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Abstract

Seasonal waves of influenza display a complex spatiotemporal pat-
tern resulting from the interplay of biological, socio-demographic, and
environmental factors. At country level many studies characterized
the robust properties of annual epidemics, depicting a typical season.
Here we analyzed season-by-season variability, introducing a clustering
approach to assess the deviations from typical spreading patterns. The
classification is performed on the similarity of temporal configurations
of onset and peak times of regional epidemics, based on influenza-
like-illness time-series in France from 1984 to 2014. We observed a
larger variability in the onset compared to the peak. Two relevant
classes of clusters emerge: groups of seasons sharing similar recurrent
spreading patterns (clustered seasons) and single seasons displaying
unique patterns (monoids). Recurrent patterns exhibit a more pro-
nounced spatial signature than unique patterns. We assessed how
seasons shift between these classes from onset to peak depending on
epidemiological, environmental, and socio-demographic variables. We
found that the spatial dynamics of influenza and its association with
commuting, previously observed as a general property of French influ-
enza epidemics, applies only to seasons exhibiting recurrent patterns.
The proposed methodology is successful in providing new insights on
influenza spread and can be applied to incidence time-series of differ-
ent countries and different diseases.
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Introduction

Understanding influenza spatial dynamics is highly relevant to improve pre-
paredness and control, as annual influenza epidemics represent a serious bur-
den for public health worldwide [11]. Several empirical and modeling studies
have uncovered a set of key features of disease spatial transmission observed
across several seasons. Influenza diffuses through complex spatiotemporal
patterns that appear to change across scales [62, 61, 32, 15, 31, 17, 21, 23,
39, 65, 49, 22]. A hierarchical spread combining a wave-like behavior on
the small scale and long-range seeding events synchronizing distant popula-
tions was reported by several studies [62, 61, 17, 65, 50]. This is generally
explained by the multiscale nature of mobility patterns of individuals [12],
with commuting mainly acting on the short distance whereas air travel flows
are responsible for non-local diffusion [12, 61, 17, 22]. The relative import-
ance of wave-like vs. long-range diffusion and of the associated mobility
modes however depends on the geographic scale of the country. Long range
coupling by air travel was found in previous analyses of epidemiological data
in the US [61, 12, 18, 16], though its role is currently debated [22]. A higher
synchrony of epidemics is reported in smaller countries, e.g. in Israel [32]
and in France [15, 21, 23] where no dominant transportation mode was iden-
tified [23]. Spatial patterns of influenza spread also depend on the dominant
viral strain circulating [61, 50, 19, 40, 43], with a tendency of B-dominated
influenza seasons to be characterized by slower and later epidemics compared
to A-dominated epidemics [50, 19].

Seasonality affects influenza spatial dynamics in multiple ways [37]. Day /night
cycles are thought to influence the immune system increasing the suscept-
ibility to infection during winter period [26]. Low absolute humidity and
temperature may increase virus survival and overall transmissibility [52], fa-
cilitate transmission onset [31], and possibly lead to detectable signals in
influenza activity [53, 22, 57, 24].

The vast majority of these studies highlight general and robust tendencies
of influenza epidemics and the properties of a typical season [62, 61, 32, 31,
21, 23, 65, 56, 50]. Evidence of multiple spatial patterns beyond the one
associated to a typical seasonal behavior is however available. Marked radial
patterns are for example observed in 4 influenza seasons in the US out of
the 8 seasons (2002-2010) under study by Charu et al. [22], and monotonous
spatial patterns (i.e. highly synchronized) are reported in Japan compared
to multitonous ones (i.e. multi-seeding followed by radial diffusion) in the
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period 1992-1999 [49]. While the spreading pattern of a typical influenza
season is relatively well characterized, other patterns may emerge beyond
the typical one that contribute to the large variability of influenza spatial
transmission observed in epidemiological data.

In the context of influenza epidemics in France, our aim is to identify
and classify possible deviations from typical patterns identified in previous
work([23]. By studying influenza spatial propagation on a season-by-season
basis through a long historical dataset (30 years) we go beyond the descrip-
tion of the robust properties of seasonal waves and build an ontology of
possible spreading patterns. In addition to focusing on the peak time, we
also aim to consider the patterns that may emerge at the onset of the epi-
demic [58] and characterize them in a systematic and quantitative way. We
classify seasons according to similar onset configurations and similar peak
configurations, we then put in relation the two classifications to assess how
seasons shift classes from onset to peak, i.e. tracking the potential similarity
of flu spreading patterns as the epidemic unfolds throughout the country.
Finally, we assess how patterns of seasonal influenza epidemics shift from
one class to another depending on demographic, virological, environmental,
and mobility drivers. We provide in this way novel insights that were hidden
in prior analyses.

Results

Our analysis is based on influenza-like-illness incidence data for France col-
lected by the French Surveillance Network of general practitioners (Reseau
Sentinelles) [58, 10]. We consider weekly time series of incidence rate for the
22 regions of France (NUTS 2 level) for 30 influenza seasons, ranging from
1984-1985 season to 2013-2014 season, and including the HIN1 pandemic
season of 2009-2010. For each season we denote the regional onset time as
the week of start of the epidemic period at the regional level (see Methods),
and the regional peak time as the week with the highest incidence in each
region. Regions not experiencing an epidemic period during a season are
not considered in the analysis. A large variability is observed across seasons.
National epidemic profiles differ substantially in terms of epidemic activity,
timing, and duration (Figure la). Peak times range from week 49 (month of
December, seasons 93-94, 03-04 and 09-10) to week 14 (Month of April, sea-
sons 94-95 and 97-98), with 9 of the seasons peaking before week 2 in January
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Figure 1: ILI incidence. (a) National ILI incidence for 100,000 inhabit-
ants. (b) Regional ILI incidence for 100,000 inhabitants. The time-interval
shown for every season is a 12 week window, centered on the peak of ILI

activity (the median value of region’s peak time). Onset time is indicated by
the black line.

(denoted here as early seasons) vs. 21 peaking after week 6 (late seasons,
while instead peaks between week 2 and week 6 are named winter seasons
in the following). Attack rates vary considerably, from mild to moderate to
severe epidemics. The median time from onset to peak of the epidemic is
one month (95% CI [2-7] weeks). Such heterogeneity is largely maintained at
the regional level with variations in several indicators (Figure 1b). Almost
all regions (median 21 out of 22) experience an epidemic in each season con-
sidered. Regions cross the epidemic threshold at different times during the
season. If we quantify the spread of the onset time as the time it takes for the
percentage of regions reaching the epidemic onset to grow from 10% to 90%,
we find it varies from a minimum of 1 week (93-94 season) to a maximum
of 9 weeks (85-86 season) (Figure 2a and Supplementary Figure S1). The
spread of the regional peak time is comparable, showing a smaller median
(3.0 95%CI [1.4-7.9] vs. 3.8 [1.6-8.3]) but still preserving a large variability
(Figure 2b).

We now seek to better characterize the heterogeneity observed in the
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Figure 2: Spread time and distance for both onset and peak. (a)
Scattered plot of the spread time of the peak vs. the spread time of the onset,
considering all seasons. Seasons are color-coded according to the clustering
at the peak (see Figure 3). (b) Spread time distribution for onset and peak
expressed in weeks. (c) Scattered plot of peak distance vs. onset distance.
Points correspond to all the possible pairs of seasons on which the distance
is computed. The dashed line marks the best fit for linear regression. (d)
Distribution of onset distance and peak distance values.

temporal evolution of influenza seasons at regional level. To identify the
regional timing patterns for the onset of influenza epidemics, we define for
each season s an onset time vector 0o®, whose element o reports the detrended
onset time of region 7 in season s. Similarly the peak time vector p® has
components p; reporting the detrended peak time of region 7 in the season.
We then compare different seasons and identify those having similar onset
timing patterns by introducing the distance D, between season s and season
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where the sum goes over the N, regions experiencing an epidemic in both
seasons (regions whose incidence never crosses the epidemic threshold are not
considered in the computation). Dg, is designed to associate small distances
to seasons with similar regional timing pattern, discounting for differences in
absolute timing, i.e. early vs. late epidemics. If two seasons share exactly
the same onset timing pattern, then DZ, = 0. We call this quantity onset
distance, and we similarly define the peak distance DY, as the analogous
quantity computed over the peak time vector p°.

Start and peak distance are moderately correlated (R = 0.56, p < 107°)
with DP displaying a narrower distance, though still highly variable (1.44 —
3.62 weeks, based on the 5th and 95th percentiles) (Figure 2c,d). The peak
distance distribution displays two peaks, the highest at around 1.5 weeks
and the lowest at around 2.8 weeks, the latter coinciding with the single
peak reported for the onset distance distribution.

Next, we classify influenza seasons in terms of their similarity of timing
patterns at regional level for the onset and the peak, expressed through
the distance D computed on the time vectors. We cluster seasons via a
complete-linkage agglomerative clustering procedure [30] based on D°, or DP
(Figure 3a). This procedure yields two clustering structures, one capturing
similarities between timing patterns of regions at the epidemic onset and one
capturing similarities at the epidemic peak (Figure 3b). We then relate these
two structures via an alluvial diagram [47] (Figure 3c) mapping the pattern
at start with the corresponding pattern at peak, to track how seasons change
classification throughout the season.

Out of the 30 seasons under study, we obtain 3 group clusters (O1, O2,
O3 in Figure 3c) and 21 single-season clusters (or monoids) for the onset,
compared to 6 group clusters (P1, P2, P3, P4, P5, P6 in Figure 3c) and
13 monoids for the peak. Onset group clusters are made of 3 seasons each,
whereas the size of the peak group clusters range from 2 to 4 seasons. Most
importantly, the alluvial diagram allows us to assess how timing patterns
of influenza epidemics change from onset to peak. The analysis shows the
emergence of seasons with a similar peak pattern from seasons having a larger
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Figure 3: Seasons clustering. (a) Schematic visualization of seasons clus-
tering. Seasons are clustered according to the similarity between their timing
patterns, at the onset and at the peak. All seasons in a cluster are within
clustering distance from each other. Seasons are color-coded according to
the clustering at the peak. (b) Changes in clustering from onset to peak.
Onset (left) and peak (right) clustering are shown, with every cluster presen-
ted on a different line. The change in timing patterns from onset to peak is
represented by mergers/divergences in the lines connecting the two cluster-
ing structures. Group-clusters are numbered for future reference, with the
number of seasons composing each cluster shown in brackets. Seasons are
color-coded according to the clustering at the peak.
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distance at the onset of the epidemic. This is observed for seasons 12-13 and
13-14 (grouped in P1) or seasons 98-99, 99-00 and 07-08 (grouped in P2).
Also, two of the onset group clusters split when reaching peak time (O1 and
03), whereas 94-95 and 01-02 seasons maintain the similarity of their timing
patterns across time (from O2 to P4). All peak monoids but one (11-12
season) are also monoids at the onset of the epidemic. Maps of the group
clusters and monoids reveal the strong spatial signatures between seasons
of the same cluster (Figure 4 and Supplementary Figure S2). The pattern
is given by a large number of regions having the same detrended timing in
all seasons of the group cluster (e.g. 8 out of 22 in P1: Bretagne, Pays
De La Loire, Haute-Normandie, Centre, Limousin, Ile de France, Bourgogne,
Franche Comté; 9 in P3: Aquitaine, Poitou-Charentes, Limousin, Languedoc-
Roussillon, Rhone-Alpes, Bourgogne, Franche Comté, Champagne-Ardenne,
Lorraine), or contributed by several regions at 1 week apart (e.g. 9 regions in
P3 or P4 and 11 regions in O2). Focusing on regions with the same detrended
timing, we observe that in some clusters they are geographically contiguous
(P1, P5, O3), whereas in others they are sparsely distributed (P6). Four
regions (Burgundy, Haute-Normandy, Limousin, Ile de France) belong to the
set of regions with the same detrended timing in at least 50% of the peak
clusters (Supplementary Figure S3). Monoids are instead characterized by
a large heterogeneity of the timing patterns of regions that strongly differs
across seasons (Figure 4c).

We now turn to the analysis of clusters with respect to epidemiological,
environmental, and human mobility factors, and focus on the differences
between the class of group clusters and the class of monoids. Monoids ex-
hibit large fluctuations in the standard deviation of the regional peak time,
with few seasons showing a higher degree of synchronization at the peak
(87-88, 90-91, 04-05, 10-11, 11-12) with respect to all other monoid seasons
(Figure 5a). Peak group clusters show standard deviations significantly smal-
ler than in monoids only for P2, P4, P5, and P6 clusters (p < 0.05). This
extends to all group clusters when onset time is considered (p < 0.05).
Seasons sharing similar timing patterns at peak are often characterized by
higher influenza activity compared to isolated seasons. Four peak group
clusters (P2, P3, P5, P6) present larger regional attack rates than monoid
seasons (p < 0.005), whereas clusters P1 and P4 are not significantly differ-
ent from monoids (Figure 5b).

Clustered seasons present early epidemics more frequently than expected
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Figure 4: Geographic signature of clusters. (a) Map of France dis-
playing the regional differences in the detrended timing across seasons of the
same onset group-cluster. Dark colored regions present the same relative
timing in all the seasons, lighter colored regions present a relative timing
that is within one week from each other, and white regions present a relative
timing that is more than one week apart from each other. Regions having
no epidemic in one or more seasons of the clusters are indicated. (b) Map of
France displaying the regional differences in the detrended timing across sea-
sons of the same peak group-cluster. The same color-code is used as in panel
a). (c) Map of France showing the detrended timing of peak monoids. White
regions have a peak time that equals the median value over all regions. Red
regions peak later than the median and blue regions before. Regions having
no epidemic are indicated. Season 90-91 is not shown, because of the large
number of regions not experiencing an epidemic (13 out of 22).
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(p < 0.05), and late epidemics less frequently than expected (p < 0.05), with
monoids showing the opposite behavior (Figure 5¢). No difference is observed
when considering the onset time. The correlation of the regional ILI time
series with the corresponding temperature time series is moderately negat-
ive for almost all peak monoids, whereas it can become positive for seasons
sharing the same pattern at the peak.

Finally, no association with the dominant strain at the national level is found
for the identified clusters.

To better relate the emergence of the regional timing patterns with effects of
synchronization at the peak, we compute the pairwise synchronization prob-
ability for regions ¢ and j as the percentage of seasons in which ¢ and j are
synchronized (i.e. their ILI incidence peaks at exactly the same week). We
compute this probability considering all seasons under study (P3""), only
seasons showing similar patterns at the peak (ngﬁ), and only isolated sea-
sons in our clustering classification (P2 ). Figure 6 shows an illustrative
example of the pairwise synchronization probability for the two most popu-
lous regions of France — Ile-de-France and Rhone-Alpes. Radial patterns of
synchronization appear evident in the group cluster seasons, together with
long-range synchronization (e.g. Ile-de-France and Midi-Pyrénées, or Rhone-
Alpes and Nord-Pas-de-Calais). When considering monoid seasons, radial
patterns are far less pronounced (Rhone-Alpes) or largely absent (ile—de—
France). Such difference in pattern between seasons clustered in groups or
isolated is lost when inspecting the synchronization probability computed on
all seasons.

Table 1: Correlation values between synchronization probabilities and spa-
tial /anthropological factors (Mantel test, n.s. stands for "not significant”).

To quantitatively measure this effect and assess its possible drivers, we

10

onoid | Domes | P
Distance —0.225" | —0.384"" | —0.442*
Product of population n.s. n.s. n.s.
Flight passengers 1.s. 1.s. 1.s.
Commuters n.s, 0.195* 0.182*
*n < 0.05
“p < 0.01
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Figure 5: Synthetic indicators characterizing seasons clusters. Sea-
sons that form group-clusters with respect to peak time are highlighted with
the corresponding cluster colour (see Fig. 3), while seasons that are monoid-
clustered are shown in gray. (a) Standard error of the distribution of regional
peak time by season. (b) Box plot of regional attack rates by season. (c¢) Sea-
sons classification with respect to absolute peak time. Number of seasons that
have an early, winter or late peak time (see main text) for group-clustered
seasons (left), and for monoid-clustered seasons (right) with respect to peak
time. The classification is compared to a random null model (boxplot).

measure the association between the probability of synchronization and sev-
eral demographic and mobility indicators via a Mantel test (Table 1). Pair-
wise synchrony significantly decreases with distance in both types of clusters
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(mild correlation) and over all seasons (moderate correlation). No association
is found with the product of the population sizes of the donor and recipient
regions or with air travel fluxes across all groups of seasons considered. Com-
muter flows instead display a weak positive correlation with the probability of
synchronization considering all seasons and group-clustered seasons, whereas
no association is found for monoids.

Group-clustered Monoid-clustered
seasons seasons All seasons

lle-de-France

Rhéne-Alpes

Y

Reference 0 N 02
region Synchronization probability
Figure 6: Synchronization probability. Color-coded pairwise synchroniz-

1 13t synch synch synch . . &
ation probabilities Py, Paon and P~ of all regions with Ile-de-France

(top row) and Rhone-Alpes (bottom row).
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Discussion

Elucidating the spatiotemporal patterns of the spread of influenza epidemics
is of great importance for preparedness and control. Here we study 30 influ-
enza seasons in France at the regional level and introduce a novel method to
characterize the variability of spatial transmission of influenza. We consider a
clustering approach to reduce the observed variability by identifying a limited
number of regional configurations at the epidemic onset (onset timing pat-
terns) and at peak time (peak timing patterns) shared by multiple seasons.
We characterize their properties, and assess how seasons shift between classes
of patterns depending on epidemiological, environmental, demographic and
mobility factors.

The cluster analysis yields two important findings. First, two relevant
classes of clusters emerge: group clusters composed of seasons sharing re-
current diffusion patterns and monoid clusters made by single seasons whose
patterns strongly differ from all others. This is observed both at the onset
and at the peak of the epidemic, although the mechanisms for pattern form-
ation at the two stages of the epidemic are different and are not trivially
captured by epidemiological or virological signatures at the national level
(e.g. intensity of the epidemic activity, or dominant virus type). Second, the
current knowledge characterizing a typical influenza epidemic only applies to
a subset of seasons, specifically those exhibiting recurrent patterns, whereas
unique patterns, though representing roughly 50% of the seasons, show dif-
ferent properties.

A large number of works focused on the characterization of influenza spa-
tial propagation in different countries and at different geographic scales [31,
23, 65, 49, 22, 38]. The novelty of our approach is to systematically identify
recurrent patterns across seasons, distinguish them from unique patterns in
a fully hierarchical way, and to connect the patterns at epidemic onset with
those at peak time. This is made possible by the long timeframe under study.
We find that as influenza incidence increases from the epidemic threshold to
the peak, patterns become more similar thus presenting a stronger clustering
at peak compared to patterns at the onset. Highly contagious viruses [61, 32]
and strong population coupling are generally associated with faster and more
homogeneous spatial spread [46, 33, 12, 28|. This is further increased by the
small scale of the country, as reported in the case of Israel displaying a high
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synchronization across cities [32]. Our study however shows that neither
the standard deviation of the peak time distribution across regions nor the
regional attack rate are able to discriminate in a definitive way between re-
current and unique patterns. While synchronization is indeed a mechanism
to group seasons in the same cluster, similarity can be achieved also in ab-
sence of a high synchronization (i.e. homogeneity of timing) as long as the
regional heterogeneity is close across seasons. In addition, we find clusters
that are built on a large number of regions whose timing differs of one week
only (P2, P4), thus maintaining low values of D?. Notably, Ile de France
plays this role in the majority of the peak clusters.

The spatial pattern of influenza transmission in France is predominantly
localized and driven by the distance between regions, with a stronger effect
observed on recurrent patterns compared to unique ones. This is in line with
previous observations of wave-like spreading behavior [61] and of strong cor-
relation between neighboring regions reported for a typical influenza season
in the country [23]. Similar results connecting distance and synchronization
were also obtained for the US through wavelet analysis [61], spearman rank
correlation [56] or statistical modeling [22]. The effective role of distance
in the spatial transmission of influenza has been put in relation with dif-
ferent modes of mobility of individuals. Commuting has been identified as
an important driver for short-range dissemination [21], though the narrow
nature of its range of connectivity is not able to explain alone the broader
spatial propagation of influenza [22]. For France we find a positive, though
weak, correlation considering all 30 seasons, signaling that a combination of
different modes of travel may compete at the scale of the country [12]. No
support is indeed found for air travel, in line with previous works on influenza
in France [21, 23], likely because the majority of internal mobility relies on
ground transportation. On the global scale, air travel is instead associated
to the large-scale propagation of seasonal influenza epidemics [48, 36, 64],
and is known to be an important driver for the dissemination of emerging
infectious diseases [17, 45, 44], including influenza pandemics [13, 34, 27]. At
the national level, results do not appear to be conclusive [61, 22, 18, 12, 16]
and seem to depend on the scale of the country, with smaller countries like
for example France [23] and Israel [32] clearly excluding a dominant role of
mobility by air for influenza spread compared to the US [18, 20, 22].

Our clustering approach shows however that these spatial transmission
properties are specific only to a subset of influenza epidemics, namely those
exhibiting recurrent patterns. The dependence on commuting observed when
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all seasons are considered is recovered for group clusters but is absent in
seasons with unique patterns. For the latter, the dependence on the distance
is also weaker, thus signaling that, besides an underlying weak localization,
the mode of spread is less marked spatially, as evident from the maps of
Figure 4 and Figure 6. No dependence on mobility and demography is found,
so other factors must be at play that concur to the emergence of these unique
patterns.

We find a clear dependence on the temperature only for monoids, ex-
hibiting a negative correlation with temperature profile [41] (Supplementary
Figure S4 in the SI). This is likely induced by the unexpectedly large number
of late epidemics, for which the ILI peak follows in time the week of minimum
temperature. Temperature profiles for France usually have their minimum
in between the end of January and the first week of March (5th and 95th
percentile, respectively) while ILI activity has a greater variability in peak
time, ranging from the beginning of December to mid March (5th and 95th
percentile, respectively).

Previous work has highlighted that different types/subtypes of influenza
present different circulation patterns [61, 48, 14]. Season classification in
terms of dominant strain at the national level however does not allow us
to establish a connection between virology and spreading patterns. Possible
causes may include the small size of the sample, given that the national strain
dominance (defined as >50% of isolated samples) is available for 25 seasons
(6 B seasons, 8 H1 seasons, and 11 H3 seasons) and is compared to a relat-
ively small number of group clusters. In addition, co-dominance of different
influenza strains or co-circulation of influenza virus with other respiratory
pathogens (as e.g. respiratory syncytial virus [51, 59]) are expected to pos-
sibly lead to non-trivial interactions and likely a mixing of different spatial
patterns within the same season. Finally, our results seem to suggest that re-
gional heterogeneity in strain dominance is taking place in the country, with
one strain dominating at the national level while different configurations of
sub-dominant strains compete at the local level. For example, seasons 08-09
and 11-12 are clustered together at the start, but not at the peak. Though
sharing the same dominant strain at the national level (H3), season 08-09 dis-
plays influenza B becoming dominant in some regions throughout the season,
whereas in season 11-12 type B is never dominant [6, 5|. Spatial heterogen-
eity in influenza strain dominance is often reported at a larger scale across
countries in Europe [3, 2|, with countries exhibiting different strains dom-
inating during the same influenza season. The underlying mechanisms are

15


https://doi.org/10.1101/268060
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/268060; this version posted February 19, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

however still poorly understood. Virological data with regional resolution
would be needed to further investigate this aspect in France, however these
are available starting 2014-2015 season only, following a change in surveil-
lance protocols.

Clustering is less structured at the onset compared to the peak and dis-
plays a larger number of unique patterns. This may be related to varying
configurations of case importations from abroad that change with seasons,
and it is indeed in line with the large variations reported for the estimates
for the external seeding parameter of the model fitting influenza diffusion in
the US [22].

While we are able to discriminate between recurrent patterns that con-
firm previous knowledge on typical influenza spatial transmission and unique
patterns exhibiting different properties, some aspects emerging from our clas-
sification still elude our quantitative interpretation. For example, we find
some seasons shifting from similar onset patterns to different peak patterns
(e.g. seasons 93-94,95-96 and 99-00). The demographic, virological, and
environmental factors we tested are not able to explain the shift. Also, mo-
bility is unlikely to be a possible driving factor as the shift would require a
marked topological change in commuting flows over time that is not reported
by national statistics. We expect possible factors therefore to be dependent
on space and to change across years. One such factor could be a different
virological signature at the local level, as discussed before. A second possible
cause could be a spatially different vulnerability of the population to the
disease, due to different age structures (e.g. the fraction of individuals under
20 years of age varies from 21% in Corsica to 27% in Nord-Pas-de-Calais,
data of 2015 [9]) or varying vaccination rates per region. A statistical model
fitting ILI incidence data in the US found a large variation in the parameter
value fitting population susceptibility to influenza across seasons [22]. This
seems to support our hypothesis on the role of different profiles of regional
immunity that may change in time. We repeated the analysis on ILI age
structured data and obtained similar results, suggesting that we are unable
to uncover these mechanisms on surveillance data only. Validation on ser-
ological or vaccination coverage data at the regional level is prevented by
the lack of exhaustive data, but presents an interesting avenue to explore in
future data collection developments.

Some limitations affect our study. First, we use ILI data as a proxy for the
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spatio-temporal evolution of influenza epidemics. This is in line with a large
number of previous works [62, 61, 23, 32, 29, 22|, as ILI data are known to be
a reliable proxy for influenza incidence when activity is sustained [63, 42, 60].
Close to the threshold the agreement is expected to be lower, thus possibly
affecting the identification of the onset time of the epidemic especially in
smaller regions. For this reason, we also tested different regional epidemic
thresholds finding that our results are robust against this change. Second,
different definitions of the onset times may be proposed [22]. Here we decided
to adopt the national definition of the epidemic period remapped to the re-
gional scale. Third, the surveillance network of sentinel general practitioners
is not a representative sample distributed in the country. Recent work pro-
posed different techniques to correct ILI data in France against this possible
bias [54, 55]. We checked that these corrections would leave the peak time
invariant and would lead to a small change of the threshold value that would
however not alter the identification of the onset time, as discussed above.
Fourth, our classification depends on the clustering threshold chosen. While
we tested the robustness of our choice in the sensitivity analysis (see Supple-
mentary Figure S5 in the SI), our approach maintains an arbitrary degree in
the definition of the similarity across seasons that may be tuned according
to the study objective. Finally, we note that starting 2016 France adopted
a different administrative subdivision in 13 regions following an aggregation
of the 22 regions considered here. Our study could be easily extended in
future work as surveillance data are currently collected by keeping both sub-
divisions. Using the 22 regions subdivision would allow us to maintain the
comparison with past seasons and also to have a higher granularity to better
appreciate spatial patterns.

Conclusions

Our study introduces a novel method to better classify different spatiotem-
poral trends in seasonal influenza activity. A larger variability is observed at
epidemic onset with respect to peak time. The clustering at peak time reveals
a more pronounced spatial diffusion for seasons exhibiting recurrent patterns
compared to seasons characterized by unique patterns. Commuting plays a
measurable role in shaping recurrent influenza spatial patterns whereas it is
found to play no role in unique patterns seasons. This provides new insights
that were hidden in prior analyses that were not capable of assessing the full
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spectrum of possible configurations. Groups of seasons shifting from similar
onset patterns to different peak patterns do not find a definitive explanation
in the present study but open the path to future perspectives assessing viral
strain dominance and population immunity at a higher resolution than what
currently available.

This work is the first systematic classification of influenza seasons in terms
of diffusion patterns at onset and at peak, but the methodology described
here is completely general. Applying this method to countries of different
scale within the same study period may help identify season-specific prop-
erties that are robust in the classification and shed light on the interplay
between geographical scale and observed propagation. Also, the compar-
ison between clustering of influenza seasons and of other respiratory disease
epidemics may yield novel insights into the relation between pathogens and
associated spreading patterns.

Material and Methods

Data

ILI incidence data is provided by the French GP surveillance network adopt-
ing the following ILI definition: a sudden fever of over 39°C with myalgia
and respiratory symptoms[25]. Incidence curves are smoothed with a 3-week
moving average to avoid noisy fluctuations. Incidence data at the regional
level is considered for all age classes aggregated, and also broken down for
children (less than 20 years) and adults (otherwise) classes for age-specific
analyses.

Mobility data are obtained from two sources. Commuter flows between
different departments (NUTS 3 level) are extracted from data of the French
National Institute of Statistics and Economic Studies (Insee) for 2011 [8] and
aggregated at the regional level (NUTS 2 level). Air travel fluxes between
French regions are extracted from the IATA worldwide airport database [7]
aggregating all airports in the same region. A total of 60 commercial airports
exist in France with 193 within-country connections.

Temperature data are obtained from the European Climate Assessment
& Dataset (ECA&D)[35, 4]. Daily data from all weather stations in a given
region are aggregated to compute an average weekly temperature for the
region. Data extended up to 2005, and for some regions no temperature data
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was available.

Epidemic threshold and onset time

For every season, the regional onset time of the epidemic is defined as the first
of two consecutive weeks for which the ILI incidence rate is above 150 cases for
100,000 inhabitants. No standard definition is available for the onset of the
epidemic period at the regional level, and currently the Sentinel Surveillance
System adopts an approach similar to the one used at the national level. By
comparing ILI data [10] and virological data [1] for the same season in France,
the above threshold value is obtained by imposing that with 95% confidence
the percentage of positive swabs is at least 15% of the total ILI samples
(Supplementary Figure S6). We also tested different values for sensitivity. If
the incidence rate is never above the threshold value, the region is considered
as not experiencing an epidemic and is excluded from the analysis.
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