃i·(t) (equation 17). The
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m+ 1×m+ 1 rate matrix R has elements

Rkl(t) = (Flk(t) +Glk(t))/Yk(t), if k 6= l, k < m+ 1, l < m+ 1

Rk,m+1(t) =
∑

j 6=i,j∈A(t)

m∑
l=1

Fkl(t)ρik(t)ρjl(t), if k < m+ 1 (22)

Rkl(t) = 0, if k = m+ 1

Rkk(t) = −
∑
l 6=k

Rkl

With P̃ (t) representing the (m+ 1)× (2n− 2) matrix of state vectors with columns
(p̃1, · · · , p̃2n−2), we can solve for the state vectors with the following system of equations

d

dt
P̃ (t) = R′(t)P̃ (t) (23)

using the convention that pik(t) = 0 for all lineages i /∈ A(t). 153

Note that if the rate of coalescence is non-zero over the history a lineage,∑m
k=1 p̃ik < 1. If the ancestor node of a lineage i occurs at a time Ti, we derive pi(Ti)

by renormalizing the distribution computed from equation 23, which provides the state
vector conditional on the event that no coalescence was observed:

pik(Ti) =
p̃ik

1− p̃i,m+1
(24)

In [11], a system of equations equivalent to 23 was derived for the special case of a 154

phylogeographic model, which corresponds to non-zero diagonal F (t), time-invariant 155

Y (t) and non-zero off-diagonal G(t), and this system was found to provide a very close 156

approximation to the stochastic structured coalescent. 157

Unfortunately, the system of equations 23 can be slow to solve since it requires
recursion over extant lineages (twice) and m+ 1 ancestral states (equation 22). We
therefore provide an additional approximation which greatly reduces computational cost
and is closely related to the approach described in [5]. We define Q(t, T ) to be the
m+ 1×m+ 1 matrix of transition probabilities such that

P̃ fast(T ) = Q′(t, T )P̃ fast(t) (25)

and Q(t, t) = I is the identity matrix. We can approximate the number of lineages in
each deme over the interval using

A(τ) = Q′(t, τ)A(t) (26)

where t < τ < T . Finally, we can modify equation 22 to use the vector A(τ), avoiding
the need to sum over extant lineages:

Rfast
kl (t) = (Flk(t) +Glk(t))/Yk(t), k 6= l, k < m+ 1, l < m+ 1

Rfast
k,m+1(t) = ρik(t)F

′
k·(t)

A(t)

Y (t)
, k < m+ 1 (27)

Rfast
kl (t) = 0, k = m+ 1

Rfast
kk (t) = −

∑
l 6=k

Rkl

And Q(t, T ) is computed by solving the equations

d

dτ
Q(t, τ) = Rfast(τ)′Q(t, τ) (28)
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Therefore only m2 +m differential equations need to be solved over every internode 158

interval. Note that Rfast
k,m+1(t)−Rk,m+1(t) = F ′k·ρi, so that this fast approximation will 159

slightly over-estimate the probability that a lineage coalesces over an interval. 160

We will denote the model based on equations 22 comP and the model based on 161

equations 27 comQ. Performance of comQ and comP is explored in simulations below. 162

Results 163

With simulated data, BEAST PhyDyn recovers the correct transmission risk ratios and 164

transmission rates using both the comP model (equation 22) and the faster 165

comQ model (27). Figure 2 compares estimates across twenty simulations using both 166

variants. The running time of the comQ model was approximately five times faster 167

than comP in these simulations with trees that have 250 samples and four demes. 168

Good coverage of parameter estimates was observed with the comP model. Across 60 169

parameter estimates (three parameters not counting initial conditions and twenty 170

simulations), estimates did not cover the true value two times. The comQ model failed 171

to cover in five of 60 estimates. Greater bias was observed with the comQ model, with 172

the greatest bias observed for the wh parameter (cf equation 13, mean estimate 3.63, 173

truth:5). However the comQ model also had superior precision, with a posterior root 174

mean square error of 2.4 versus 4.8 observed with the comP model. A similar but less 175

pronounced pattern of bias and precision was observed for other parameters. A 176

complete summary of simulation results is available at 177

https://github.com/emvolz/PhyDyn-simulations. 178

Human Influenza A/H3N2 179

The seasonal influenza SIR model which accounts for importations from the global 180

reservoir was applied to 102 HA/H3N2 sequences collected from New York state during 181

the 2004-2005 flu season. These data were previously analyzed using non-parametric 182

models by [24]. Figure 3 shows the estimated posterior effective number of infections 183

over the course of the influenza season, and the time of peak prevalence is correctly 184

identified around the end of 2004. We also compared the model-based estimates to 185

non-parametric estimates generated in BEAST using a conventional non-parametric 186

Bayesian skyline model which is also shown in Figure 3. The skyline model does not 187

detect a decrease in prevalence towards the end of the influenza season and does not 188

identify the time of peak prevalence. Use of a well-specified parametric compartmental 189

model imposes a strong prior on the epidemic trajectory which leads to the correct 190

identification of the shape and timing of the epidemic curve. 191

We estimated the reproduction number R0 = 1.16 (95%CI: 1.07-1.30). This value is 192

similar to many previous estimates based on non-genetic data for seasonal influenza in 193

humans which according to the recent review in [31] have an interquartile range of 194

1.18-1.27 for H3N2. Bettancourt et al. [32] estimated R0 = 1.22 for the 2004-05 H3N2 195

seasonal influenza epidemic in the entire USA using weekly case report data. An 196

uninformative prior was used for R0 in the BEAST/PhyDyn analysis. 197

Ebola virus in Western Africa 198

We applied the SEIR and superspreading-SEIR models to Ebola virus phylogenies based 199

on data first described by [27] and subsequently analyzed in [33]. These phylogenies 200

were estimated from whole genome sequences collected 2014-2015 during the West 201

African Ebola epidemic. We derived the maximum clade credibility tree from the 202

analysis by [27] and extracted a subtree based on sampling four hundred lineages at 203
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Fig 3. The estimated effective number of H3N2 human influenza infections in
2004-2005 in New York State. A. Estimates obtained using the parametric seasonal
influenza model described in the text. B. Effective population size estimated using a
conventional Bayesian skyline analysis.
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Fig 4. Model-based estimates of cumulative infections through time for the 2014-15
Ebola epidemic in Western Africa. Estimates are shown for the SEIR model (A) and
the model which includes super-spreading (B). The red line show the cumulative
number of cases reported by WHO [33].
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Fig 5. Estimated effective number of infections through time using the superspreading
SEIR model for the 2014-15 Ebola epidemic in Western Africa. The red vertical line
shows the time of peak prevalence inferred from WHO case reports. The vertical dashed
line shows the model estimated time of peak prevalence. The red trajectory shows the
proportion of infections in the high-transmission-rate compartment.
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random. The BEAST PhyDyn package was used to fit the models with fixed tree 204

topologies and branch lengths. We also ran the analysis using a fixed tree estimated by 205

maximum likelihood and the treedater R package as described in [33], finding similar 206

results. 207

We estimated similar reproduction numbers using both models. With the SEIR 208

model, we estimate R0 = 1.47(95%CI: 1.41-1.53). With the superspreading-SEIR model, 209

we estimate R0 = 1.52(95%CI:1.48-1.54). Note that uninformative priors were used for 210

parameters determining R0. As anticipated, the model fits provide substantially 211

different estimates of the cumulative number of infections. Figure 4 shows the estimated 212

cumulative infections through time using both models alongside the cumulative number 213

of cases reported by WHO and compiled by the US CDC [33]. Both models provide 214

similar estimates regarding the relative numbers infected through time and the time of 215

epidemic peak. Using the superspreading model, the time of peak incidence is estimated 216

to have occurred on November 25, 2014. According to WHO reports, this occurred only 217

three days later on November 28 (Figure 5. 218

Estimates of cumulative infections with the superspreading model are consistent 219

with WHO data, whereas results with the SEIR model are not. The superspreading 220

model accomodates an over-dispersed offspring distribution (the number of transmission 221

per infection), thereby decreasing effective population size per number infected and 222

yielding larger estimates for the number infected [28]. We estimate the transmission risk 223

ratio parameter (ratio of transmission rates between high and low compartments) to be 224

8.1 (95%CI: 6.68-10.73). This implies that a minority of 10% of infected individuals are 225

responsible for 43%-54% of infections. 226

Formal model comparison methods such as Bayesian stepping-stone approaches [34] 227

are not yet supported by the PhyDyn package, but we note that a much higher mean 228

posterior likelihood was found using the superspreading model (-1006.9) than with the 229

SEIR model (-1068.5). 230

Availability and Future Directions 231

The PhyDyn package, source code, documentation and examples can be found at 232

https://github.com/mrc-ide/PhyDyn. The PhyDyn package greatly expands the 233

range of epidemiological, ecological, and phylogeographic models that can be fitted 234

within the BEAST Bayesian phylogenetics framework. Extensions enabled by this 235

package include models with parametric seasonal forcing, non-constant parametric 236

migration or coalescent rates between demes, state-dependent migration or coalescent 237

rates, and discrete changes in migration or coalescent rates in response to perturbation 238

of the system (e.g. a public health intervention). The package also provides a means of 239

utilizing non-geographic categorical metadata which is usually not considered in 240

phylodynamic analyses, such as clinical or demographic attributes of patients in a viral 241

phylodynamics application [19]. 242

We have demonstrated the utility of this framework using data from Influenza and 243

Ebola virus epidemics in humans, finding epidemic parameters and epidemic trajectories 244

consistent with other surveillance data. In both of these examples, simple structured 245

models were fitted, but notably without using any categorical metadata associated with 246

sampled sequences. This demonstrates potential advantages of structured coalescent 247

modeling even in the absence of informative metadata. In the case of human Influenza 248

A virus, the fitted model included a deme which accounted for evolution in the 249

unsampled global influenza reservoir, which allowed estimation of epidemic parameters 250

within the smaller sub-region which was intensively sampled. The use of a parametric 251

mass-action model allowed PhyDynto correctly detect the time of epidemic peak and 252

epidemic decline, whereas non-parametric skyline methods did not detect epidemic 253
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decline in this case. And in the application to the Ebola virus epidemic in Western 254

Africa, models included un-sampled ‘exposed’ categories which accounted for realistic 255

progression of disease among patients, as well as a ‘super-spreading‘ compartment which 256

accounted for over-dispersion in the number of transmissions per infected case. 257

In developing PhyDyn, the focus has been on developing a highly flexible framework 258

which is also computationally tractable for moderate sample sizes and model complexity. 259

But flexibility and computational efficiency has come at the cost of some realism, 260

notably in the deterministic nature of the models included in this framework. Future 261

extensions may utilize stochastic epidemic models such as those described by [30]. 262

Other directions for future development include semi-parametric modeling, such as 263

models with a spline-valued force of infection [22] or models utilizing Gaussian 264

processes [35], and approaches for utilizing continuous-valued metadata [36]. 265
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Supporting information 266

S1 Fig. Comparison of stochastic and deterministic trajectories. The 267

stochastic epidemic simulation is shown in black and the deterministic ODE model is 268

shown in red. 269
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