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ABSTRACT 22 

 Abnormalities in nucleic acid processing are associated with the development of 23 

amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in 24 

Matrin 3 (MATR3), a poorly understood DNA- and RNA-binding protein, cause familial 25 

ALS/FTD, and MATR3 pathology is a feature of sporadic disease, suggesting that 26 

MATR3 dysfunction is integrally linked to ALS pathogenesis. Using a primary neuron 27 

model to assess MATR3-mediated toxicity, we noted that neurons were bidirectionally 28 

vulnerable to MATR3 levels, with pathogenic MATR3 mutants displaying enhanced 29 

toxicity. MATR3’s zinc finger domains partially modulated toxicity, but elimination of its 30 

RNA recognition motifs had no effect on neuronal survival, instead facilitating its self-31 

assembly into liquid-like droplets. In contrast to other RNA-binding proteins associated 32 

with ALS, cytoplasmic MATR3 redistribution mitigated neurodegeneration, suggesting 33 

that nuclear MATR3 mediates toxicity. Our findings offer a foundation for understanding 34 

MATR3-related neurodegeneration and how nucleic acid binding functions, localization, 35 

and pathogenic mutations drive sporadic and familial disease.  36 
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INTRODUCTION 37 

 Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder 38 

resulting in the death of upper and lower motor neurons (Charcot and Joffroy, 1869). 39 

Mounting evidence indicates that RNA-binding proteins (RBPs) are integrally involved in 40 

the pathogenesis of ALS (Taylor et al., 2016). The majority (>95%) of ALS patients 41 

display cytoplasmic mislocalization and deposition of the RBP TDP-43 (TAR DNA/RNA-42 

binding protein of 43 kDa) in affected tissue (Neumann et al., 2006). Moreover, over 40 43 

different ALS-associated mutations have been identified in the gene encoding TDP-43, 44 

and mutations in several different RBPs have been similarly linked to familial ALS 45 

(Kabashi et al., 2008; Kwiatkowski et al., 2009; Vance et al., 2009; Barmada and 46 

Finkbeiner, 2010; Ticozzi et al., 2011; Kim et al., 2013). These mutations often cluster in 47 

intrinsically disordered domains that facilitate reversible liquid-liquid phase separation 48 

(LLPS), thereby creating ribonucleoprotein granules important for RNA processing, 49 

shuttling of mRNAs to sites of local translation, or sequestration of transcripts during 50 

stress. Pathogenic mutations in the genes encoding TDP-43 and related RBPs, including 51 

FUS and TIA1, shift the equilibrium towards irreversible phase separation and the 52 

formation of cytoplasmic aggregates analogous to those observed in post-mortem 53 

tissues from patients with ALS (Johnson et al., 2009; Patel et al., 2015; Gopal et al., 54 

2017; Mackenzie et al., 2017). The downstream implications of abnormal LLPS on RNA 55 

misprocessing, RBP pathology, and neurodegeneration in ALS are unknown, however.  56 

 Matrin 3 (MATR3) is a DNA- and RNA-binding protein with wide-ranging 57 

functions in nucleic acid metabolism including gene transcription, the DNA damage 58 

response, splicing, RNA degradation, and the sequestration of hyperedited RNAs 59 

(Belgrader et al., 1991; Hibino et al., 2000; Zhang and Carmichael, 2001; Salton et al., 60 

2014; Coelho et al., 2015; Rajgor et al., 2016; Uemura et al., 2017). The MATR3 S85C 61 

mutation leads to autosomal dominant distal myopathy with vocal cord and pharyngeal 62 
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weakness (Feit et al., 1998; Senderek et al., 2009). A more recent report reclassified a 63 

subset of patients with this diagnosis as having ALS and noted several additional 64 

MATR3 mutations in individuals with ALS and frontotemporal dementia (FTD), placing 65 

MATR3 in a group of proteins implicated in familial ALS, FTD, and myopathy; other 66 

members of this family include VCP, TIA1 and hnRNPA2/B1 (Kimonis et al., 2008; 67 

Johnson et al., 2010; Kim et al., 2013; Klar et al., 2013; Johnson et al., 2014; Mackenzie 68 

et al., 2017). A total of 13 pathogenic MATR3 mutations have now been identified, most 69 

of which are located in disordered stretches of the protein (Fig. 1A) (Millecamps et al., 70 

2014; Origone et al., 2015; Leblond et al., 2016; Xu et al., 2016; Marangi et al., 2017). 71 

Additionally, post-mortem analyses demonstrated MATR3 pathology—consisting of 72 

cytoplasmic MATR3 accumulation as well as strong nuclear immunostaining—in patients 73 

with sporadic ALS and familial disease due to C9orf72 hexanucleotide expansions and 74 

FUS mutations (Dreser et al., 2017; Tada et al., 2017).  75 

 Together, these observations suggest that MATR3 may be a common mediator 76 

of disease even in those without MATR3 mutations. Even so, little is known about 77 

MATR3’s functions in health or in disease, and the mechanisms underlying MATR3-78 

dependent neurotoxicity remain unclear. Here, we establish an in vitro model of MATR3-79 

mediated neurodegeneration and take advantage of this model to investigate the 80 

intrinsic properties and domains of MATR3 required for toxicity. Furthermore, we 81 

examine how disease-associated MATR3 mutations affect these properties to enhance 82 

neurodegeneration.  83 

 84 

RESULTS 85 

MATR3 levels modulate neuronal survival in an in vitro model of 86 

neurodegeneration. 87 

 88 
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 We first asked how MATR3 expression is related to neurodegeneration using 89 

longitudinal fluorescence microscopy (LFM), a sensitive high-content imaging system 90 

that we assembled for assessing neuronal function and survival at the single-cell level. 91 

As MATR3 mutations cause a spectrum of disease that includes ALS and FTD, we 92 

modeled neurotoxicity in primary mixed cortical cultures, a system that recapitulates key 93 

features of ALS/FTD pathogenesis (Barmada et al., 2010; Barmada et al., 2014; 94 

Barmada et al., 2015). Primary neurons were transfected with diffusely localized mApple 95 

to enable visualization of neuronal cell bodies and processes by fluorescence 96 

microscopy. In addition, cells were co-transfected with constructs encoding enhanced 97 

green fluorescent protein (EGFP) or MATR3 fused with EGFP. Cultures were imaged by 98 

fluorescence microscopy at 24 h intervals for 10 days, and custom scripts used to 99 

generate uniquely labeled regions of interest (ROIs) corresponding to each cell (Fig. 1B). 100 

Rounding of the soma, retraction of neurites or loss of fluorescence indicated cell death; 101 

these criteria proved to be sensitive markers of neurodegeneration in previous studies 102 

(Arrasate and Finkbeiner, 2005). We used the time of death for individual cells to 103 

calculate an overall risk of death, expressed as a hazard ratio (HR), corresponding to the 104 

likelihood of cell death in each population relative to a control or reference group 105 

(Christensen, 1987). In doing so, we observed that MATR3(WT)-EGFP overexpression 106 

significantly increases the risk of death compared to EGFP alone, with a HR of 1.48 (Fig. 107 

1C). 108 

 Next, we investigated the dose-dependency of this MATR3 toxicity through two 109 

alternative but complementary approaches. Transient transfection delivers a different 110 

amount of vector to each cell, resulting in substantial variability in protein expression for 111 

individual cells. Since fluorescence intensity is directly proportional to fluorophore levels 112 

(Arrasate et al., 2004), the GFP intensity within each ROI provides an estimate of EGFP 113 

or MATR3(WT)-EGFP expression for individual neurons. Based on the GFP intensity 114 
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measured 24 h after transfection, we divided transfected neurons into three groups: 115 

those that expressed low, medium, and high levels of EGFP or MATR3(WT)-EGFP. We 116 

then assessed the relative survival of these groups over time, and compared the risk of 117 

death in each by Cox proportional hazards. In doing so, we noted that cells that express 118 

low EGFP levels display an increased risk of death compared to those in the medium or 119 

high EGFP expression categories, potentially due to poor protein expression by 120 

unhealthy or dying cells (Fig. 1D). We also analyzed the relationship between GFP 121 

intensity and survival using penalized splines, which approximate both linear and non-122 

linear relationships by treating GFP intensity as a continuous variable (Miller et al., 2010; 123 

Barmada et al., 2015). In this model, increasing EGFP expression predicted improved 124 

survival, but the effect plateaued at approximately 1500 arbitrary units (AU) (Fig. 1E). 125 

These data imply that lower expression of a neutral protein such as EGFP is tied to 126 

reduced survival, consistent with the results of previous studies (Miller et al., 2010; 127 

Barmada et al., 2015).  128 

 To determine how MATR3(WT)-EGFP expression is related to neuronal survival, 129 

we likewise separated neurons into three groups (low, medium and high) depending on 130 

MATR3(WT)-EGFP levels and assessed survival in each group. Unlike cells expressing 131 

EGFP alone, we detected no significant difference in survival between the low, medium, 132 

and high MATR3(WT)-EGFP expression groups (Fig. 1F). Correspondingly, the 133 

penalized spline model shows no clear relationship between risk of death and 134 

MATR3(WT)-EGFP levels for cells displaying low or medium GFP intensity. However, in 135 

contrast to cells expressing EGFP alone, we noted an increase in the risk of death with 136 

high MATR3(WT)-EGFP expression (Fig. 1G), suggesting that the extended survival 137 

observed in high-expressing cells is offset by the production of a toxic protein. Taken 138 

together, these data support a dose-dependent toxicity of MATR3(WT) in primary 139 

neurons. 140 
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 Several MATR3 mutations have been associated with familial ALS, FTD, and 141 

hereditary distal myopathy (Senderek et al., 2009; Johnson et al., 2014; Millecamps et 142 

al., 2014; Origone et al., 2015; Leblond et al., 2016; Xu et al., 2016; Marangi et al., 143 

2017). To determine if disease-associated MATR3 mutations accentuate 144 

neurodegeneration, we created MATR3-EGFP fusion proteins harboring one of four 145 

mutations originally implicated in familial disease: S85C, F115C, P154S, and T622A 146 

(Fig. 1A). Primary rodent cortical neurons expressing these mutant MATR3-EGFP 147 

constructs exhibited the same granular nuclear distribution as MATR3(WT)-EGFP, 148 

without obvious aggregation or cytoplasmic mislocalization, consistent with prior reports 149 

(Fig. 2A) (Gallego-Iradi et al., 2015; Boehringer et al., 2017). Even so, all four displayed 150 

a subtle but significant increase in toxicity over MATR3(WT)-EGFP when overexpressed 151 

in primary neurons (Fig. 2B), consistent with either gain-of-function or dominant negative 152 

loss-of-function mechanisms contributing to mutant MATR3-associated 153 

neurodegeneration. 154 

 To determine if loss of endogenous MATR3 function is sufficient for 155 

neurodegeneration, we transfected primary neurons with mApple and siRNA targeting 156 

the amino (N)-terminal coding region of rodent Matr3 or a scrambled siRNA control. 157 

Three days after transfection, Matr3 immunoreactivity was used to quantify efficacy of 158 

knockdown in transfected cells (Fig. 2C). Compared to scrambled siRNA-transfected 159 

cells, we noted consistent depletion of the endogenous rat Matr3 by approximately 65% 160 

in those transfected with siRNA targeting Matr3 (Fig. 2D). Having confirmed knockdown, 161 

we imaged a separate set of transfected cells for 10 days to assess the effect of Matr3 162 

knockdown on neuronal survival. In doing so, we observed a 20% increase in the risk of 163 

death upon Matr3 depletion in comparison to scrambled siRNA (Fig. 2E). These data 164 

suggest that neurons are vulnerable to both increases and decreases in MATR3 levels 165 
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and function; further, pathogenic MATR3 mutations may elicit neurodegeneration via 166 

gain- or loss-of-function mechanisms, or through elements of both. 167 

 168 

MATR3’s zinc finger domains modulate overexpression toxicity, but its RNA 169 

recognition motifs mediate self-association. 170 

 171 

 To identify the functional domains involved in MATR3-mediated 172 

neurodegeneration, we systematically deleted each of the annotated MATR3 domains 173 

and evaluated subsequent toxicity upon overexpression in primary neurons (Fig. 3A). 174 

MATR3 has two zinc-finger (ZF) domains of the C2H2 variety, which bind DNA but may 175 

also recognize RNA and/or mediate protein-protein interactions (Brayer et al., 2008; 176 

Burdach et al., 2012). Deletions of ZF1, ZF2, or both had no observable effect on 177 

MATR3-EGFP localization (Fig. 3B), and ZF1 deletion by itself did not significantly alter 178 

toxicity compared to full-length MATR3-EGFP. In contrast, ZF2 deletion, either in 179 

isolation or combined with ZF1 deletion, partially rescued MATR3-EGFP overexpression 180 

toxicity (Fig. 3C).  181 

 We next created deletion variants of MATR3’s RNA recognition motifs (RRMs) to 182 

test their contribution to MATR3-mediated neurodegeneration. As with the MATR3 ZF 183 

domains, RRMs are capable of recognizing both RNA and DNA (Inagaki et al., 1996). 184 

While deletion of RRM1 failed to affect MATR3-EGFP localization, we noted a striking 185 

redistribution of MATR3(dRRM2)-EGFP into intranuclear granules in a subset of 186 

transfected neurons (Fig. 3D). Deletion of RRM1 in combination with RRM2 produced 187 

the same phenotype, suggesting that RRM2 normally prevents such redistribution. 188 

These nuclear granules formed by MATR3(dRRM2)-EGFP and MATR3(dRRM1/2)-189 

EGFP were uniformly spherical in shape, and their presence was accompanied by a 190 

reduction in the intensity of diffusely-distributed MATR3 within the nucleus, suggesting 191 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/268458doi: bioRxiv preprint 

https://doi.org/10.1101/268458
http://creativecommons.org/licenses/by/4.0/


  

 9 

that they represent hyperconcentrated MATR3 puncta. Evidence from previous studies 192 

indicates that RNA recognition by MATR3 may be largely—but not solely—driven by 193 

RRM2 (Hibino et al., 2006; Salton et al., 2011). Consistent with this, our finding that 194 

RRM2 deletion induces the formation of nuclear condensates suggests that RNA binding 195 

normally keeps MATR3 diffuse by preventing an intrinsic tendency for self-association. 196 

Despite the dramatic shift in MATR3-EGFP distribution with RRM2 deletion, there was 197 

no associated change in the toxicity of MATR3-EGFP lacking RRM1, RRM2 or both in 198 

comparison to MATR3(WT)-EGFP (Fig. 3E). This finding stands in contrast to what has 199 

been observed for other ALS/FTD-associated RBPs, in which the ability to bind RNAs is 200 

a key mediator of overexpression toxicity. 201 

 202 

The toxicity of RNA binding-deficient MATR3 variants is highly dependent on their 203 

subcellular distribution 204 

 205 

One of the hallmarks of neurodegenerative diseases, including ALS and FTD, is 206 

the formation of protein-rich aggregates (Arai et al., 2006; Neumann et al., 2006). Prior 207 

investigations suggest that these aggregates may be toxic, innocuous, or representative 208 

of a coping response that ultimately prolongs neuronal survival (Arrasate et al., 2004; 209 

Barmada et al., 2010). To determine if the formation of nuclear puncta by 210 

MATR3(dRRM2)-EGFP and MATR3(dRRM1/2)-EGFP affected neuronal lifespan, we 211 

turned to LFM. We employed a modified version of the automated analysis script to draw 212 

ROIs around the nuclear perimeter within each transfected cell (Fig. 4A) and then 213 

calculated a coefficient of variation (CV) for the MATR3(dRRM1/2)-EGFP signal within 214 

each nuclear ROI. The CV, or the ratio of the standard deviation of GFP intensity to the 215 

mean GFP intensity for the ROI, is directly proportional to the spatial variability of 216 

fluorescence intensity within each ROI. Therefore, we reasoned that this measure might 217 
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be useful for rapidly and reliably identifying puncta in an unbiased and high-throughput 218 

manner. We first validated the use of CV for detecting puncta by creating a receiver-219 

operator characteristic (ROC) curve; in doing so, we observed that a CV threshold of 220 

0.92 was 87.2% sensitive and 93.9% specific in discriminating cells with nuclear 221 

granules from those with diffuse protein (Fig. 4B). We therefore utilized this CV threshold 222 

to assess the frequency of nuclear granule formation in primary rodent cortical neurons, 223 

noting that 24 h after transfection, 23.4% (653/2734) of neurons transfected with 224 

MATR3(dRRM2)-EGFP neurons displayed nuclear granules compared to only 8.8% 225 

(153/1743) of MATR3(dRRM1/2)-EGFP cells (Fig. 4C). We also observed the time-226 

dependent formation of nuclear granules as neurons expressed increasing amounts of 227 

MATR3-EGFP (Fig. 4D), suggesting that granule formation may be proportional to 228 

expression level. To investigate this relationship further, we identified neurons exhibiting 229 

a diffuse distribution of MATR3(dRRM2)-EGFP at day 1 and followed these cells for an 230 

additional 3 days by automated microscopy. We then measured the GFP intensity for 231 

each cell at day 1, and related this value to the risk of granule formation over the 232 

ensuring 72 h period using penalized splines models. Notably, we failed to observe a 233 

significant relationship between GFP intensity on day 1 and granule formation by day 3 234 

(Fig. 3E). We also assessed the relative change in expression level on a per-cell basis, 235 

as quantified by the ratio of GFP intensity at day 2 to the GFP intensity at day 1, to 236 

determine if the net rate of MATR3(dRRM2)-EGFP production better predicted granule 237 

formation. The probability of granule formation was directly proportional to the time-238 

dependent change in MATR3(dRRM2)-EGFP levels (Fig. 4F), suggesting that granule 239 

formation is favored by the rapid accumulation of MATR3(dRRM2)-EGFP.  240 

 Our previous studies demonstrated that deletion of RRM1 or RRM1 and 2 had no 241 

effect upon the toxicity of MATR3-EGFP when expressed in primary neurons (Fig. 3E). 242 

These analyses included all neurons within a given condition, consisting of cells with 243 
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diffuse nuclear MATR3 as well as those with MATR3 redistributed into granules. To 244 

determine if the presence of nuclear MATR3-EGFP granules impacted the survival of 245 

neurons, we utilized the nuclear CV threshold (Fig. 4B) to divide neurons expressing 246 

MATR3(dRRM2)-EGFP and MATR3(dRRM1/2)-EGFP into three categories: cells with 247 

diffuse protein at day 1, those with granules at day 1, or all cells. We then tracked 248 

neurons in each category for the following 9 days by LFM, and compared their survival 249 

by Cox proportional hazards analysis. By these measures, neurons displaying nuclear 250 

MATR3(dRRM2)-EGFP granules fared significantly better than the population as a 251 

whole, while those exhibiting a diffuse distribution demonstrated an increased risk of 252 

death (Fig. 4G). Similar results were obtained for neurons expressing 253 

MATR3(dRRM1/2)-EGFP; here, the relative protection associated with nuclear 254 

MATR3(dRRM1/2)-EGFP granules was modest, but the toxicity of diffusely-distributed 255 

MATR3(dRRM1/2)-EGFP was more pronounced (Fig. 4H). The marked toxicity of diffuse 256 

MATR3(dRRM1/2)-EGFP may explain why so few cells with diffuse protein are seen at 257 

day 1 (Fig. 4D). Taken together, these results suggest that diffuse MATR3 is highly 258 

neurotoxic when it cannot bind RNA. Furthermore, the sequestration of RNA binding-259 

deficit MATR3 variants into nuclear granules is associated with a survival advantage.  260 

 261 

MATR3 granules formed by deletion of the RNA-binding domains display liquid-262 

like properties that are affected by pathogenic mutations 263 

 264 

As part of their normal function, many RBPs reversibly undergo liquid-liquid 265 

phase separation (LLPS), involving the formation of droplets with liquid-like properties 266 

from diffuse or soluble proteins (Molliex et al., 2015; Murray et al., 2017). Disease-267 

associated mutations in the genes encoding these proteins may promote LLPS or impair 268 

the reversibility of phase separation (Molliex et al., 2015; Patel et al., 2015; Conicella et 269 
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al., 2016). We wondered whether the intranuclear granules formed by MATR3(dRRM2)-270 

EGFP and MATR3(dRRM1/2)-EGFP represent liquid droplets and also whether 271 

pathogenic MATR3 mutations affect the intrinsic properties of these puncta. Indeed, 272 

nuclear granules exhibited dynamic properties, not only growing in size over time but 273 

also moving freely within the nucleus and fusing if they encountered other granules (Fig. 274 

5A), indicative of liquid-like behavior.  275 

We then asked if these structures displayed internal rearrangement characteristic 276 

of liquid droplets (Lin et al., 2015; Shin and Brangwynne, 2017) and whether pathogenic 277 

MATR3 mutations affect their dynamics. To answer this, we introduced disease-278 

associated mutations into MATR3(dRRM1/2)-EGFP, and transfected rodent primary 279 

cortical neurons with each construct (Fig. 5B). Nuclear puncta were photobleached 2-4 280 

days after transfection, and the recovery of fluorescence intensity tracked within the 281 

bleached and unbleached ROIs by laser scanning confocal microscopy. Granules 282 

formed by WT MATR3(dRRM1/2)-EGFP displayed internal rearrangement over the 283 

course of minutes consistent with liquid-like properties, as did all tested disease mutants 284 

on the dRRM1/2 background (Fig. 5C-D). The S85C mutation, however, severely slowed 285 

fluorescence recovery, suggesting reduced exchange of molecules within each droplet. 286 

Using the Stokes-Einstein equation, we calculated viscosity estimates for each 287 

MATR3(dRRM1/2)-EGFP variant based on return time and bleached area size (Fig. 5E). 288 

Consistent with the observed effect of this mutation on fluorescence recovery, the S85C 289 

mutation led to a pronounced increase in viscosity over that of WT and other disease-290 

associated mutants.  291 

We wondered whether this phenotype was specific to nuclear droplets formed by 292 

MATR3(dRRM1/2)-EGFP, or if full-length MATR3 carrying pathogenic mutations would 293 

also display reduced mobility. For this, we transfected primary neurons with full-length 294 

versions of MATR3(WT)-EGFP or disease-associated MATR3-EGFP variants and then 295 
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bleached a circular area in the center of the nucleus (Fig. 5F). In each case, we noted 296 

rapid return of fluorescence, and the recovery rate was unaffected by pathogenic 297 

MATR3 point mutations (Fig. 5G). To account for the rapidity of return as well as the 298 

area of the bleached region, we calculated a diffusion coefficient (DC) for each 299 

construct. Comparison of the DCs for WT and mutant MATR3-EGFP variants showed no 300 

significant differences (Fig. 5H). Our data therefore suggest that the S85C point 301 

mutation—and perhaps other mutations that cluster in the N-terminal disordered 302 

domain—selectively affect the droplet properties of MATR3. 303 

 304 

Mapping the sequence determinants of MATR3 localization in neurons 305 

 306 

 Cytoplasmic inclusions composed of the RBP TDP-43 are characteristic of ALS 307 

and the majority of FTD (Arai et al., 2006; Neumann et al., 2006). Moreover, pathogenic 308 

mutations in the gene encoding TDP-43 enhance cytoplasmic mislocalization concordant 309 

with enhanced neurotoxicity, and reductions in cytoplasmic TDP-43 prolong neuronal 310 

survival (Barmada et al., 2010; Barmada et al., 2014). To determine if MATR3 311 

localization is likewise an important determinant of neurodegeneration, we sought to 312 

disrupt the MATR3 nuclear localization signal (NLS). However, since multiple sequences 313 

have been associated with nuclear MATR3 localization (Hibino et al., 2006; Hisada-Ishii 314 

et al., 2007), we systematically identified regions enriched in positively-charged amino 315 

acids (arginine, lysine) that may mediate nuclear import via importin-α. We then deleted 316 

each of the 7 regions defined in this manner, including two that had been identified as 317 

controlling nuclear localization in previous studies, and assessed their localization by 318 

transfection in rodent primary cortical neurons followed by fluorescence microscopy (Fig. 319 

6A).  320 
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Deletion of NLSs 1, 2, 3, 5, 6, and 7 had little to no effect on neuronal MATR3 321 

distribution (Fig. 6B). While the dNLS3 mutation did not change nuclear MATR3 322 

localization per se, it did induce the formation of many small, nuclear granules. This 323 

effect is consistent with the position of NLS3 within RRM2, and the observed formation 324 

of nuclear puncta upon RRM2 deletion (Fig. 4). In contrast, and in accord with previous 325 

studies (Hisada-Ishii et al., 2007), deletion of the bipartite NLS4 elicited a marked 326 

reduction in nuclear MATR3-EGFP accompanied by enhanced cytoplasmic localization 327 

and the formation of small MATR3-EGFP granules within the cytoplasm. In DT40 and 328 

HeLa cells, both NLS4 arms were critical for MATR3 nuclear localization (Hisada-Ishii et 329 

al., 2007). To determine if this is the case in neurons, we sequentially deleted the N- and 330 

C-terminal arms (dNLS4N and dNLS4C, respectively) and tested their localization by 331 

transfection into primary cortical neurons. These studies demonstrated that the N-332 

terminal arm is necessary and sufficient for nuclear localization, as MATR3(dNLS4N)-333 

EGFP exhibits nuclear clearing and punctate distribution in the cytoplasm and neuronal 334 

processes, while MATR3(dNLS4C)-EGFP has the same distribution as MATR3(WT)-335 

EGFP (Fig. 6C-D).  336 

 Having identified the N-terminal arm of NLS4 as the key sequence regulating 337 

MATR3 localization in neurons, we asked whether driving MATR3 into the cytoplasm by 338 

deletion of this sequence could modify toxicity. Rodent primary cortical neurons were 339 

transfected with mApple and either EGFP, MATR3(WT)-EGFP, or MATR3(dNLS4N)-340 

EGFP and imaged at regular intervals by LFM. Automated survival analysis of neuronal 341 

populations expressing these constructs demonstrated that the dNLS4N mutation and 342 

resulting cytoplasmic localization significantly reduced MATR3-dependent toxicity 343 

compared to the MATR3(WT)-EGFP (Fig. 6E). Therefore, unlike TDP-43 and FUS, two 344 

RBPs whose cytoplasmic mislocalization are tightly tied to neurodegeneration in 345 

ALS/FTD models, cytoplasmic MATR3 retention mitigates toxicity, suggesting that 346 
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nuclear MATR3 functions are required for neurodegeneration (Barmada et al., 2010; Qiu 347 

et al., 2014).  348 

 Given the observed relationship between MATR3 localization and toxicity, we 349 

wondered if subtle changes in nucleocytoplasmic MATR3 distribution could be 350 

responsible for the increased toxicity of MATR3 bearing disease-associated mutations. 351 

Rodent primary cortical neurons transfected with each of the pathogenic MATR3-EGFP 352 

variants showed no obvious difference in subcellular localization in comparison with 353 

MATR3(WT)-EGFP (Fig. 2A). To investigate MATR3-EGFP localization in a quantitative 354 

manner, we developed a customized image-based analysis script to draw ROIs around 355 

the nucleus and soma of each neuron, measure MATR3-EGFP content separately within 356 

each compartment, and calculate a nucleocytoplasmic ratio for MATR3-EGFP in 357 

individual cells (Fig. 6F). This analysis confirmed our initial observations, showing no 358 

significant differences in the localization of mutant MATR3-EGFP variants compared to 359 

MATR3(WT)-EGFP.  360 

 In a complementary series of experiments, we utilized biochemical fractionation 361 

to assess the distribution of MATR3-EGFP in a human cell line. MATR3(WT)-EGFP or 362 

versions of MATR3-EGFP bearing the S85C, F115C, P154S, and T622A disease-363 

associated mutations were transfected into HEK293T cells, and the nuclear and 364 

cytoplasmic fractions subjected to SDS-PAGE and Western blotting. In agreement with 365 

single-cell data from transfected primary neurons, we noted no difference in the 366 

nucleocytoplasmic distribution of any of the MATR3-EGFP variants tested here (Fig. 367 

6G). Nevertheless, we consistently observed far less of the S85C variant in both nuclear 368 

and cytoplasmic fractions, compared to MATR3(WT)-EGFP and other disease-369 

associated mutants. These data suggest that the S85C mutation may destabilize 370 

MATR3-EGFP; alternatively, this mutation may prevent adequate solubilization and 371 

detection of MATR3-EGFP via SDS-PAGE and Western blotting.  372 
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 373 

A subset of pathogenic MATR3 mutations affect protein solubility but not stability 374 

 375 

 To discriminate among these possibilities, we first investigated the turnover of 376 

WT and mutant MATR3 variants using optical pulse labeling (OPL), a technique enabling 377 

non-invasive determinations of protein clearance in living cells (Barmada et al., 2014). 378 

For these experiments, MATR3 was fused to Dendra2—a photoconvertable protein that 379 

irreversibly switches from a green to red fluorescent state upon illumination with low-380 

wavelength light (Chudakov et al., 2007)—and expressed in primary cortical neurons. 381 

One day after transfection, neurons were illuminated with blue light to photoconvert 382 

Dendra2, and the time-dependent loss of red fluorescence signal used to calculate 383 

protein half-life (Fig. 7A). Previous studies validated the accuracy and utility of OPL for 384 

determinations of protein half-life (Barmada et al., 2014); importantly, and in contrast to 385 

biochemical techniques for calculating half-life that depend on radioactive labeling or 386 

translational inhibitors, OPL allows us to measure protein clearance on a single-cell level 387 

for thousands of neurons simultaneously (Fig. 7B). Most disease-associated mutations 388 

had little effect upon the turnover of MATR3-Dendra2 in primary cortical neurons. 389 

However, we noted subtle destabilization of MATR3(S85C)-Dendra2 in comparison to 390 

other pathogenic mutant variants and MATR3(WT)-Dendra2 (Fig. 7C-D). Even so, the 391 

magnitude of the effect was relatively small, making it unlikely that differences in protein 392 

turnover fully explain the reduced abundance of MATR3(S85C)-EGFP noted in cell 393 

lysates (Fig. 6G).  394 

 We next asked if the S85C mutation altered MATR3 solubility. HEK293T cells 395 

transfected with WT and mutant MATR3-EGFP variants were lysed using a harsher 396 

protocol that involved sonication in RIPA buffer; additionally, we used urea buffer to 397 

extract all RIPA-insoluble proteins. In stark contrast to mild conditions (Fig. 6G), harsher 398 
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lysis resulted in equivalent levels of all MATR3 variants on Western blot, suggesting that 399 

the S85C mutation reduced MATR3 solubility (Fig. 7E). Consistent with this 400 

interpretation, the urea-soluble fraction was markedly enriched for MATR3(S85C)-EGFP 401 

and modestly enriched for MATR3(T622A)-EGFP. These data show that the S85C and 402 

T622A mutations reduce the solubility of MATR3, without drastically affecting its stability. 403 

As shown in Fig. 1A, both mutations lie within areas of predicted disorder, consistent 404 

with their effects on MATR3 aggregation and solubility.  405 

 406 

DISCUSSION 407 

 In this study, we modeled MATR3-mediated neurodegeneration by 408 

overexpressing WT or disease-associated MATR3 variants in primary neurons. In doing 409 

so, we found that neurons were highly susceptible to increases or decreases in MATR3 410 

levels, and disease-associated MATR3 variants exhibited enhanced toxicity in 411 

comparison to MATR3(WT). Structure-function studies demonstrated that the ZF2 412 

domain modulates overexpression-related toxicity, while RRM2 prevents MATR3 phase 413 

separation into mobile nuclear puncta. Biophysical analysis of these puncta confirmed 414 

their liquid-like nature and further indicated that the pathogenic S85C mutation 415 

substantially increased the viscosity of these structures. We also determined that the N-416 

terminal arm of a bipartite NLS drives MATR3 nuclear localization; forcing MATR3 into 417 

the cytoplasm by deleting this sequence blocked toxicity from MATR3 overexpression. 418 

While we did not observe any differences in the distribution of pathogenic MATR3 419 

variants, we noted that the S85C mutation significantly reduced MATR3 solubility and, to 420 

a lesser extent, stability. The T622A mutant displayed similar but more muted effects on 421 

MATR3 solubility, suggesting that disease-associated mutations located in distinct 422 

MATR3 domains may operate through convergent pathogenic mechanisms.  423 
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Both MATR3 overexpression and knockdown elicited significant and comparable 424 

toxicity in neurons. These data suggest that neurons are bidirectionally vulnerable to 425 

changes in MATR3 levels. Post-mortem studies of MATR3 distribution in sporadic and 426 

familial ALS patients demonstrated stronger MATR3 nuclear staining as well as the 427 

presence of cytoplasmic MATR3 aggregates in motor neurons (Dreser et al., 2017; Tada 428 

et al., 2017). While the impact of these findings is unknown, MATR3 mislocalization or 429 

sequestration into aggregates may reflect a reduction in normal function, a new and 430 

abnormal function, or both. In mice, homozygous Matr3 knockout is embryonic lethal, 431 

while heterozygous Matr3+/- animals demonstrate incompletely penetrant cardiac 432 

developmental abnormalities. However, Matr3+/- mice exhibited roughly equivalent Matr3 433 

protein levels in comparison to nontransgenic animals, complicating any conclusions 434 

regarding Matr3 loss-of-function in these models (Quintero-Rivera et al., 2015). 435 

Overexpression of human MATR3(F115C) in mice results in severe muscle disease 436 

consisting of fore- and hindlimb muscle atrophy accompanied by vacuolization (Moloney 437 

et al., 2016). These animals also displayed spinal cord gliosis and cytoplasmic MATR3 438 

redistribution in spinal motor neurons akin to changes in MATR3 localization noted in 439 

humans with ALS, although no significant neurodegeneration was observed in 440 

MATR3(F115C) transgenic mice. Our data illustrating the dose-dependency of MATR3 441 

neurotoxicity (Fig. 1) imply that MATR3(F115C) expression may be insufficient to elicit 442 

neurodegeneration in these animals. Alternatively, constitutive overexpression of 443 

MATR3(F115C) in transgenic mice may trigger compensatory mechanisms during 444 

development that promote neuronal survival. 445 

MATR3 is unique among ALS/FTD-associated RBPs in possessing not just two 446 

tandem RRMs but also two ZF domains that can bind repetitive DNA elements found in 447 

the nuclear scaffold, consistent with MATR3’s localization within the nuclear matrix 448 

(Hibino et al., 1998). We attempted to identify which functional domains were important 449 
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for MATR3 overexpression toxicity and found that while deletion of ZF2 resulted in 450 

modest rescue, deletion of RRM2—either alone or in combination with RRM1—resulted 451 

in the formation of phase-separated intranuclear droplets. Our data therefore support a 452 

model in which RNA binding prevents MATR3 self-association into droplets. Consistent 453 

with this interpretation, we observed small, mobile MATR3 granules in the cytoplasm 454 

and neuronal processes when the bipartite NLS was disrupted (Fig. 6D). Cytoplasmic 455 

RNA concentrations are more than an order of magnitude lower than those in the 456 

nucleus, a gradient that may favor the coalescence of MATR3(dNLS4N)-EGFP into 457 

puncta within the neuronal soma and processes (Goldstein and Trescott, 1970).  458 

The functional importance of the individual RRM domains for MATR3’s RNA 459 

binding activity is unclear; while some studies suggest that both RRM1 and RRM2 bind 460 

RNA, other investigations indicated that RRM2 is primarily responsible for binding RNA 461 

(Hibino et al., 2006; Salton et al., 2011). Our data show that deletion of RRM2 is 462 

sufficient to elicit phase separation by MATR3, suggesting that RNA recognition by 463 

MATR3 is mediated largely by RRM2. We also noted no significant difference in the 464 

survival of neuronal populations overexpressing dRRM1, dRRM2, and dRRM1/2 variants 465 

of MATR3-EGFP, implying that RNA binding per se is unrelated to MATR3-mediated 466 

neurodegeneration. This interpretation is strengthened by detailed analyses of neurons 467 

expressing MATR3(dRRM2) and MATR3(dRRM1/2). When neurons with and without 468 

droplets were assessed separately, we noted that neurons exhibiting diffuse 469 

MATR3(dRRM2) or MATR3(dRRM1/2) displayed a significantly higher risk of death than 470 

those with droplets. These results imply that diffuse MATR3, when not bound to RNA, 471 

can be highly toxic. Conversely, sequestration of RNA-binding deficient MATR3 into 472 

puncta is associated with extended neuronal survival. Our data further indicate that 473 

diffuse MATR3(dRRM1/2) is more toxic than diffuse MATR3(dRRM2) (compare the 474 

diffuse population in Fig. 4G to the diffuse population in Fig. 4H). Since RRM1 may be 475 
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capable of recognizing some RNA even without RRM2, these observations suggest that 476 

neurodegeneration is inversely proportional to the ability of MATR3 to bind RNA when 477 

diffusely localized within the nucleus. In disease models involving related RBPs, 478 

including TDP-43 and FUS, toxicity requires the presence of RNA binding motifs as well 479 

as low-complexity domains that enable LLPS (Johnson et al., 2008; Daigle et al., 2013; 480 

Ihara et al., 2013). As with MATR3, abrogation of RNA binding may disinhibit self-481 

association, resulting in the sequestration of otherwise toxic diffuse protein within 482 

droplets.  483 

Investigating the liquid-like properties of MATR3(dRRM1/2)-EGFP droplets, we 484 

noted a selective effect of the S85C mutation on droplet viscosity. Low-complexity, 485 

intrinsically disordered domains are required for phase separation and self-assembly of 486 

RBPs. Apart from its nucleic acid binding domains, MATR3 displays a high degree of 487 

predicted disorder based on its primary amino acid sequence (Fig. 1A). The location of 488 

the S85C mutation and its effects on MATR3(dRRM2)-EGFP droplet viscosity suggest 489 

that the N-terminal disordered region of MATR3 regulates the liquid-like properties of 490 

droplets. Whether full-length MATR3 is capable of phase-separation under physiological 491 

circumstances, and what relevance this process has for disease, is currently unclear. 492 

Conflicting evidence (Hibino et al., 2006; Hisada-Ishii et al., 2007) suggests that 493 

MATR3 nuclear import is driven by distinct sequences in different cell types. For 494 

example, while amino acids 701-718 are essential for nuclear localization of rat MATR3 495 

in Ac2F cells, deletion of the homologous sequence (amino acids 701-720) in human 496 

MATR3 has no effect on neuronal distribution (Fig. 6B). To identify the sequences 497 

responsible for MATR3 nuclear import within neurons, we undertook a systematic 498 

analysis of arginine/lysine-rich sequences in MATR3 resembling NLSs. In accord with an 499 

earlier report (Hisada-Ishii et al., 2017), we found that MATR3’s bipartite NLS (NLS4) 500 

controlled its nuclear enrichment in neurons, but only the N-terminal arm of the NLS was 501 
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sufficient for MATR3 nuclear clearing and cytoplasmic distribution. Pathogenic TARDBP 502 

and FUS mutations promote cytoplasmic mislocalization of TDP-43 and FUS, 503 

respectively, and cytoplasmic enrichment of these proteins is tightly linked to toxicity 504 

(Barmada et al., 2010; Dormann et al., 2010). In stark contrast, however, we observed 505 

that cytoplasmic MATR3 redistribution extended neuronal survival, suggesting—along 506 

with the partial rescue we observed for MATR3(dZF2)-EGFP and MATR3(dZF1/2)-507 

EGFP—that MATR3 overexpression elicits neurodegeneration through nuclear DNA 508 

binding activity, mediated at least in part by ZF2. 509 

Given previously established relationships between the distribution and 510 

aggregation of RBPs and neurodegeneration in ALS models (Johnson et al., 2009; 511 

Barmada et al., 2010; Dormann et al., 2010; Igaz et al., 2011; Kim et al., 2013; Qiu et al., 512 

2014), we wondered whether the enhanced toxicity of pathogenic MATR3 variants arises 513 

from mutation-associated changes in MATR3 localization or solubility. We noted no 514 

significant differences in the subcellular distribution of mutant MATR3 variants in 515 

comparison to MATR3(WT), but instead consistently observed reduced levels of 516 

MATR3(S85C) in transfected cell lysates. A similar pattern was noted in previous 517 

investigations and attributed to reduced MATR3(S85C) stability (Johnson et al., 2014). 518 

Using OPL, a sensitive method for measuring protein turnover in situ (Barmada et al., 519 

2014; Gupta et al., 2017), we detected only a very modest shortening of MATR3(S85C) 520 

half-life compared to MATR3(WT). Nevertheless, we observed a marked change in the 521 

solubility of MATR3(S85C) and, less so, MATR3(T622A). This is in partial agreement 522 

with initial studies of MATR3(S85C) that noted equivalent amounts of MATR3(WT) and 523 

MATR3(S85C) in insoluble fractions but reduced MATR3(S85C) in the nuclear fraction 524 

(Senderek et al., 2009). Both the S85C and T622A mutations lie within domains 525 

predicted to be disordered (Fig. 1). Furthermore, both mutations disrupt potential 526 

phosphorylation sites, and phosphorylation within the intrinsically disordered domain of 527 
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FUS inhibits self-association of the protein through negative-negative charge repulsion 528 

between phosphate groups (Monahan et al., 2017). Of the 13 pathogenic mutations 529 

identified to date in MATR3, four (S85C, S610F, T622A, S707L) eliminate 530 

phosphorylatable residues, suggesting that inadequate phosphorylation and subsequent 531 

disinhibited self-association of MATR3 may be a conserved feature of MATR3 mutants.  532 

MATR3’s possesses broad functions in DNA/RNA processing (Belgrader et al., 533 

1991; Hibino et al., 2000; Zhang and Carmichael, 2001; Salton et al., 2014; Coelho et 534 

al., 2015; Rajgor et al., 2016; Uemura et al., 2017). Its presence within cytoplasmic 535 

aggregates in approximately half of patients with sporadic ALS (Tada et al., 2017) 536 

implies that MATR3 pathology causes or is caused by cellular alterations in RNA and 537 

protein homeostasis, many of which may contribute to neurodegeneration in ALS and 538 

related disorders. Our work confirms that MATR3 is essential for maintaining neuronal 539 

survival and furthermore shows that MATR3 accumulation results in neurodegeneration 540 

in a manner that depends on its subcellular localization and ZF domains. Additional 541 

studies are required to further delineate the impact of disease-associated MATR3 542 

mutations on the function, behavior, and liquid-like properties of MATR3.  543 

 544 

MATERIALS AND METHODS 545 

Plasmids 546 

Full-length human MATR3 cDNA was obtained from Addgene (#32880) and 547 

cloned into the pCMV-Tag2B vector (Agilent Technologies, #211172, Santa Clara, CA) 548 

using BamHI and XhoI endonucleases, tagging the amino-terminus with a FLAG 549 

epitope. To generate MATR3-EGFP, the EGFP open reading frame with a 14 amino acid 550 

N-terminal linker was amplified from pGW1-EGFP (Arrasate et al., 2004) by PCR using 551 

forward primer AGC TAC TAG TAC TAG AGC TGT TTG GGA C and reverse primer 552 

TAT TGG GCC CCT ATT ACT TGT ACA GCT CGT CCA T. The resulting amplicon was 553 
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digested with SpeI and ApaI and cloned into the corresponding sites in pKS to generate 554 

pKS-EGFP. To create pKS-MATR3-EGFP, the FLAG-MATR3 open reading frame from 555 

pCMV-Tag2B was amplified by PCR with forward primer GAT CTC TAG AGC GGC 556 

CGC CAC CAT GGA T and reverse primer AGC TAC TAG TCA TAG TTT CCT TCT 557 

TCT GTC T, digested with XbaI and SpeI, and inserted into the corresponding sites in 558 

pKS-EGFP. pGW1-MATR3-EGFP was generated by digesting pKS-MATR3-EGFP with 559 

XbaI and ApaI, purifying the ensuing fragment containing MATR3-EGFP, and inserting 560 

into the corresponding sites of pGW1. To create Dendra2-tagged MATR3 variants, the 561 

EGFP coding region of each construct was removed by PCR amplification of the pGW1-562 

MATR3-EGFP vector using primers that flank the EGFP open reading frame. The 563 

Dendra2 open reading frame was then removed from pGW1-Dendra2 (Barmada et al., 564 

2014) by digestion with ApaI and MfeI, and inserted into pGW1-MATR3. All constructs 565 

were confirmed by sequencing prior to transfection in neurons and HEK293T cells. 566 

 Domain deletion mutants were created using Q5 Hot Start High-Fidelity DNA 567 

Polymerase (New England Biolabs, Ipswich, MA) and primers flanking the regions to be 568 

deleted for nucleic acid-binding domain (Table 1) and putative nuclear localization signal 569 

(Table 2) deletions. All disease-associated point mutations were created with site-570 

directed mutagenesis (Table 3).  571 

 572 

Primary neuron cell culture and transfection 573 

 Cortices from embryonic day (E)19-20 Long-Evans rat embryos were dissected 574 

and disassociated, and primary neurons plated at a density of 6 x 105 cells/mL in 96-well 575 

plates, as described previously (Saudou et al., 1998). At in vitro day (DIV) 4-5, neurons 576 

were transfected with 100 ng of pGW1-mApple (Barmada et al., 2014) to mark cells 577 

bodies and 100 ng of an experimental construct (i.e. pGW1-MATR3-EGFP) using 578 

Lipofectamine 2000, as before (Barmada et al., 2010). Following transfection, cells were 579 
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placed into either Neurobasal with B27 supplement (Gibco, Waltham, MA; for all survival 580 

experiments) or NEUMO photostable medium (Cell Guidance Systems, Cambridge, UK; 581 

for optical pulse labeling experiments). For siRNA knockdown experiments, neurons 582 

were transfected with 100 ng of pGW1-mApple per well and siRNA at a final 583 

concentration of 90 nM. Cells were treated with either scrambled siRNA (Dharmacon, 584 

Lafayette, CO) or siRNA targeting the N-terminal coding region of rat Matr3 (5’ GUC 585 

AUU CCA GCA GUC AUC UUU 3’). 586 

 587 

Longitudinal fluorescence microscopy and automated image analysis 588 

 Neurons were imaged as described previously (Barmada et al., 2015) using 589 

a Nikon (Tokyo, Japan) Eclipse Ti inverted microscope with PerfectFocus3 and a 20X 590 

objective lens. Detection was accomplished with an Andor (Belfast, UK) iXon3 897 591 

EMCCD camera or Andor Zyla4.2 (+) sCMOS camera. A Lambda XL Xenon lamp 592 

(Sutter) with 5 mm liquid light guide (Sutter Instrument, Novato, CA) was used to 593 

illuminate samples, and custom scripts written in Beanshell for use in µManager 594 

controlled all stage movements, shutters, and filters. Custom ImageJ/Fiji macros and 595 

Python scripts were used to identify neurons and draw regions of interest (ROIs) based 596 

upon size, morphology, and fluorescence intensity. Criteria for marking cell death 597 

involved rounding of the soma, loss of fluorescence and degeneration of neuritic 598 

processes. Custom scripts were also used to identify and draw bounding ROIs around 599 

nuclei of transfected cells based upon MATR3-EGFP or Hoechst 33258 (ThermoFisher, 600 

Waltham, MA) fluorescence. Coefficient of variation (CV) was calculated as the standard 601 

deviation of fluorescence intensity divided by the mean fluorescence intensity within an 602 

ROI.  603 

 604 
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Immunocytochemistry 605 

 Neurons were fixed with 4% paraformaldehyde, rinsed with phosphate buffered 606 

saline (PBS), and permeabilized with 0.1% Triton X-100 in PBS. After brief treatment 607 

with 10 mM glycine in PBS, cells were placed in blocking solution (0.1% Triton X-100, 608 

2% fetal calf serum, and 3% bovine serum albumin (BSA), all in PBS) at room 609 

temperature (RT) for 1 h before incubation in primary antibody, rabbit anti-MATR3 610 

(Abcam EPR10634(B), Cambridge, UK) diluted 1:1000 in blocking solution, overnight at 611 

4 °C. Cells were then washed 3x in PBS and incubated at RT with secondary antibody, 612 

goat anti-rabbit 647 (ThermoFisher A-21245) diluted 1:1000 in blocking solution, for 1 h 613 

at RT. Following 3x rinses in PBS containing 1:5000 Hoechst 33258 dye 614 

(ThermoFisher), neurons were imaged by fluorescence microscopy, as described above. 615 

 616 

Fluorescence recovery after photobleaching 617 

 Primary neurons were dissected as above and plated in 8-well borosilicate 618 

chambers (LAB-TEK). On DIV 3, they were transfected as before but using 200 µg of 619 

pGW1-mApple and 200 µg of pGW1-MATR3-EGFP variants per well. Cell were imaged 620 

2-4 days after transfection using a Nikon A1 confocal microscope operated by Nikon 621 

Elements, a 60X objective lens, and a heating chamber with CO2 pre-warmed to 37 °C. 622 

For MATR3(dRRM1/2)-EGFP variants, an ROI corresponding to half of the granule was 623 

outlined with Elements and photobleached using a 488 nm laser set at 30% power, 1 624 

pulse per sec x 7 sec. Fluorescence recovery was monitored up to 10 min after 625 

photobleaching. For full-length MATR3 variants, ROIs for photobleaching were drawn in 626 

the center of the nucleus for each cell, and recovery was monitored for 6 min.  627 

 Image analysis was conducted in FIJI. Rigid body stack registration was used to 628 

fix the granules in place relative to the frame. The GFP integrated density for the whole 629 

granule was calculated from pre-bleach measurements, as was the fraction of granule 630 
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integrated density corresponding to the ROI to be photobleached. The decline in this 631 

fraction immediately after photobleaching was then calculated and used as the floor, and 632 

the return was plotted as the percent recovery within the ROI as a fraction of the original 633 

pre-bleach granule integrated density. 634 

Recovery data were fit to the equation y(t) = A(1-e-τt), where A is the return curve 635 

plateau, τ is the time constant, and t is the time post-bleach. The fitted τ from each curve 636 

was then used to calculate the time to half-return (t1/2) using the equation t1/2 = ln(0.5)/-τ. 637 

To estimate the diffusion coefficient (D) of these molecules, we used the equation D = 638 

(0.88w2)/(4t1/2), where w is the ROI radius (Gopal et al., 2017). This equation assumes 639 

spot bleach with a circular stimulation ROI and diffusion limited to the x-y plane. Since 640 

we could not be confident that these assumptions were met, we estimated D and 641 

downstream parameters by dividing ROI areas by π to approximate w2 and solving for D. 642 

This estimated value was used in the Einstein-Stokes equation, D = kBT/(6πηr), where kB 643 

is the Boltzmann constant, T is temperature in K, η is viscosity, and r is the Stokes 644 

radius of the particle. As there is no applicable structural data on MATR3, we estimated 645 

a Stokes radius of 3.13 nm by applying the MATR3(dRRM1/2)-EGFP fusion protein’s 646 

combined molecular weight of 106.4 kDa to the equation Rmin = 0.66M1/3, where Rmin is 647 

the minimal radius in nm of a sphere that could bound a globular protein with a 648 

molecular weight of M (Erickson, 2009). Using these constants and the estimated D for 649 

each granule, the Einstein-Stokes equation was rearranged to solve for η. 650 

Photobleaching data from full-length MATR3-EGFP was analyzed in a similar 651 

fashion. After calculating the nuclear integrated density, the fraction attributable to 652 

photobleaching within the ROI was used for normalization. Intensity data were fit to the 653 

y(t) = A(1-e-τt) equation, t1/2 values were calculated as before, and D determined by the 654 

equation D = (0.88w2)/(4t1/2).  655 

 656 
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Nuclear/cytoplasmic fractionation and differential solubility 657 

 HEK293T cells were transfected in a 6-well plate with 3 µg of DNA per well using 658 

Lipofectamine 2000 according to the manufacturer’s instructions. For 659 

nuclear/cytoplasmic fractionation, cells were washed with cold PBS 24 h after 660 

transfection, collected with resuspension buffer (10 mM Tris, 10 mM NaCl, 3 mM MgCl2, 661 

pH 7.4), and transferred to a pre-chilled 1.5 mL conical tube to sit on ice for 5 min. An 662 

equal volume of resuspension buffer with 0.6% Igepal (Sigma, St. Louis, MO) was then 663 

added to rupture cell membranes and release cytoplasmic contents, with occasional 664 

inversion for 5 min on ice. Nuclei were pelleted at 100 x g at 4 °C for 10 min using a 665 

tabletop centrifuge. The supernatant (cytosolic fraction) was collected, and the nuclei 666 

were rinsed twice in resuspension buffer without Igepal. To collect nuclear fractions, 667 

pelleted nuclei were lysed in RIPA buffer (Pierce) with protease inhibitors (Roche, 668 

Mannheim, Germany) on ice for 30 min with occasional inversion. Samples were 669 

centrifuged at 9,400 x g at 4 °C for 10 min, and the supernatant was saved as the 670 

nuclear fraction. 671 

 For differential solubility experiments, transfected HEK293T were collected in 672 

cold PBS 24 h after transfection and transferred to a pre-chilled conical tube on ice. 673 

Cells were then centrifuged at 100 x g for 5 min at 4 °C to pellet cells, the PBS was 674 

aspirated, and cells were resuspended in RIPA buffer with protease inhibitors. Following 675 

lysis on ice for 15 min with occasional inversion, cells were sonicated at 80% amplitude 676 

with 5 sec on/5 sec off for 2 min using a Fisherbrand Model 505 Sonic Dismembrenator 677 

(ThermoFisher).  Samples were centrifuged at 41,415 x g for 15 min at 4 °C to pellet 678 

RIPA-insoluble material, with the supernatant removed and saved as the RIPA-soluble 679 

fraction. The RIPA-insoluble pellet was washed in RIPA once, and contents 680 

resuspended vigorously in urea buffer (7 M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris, 681 
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pH 8.5). Samples were again centrifuged at 41,415 x g for 15 min at 4 °C, and the 682 

supernatant was saved as the RIPA-insoluble, urea-soluble fraction. 683 

 For SDS-PAGE, stock sample buffer (10% SDS, 20% glycerol, 0.0025% 684 

bromophenol blue, 100 mM EDTA, 1 M DTT, 20 mM Tris, pH 8) was diluted 1:10 in 685 

lysates and all samples except urea fractions were boiled for 10 min before 5-15 µg of 686 

protein were loaded onto 4-15% gradient gels (Bio-Rad, Hercules, CA). For urea 687 

fractions, total protein concentration was too low to quantify and so equal volumes of 688 

sample across conditions were mixed 1:1 with water and loaded. After electrophoresis, 689 

samples were transferred at 30 V overnight at 4 °C onto an activated 2 µm nitrocellulose 690 

membrane (Bio-Rad), blocked with 3% BSA in 0.2% Tween-20 in Tris-buffered saline 691 

(TBST), and blotted overnight at 4 °C with the following primary antibodies: rabbit anti-692 

MATR3 (Abcam EPR10634(B)), mouse anti-GAPDH (Millipore Sigma MAB374), and 693 

rabbit anti-H2B (Novus NB100-56347), all diluted 1:1000 in 3% BSA, 0.2% TBST. The 694 

following day, blots were washed in 0.2% TBST, incubated at RT for 1 h with AlexaFluor 695 

goat anti-mouse 594 (ThermoFisher A-11005) and goat anti-rabbit 488 (ThermoFisher 696 

A-11008), both diluted 1:10,000 in 3% BSA in 0.2% TBST. Following treatment with 697 

secondary antibody, blots were washed in 0.2% TBST, placed in Tris-buffered saline, 698 

and imaged using an Odyssey CLx Imaging System (LI-COR, Lincoln, NE). 699 

 700 

Statistical analysis 701 

 Statistical analyses were performed in R or Prism 7 (GraphPad). For primary 702 

neuron survival analysis, the publically available R survival package was used to 703 

determine hazard ratios describing the relative survival among populations through Cox 704 

proportional hazards analysis. For half-life calculations, a custom R script was applied to 705 

fit log-transformed TRITC intensity data to a linear equation. Photobleaching recovery 706 

data were fit to the y(t) = A(1-e-τt) equation using non-linear regression in R. siRNA 707 
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knockdown data were plotted using Prism 7, and significance determined via the two-708 

tailed t-test. One-way ANOVA with Tukey’s post-test was used to assess for significant 709 

differences among nuclear/cytoplasmic ratios, viscosities, D values, and half-lives. Data 710 

are shown as mean ± SEM unless otherwise stated. 711 

Table 1 712 

Deletion 
mutation

s 

Amino 
acids Primers Sequences 

 dZF1 288 –322 
Forward CTT GAA ATC TAC CCA GAA TG 
Reverse CTT CGG TAA GAG TCC ATG 

dZF2 798 – 833 
Forward CTG AAT AAA TTG GCA GAA GAA C 
Reverse AGG TAT CAC ATA GTC TAT ACC 

dRRM1 398 – 473 
Forward TAT AAA AGA ATA AAG AAA CCT GAA GG 
Reverse GCT AGT TTC CAC TCT GCC 

dRRM2 496 – 575 
Forward GTT CTG AGG ATT CCA AAC AG 
Reverse TCC AAG CTC TTG CTT TTG 

 713 

Table 2 714 

Deletion 
mutation 

Amino 
acids Primers Sequences 

dNLS1 146 – 171 
Forward AGA GTA CCT AGG GAT GAT TG 
Reverse AAG CTG TAG AAG GAT TTG G 

dNLS2 473 – 479 
Forward CCT GAA GGA AAG CCA GAT C 
Reverse CTG GGA TAA ATG AAC TCT CAC 

dNLS3 571 – 574 
Forward CTG GTT CTG AGG ATT CCA ACC 
Reverse CTC AGA CAG GTC AAC CTT C 

dNLS4 588 – 611 
Forward ACT GAT GGT TCC CAG AAG 
Reverse CAG TAA ATC AAT GCC TCT G 

dNLS5 701– 720 
Forward GAG GAA CTT GAT CAA GAA AAC 
Reverse CAC AGC TTT ATC TGA TGG TTC 

dNLS6 780 – 784 
Forward CAG CCC AAT GTT CCT GTT G 
Reverse ATA CTC ATC TGG GAT TGT ATA G 

dNLS7 798 – 833 
Forward GAA ACT ATG ACT AGT ACT AGA G 
Reverse CTG ATA ATG AGG AAG GCT G 

dNLS4N 588 – 595 
Forward TCT TAC TCT CCA GAT GGC 
Reverse CAG TAA ATC AAT GCC TCT G 

dNLS4C 
 608 – 611 

Forward ACT GAT GGT TCC CAG AAG 
Reverse ATC ACT TGG AGA TTC TTT GC 

 715 
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Table 3 716 

Mutation Primers Sequences 

S85C 
Forward AAT TTG CAG TGT ATA TTT AAC ATT GG 
Reverse ATG GGA AGA AGT ACT AGC AGA 

F115C 
Forward ATT TTG GCC AGC TGT GGT CTG TCT GCT 
Reverse GTT ACT GGC CTG GTC TGC ATC 

P154S 
Forward GAA GAA GGC TCT ACC TTG AGT TAT GG 
Reverse AGT TCT CCT CCT TTT AAG CTG 

T622A 
Forward GAG AGT TCA GCC GAA GGT AAA GAA C 
Reverse AGT CTT CTG GGA ACC ATC AGT 

 717 
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FIGURE LEGENDS 968 

Figure 1. MATR3 overexpression results in dose-dependent neurodegeneration. A. 969 

Diagram of MATR3 showing nucleic acid-binding domains as well as the distribution of 970 

pathogenic mutations implicated in ALS (blue), ALS/FTD (red), and ALS/distal myopathy 971 

(green) within domains predicted to be disordered by PONDR VSL2 (Peng et al., 2006). 972 

B. Longitudinal fluorescence microscopy (LFM) allows unique identification and tracking 973 

of thousands of primary neurons (green outlines) transfected with fluorescent proteins, 974 

as well as monitoring of cell death (red outlines), indicated by loss of fluorescence signal 975 

and changes in morphology. Scale bar, 20 µm. C. MATR3-EGFP expressing neurons 976 

exhibited a higher risk of death compared to neurons expressing only EGFP, as 977 

quantified by the hazard ratio (HR) (HR = 1.48, EGFP n = 1286, MATR3-EGFP n = 978 

1183; p < 2 x 10-16; Cox proportional hazards). D. EGFP expressing cells were divided 979 

into three equal groups based off expression level. Increased survival was associated 980 

with higher expression levels of EGFP (comparing to medium expressers n = 428: low 981 

expressers HR = 1.39, n = 429, p = 4.2 x 10-5; high expressers HR = 0.79, n = 429, p = 982 

0.024; Cox proportional hazards). E. Penalized spline modeling confirmed a protective 983 

effect associated with higher EGFP expression that plateaus at ~1500 arbitrary units 984 

(AU); shaded colors represent low, medium and high expression ranges as in (D) (p = 985 

5.3 x 10-6; penalized spline regression). F. There were no significant differences in 986 

survival among neurons expressing low, medium, or high levels of MATR3-EGFP 987 

(comparing to medium expressers n = 394: low expressers HR = 0.99, n = 394, p = 0.94; 988 

high expressers HR = 1.06, n  = 395, p = 0.54; Cox proportional hazards). G. Similarly, 989 

penalized spline analysis showed no relationship between expression and survival at low 990 

and medium expression but a significant increase in risk of death with high MATR3-991 

EGFP levels (p = 0.012; penalized spline regression).  992 

 993 
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Figure 2. Neurons are susceptible to both gain-of-function and loss-of-function 994 

MATR3 toxicity. A. In primary rodent cortical neurons, the S85C, F115, P154S, and 995 

T622A disease-associated MATR3 mutants have the same granular nuclear distribution 996 

as MATR3(WT)-EGFP. B. All four disease mutations display a subtle but significant 997 

increase in toxicity compared to MATR3(WT)-EGFP (comparing to MATR3(WT)-EGFP n 998 

= 2920; MATR3(S85C)-EGFP HR = 1.16, n = 2031, p = 3.79 x 10-6; MATR3(F115C)-999 

EGFP HR = 1.14, n = 2144, p = 5.57 x 10-5; MATR3(P154S)-EGFP HR = 1.24, n = 2092, 1000 

p = 1.77 x 10-11; MATR3(T622A)-EGFP HR = 1.14, n = 2137, p = 6.02 x 10-5; Cox 1001 

proportional hazards). C-D. siRNA targeting the endogenous rat Matr3 reduced MATR3 1002 

antibody reactivity by approximately 65% (scrambled siRNA n = 576, anti-Matr3 siRNA n 1003 

= 508, p < 0.0001; two-tailed t-test). E. Neurons transfected with anti-Matr3 siRNA 1004 

displayed a higher risk of death compared to those transfected with scrambled siRNA 1005 

(HR = 1.20, scrambled siRNA n = 2507, anti-Matr3 n = 2623, p = 2.05 x 10-8; Cox 1006 

proportional hazards). Scale bars in (A), 10 µm; scale bars in (C), 20 µm. 1007 

 1008 

Figure 3. MATR3’s ZFs mediate overexpression toxicity, and its RRMs regulate 1009 

subcellular distribution. A. Schematic of MATR3 domain deletion mutants. B. Zinc 1010 

finger (ZF) domain deletions do not change the localization of MATR3-EGFP compared 1011 

to the full-length protein. C. ZF2 deletion, either in isolation or combination with ZF1, 1012 

results in modest rescue of overexpression toxicity (comparing to MATR3(WT)-EGFP n 1013 

= 1616: MATR3(dZF1)-EGFP HR = 0.94, n = 1471, p = 0.10; MATR3(dZF2)-EGFP HR 1014 

=0.93, n = 1505, p = 0.040; MATR3(dZF1/2)-EGFP HR = 0.90, n = 1104, p = 0.0093; 1015 

Cox proportional hazards). D. While MATR3(dRRM1)-EGFP exhibits the same 1016 

localization as MATR3(WT)-EGFP, deletion of RRM2 results in redistribution into 1017 

intranuclear granules. E. RRM deletion had little effect on MATR3-mediated toxicity 1018 

(comparing to MATR3(WT)-EGFP n = 1430: MATR3(dRRM1)-EGFP HR = 1.05, n = 1019 
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1171, p = 0.25; MATR3(dRRM2)-EGFP HR = 1.09, n = 1001, p = 0.066; 1020 

MATR3(dRRM1/2)-EGFP HR = 1.04, n = 1180, p = 0.42). Scale bars in (B) and (D), 10 1021 

µm. 1022 

 1023 

Figure 4. MATR3(dRRM2)-EGFP and MATR3(dRRM1/2)-EGFP are highly neurotoxic 1024 

in their diffuse form. A. Automated analysis of MATR3-EGFP distribution in transfected 1025 

primary cortical neurons. Regions of interest (ROIs) were drawn around the cell body 1026 

(marked by mApple fluorescence, red) and diffuse MATR3-EGFP (indicated by GFP 1027 

fluorescence, green), and used to calculate a coefficient of variation (CV) representing 1028 

MATR3-EGFP distribution within each ROI. B. Receiver operating characteristic (ROC) 1029 

curve for MATR3-EGFP CV values. A CV threshold of 0.92 (arrow) identified cells with 1030 

intranuclear MATR3-EGFP granules with 87.2% sensitivity and 93.9% specificity. C. 1031 

Using this cutoff, we determined that 1 day after transfection, 23.4% (653/2734) of 1032 

MATR3(dRRM2)-EGFP neurons displayed intranuclear granules compared to only 8.8% 1033 

(153/1743) of MATR3(dRRM1/2)-EGFP cells. (p < 0.00001; Fisher’s exact test). D. 1034 

Intranuclear granules form in a time-dependent manner in neurons expressing 1035 

MATR3(dRRM2)-EGFP and MATR3(dRRM1/2)-EGFP. E-F. Penalized spline models 1036 

depicting the relationship between MATR3(dRRM2)-EGFP expression on day 1 (E) or 1037 

change in GFP expression between day 1 and day 2 (F), and risk of developing an 1038 

intranuclear granule by day 3. Expression level at day 1 was not significantly associated 1039 

with risk of granule formation (E; p = 0.30; penalized spline regression), but the relative 1040 

increase in expression from day 1 to day 2 is (F; p = 0.015; penalized spline regression). 1041 

G. For MATR3(dRRM2)-EGFP, neurons exhibiting granules by day 1 displayed 1042 

improved survival compared to the pooled combination of all cells. Conversely, neurons 1043 

with diffusely distributed MATR3(dRRM2)-EGFP fared far worse (comparing to the 1044 

pooled condition: cells with granules n = 2081, HR = 0.86, p = 1.02 x 10-5; cells with 1045 
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diffuse protein n = 653, HR = 1.75, p < 2 x 10-16; Cox proportional hazards). H. Neurons 1046 

with MATR3(dRRM1/2)-EGFP granules by day 1 similarly displayed a reduced risk of 1047 

death in comparison to the pooled group, while diffuse MATR3(dRRM1/2)-EGFP was 1048 

highly toxic (comparing to the pooled condition: cells with granules n = 1590, HR = 0.92, 1049 

p = 0.03; cells with diffuse protein n = 153, HR = 3.78, p = 2 x 10-16; Cox proportional 1050 

hazards). Scale bars in (A) and (B), 10 µm. 1051 

 1052 

Figure 5. MATR3(dRRM1/2)-EGFP droplets display liquid-like properties that are 1053 

affected by the S85C mutation. A. MATR3(dRRM1/2)-EGFP and MATR3(dRRM1/2)-1054 

EGFP droplets show liquid-like properties such as mobility and fusion. B. Pathogenic 1055 

MATR3 mutations on the dRRM1/2 background result in similar phase-separated 1056 

droplets. C-D. Fluorescence recovery after photobleaching (FRAP) of 1057 

MATR3(dRRM1/2)-EGFP droplets shows internal rearrangement consistent with liquid-1058 

like behavior, but the recovery of MATR3(S85C dRRM1/2)-EGFP droplets was 1059 

significantly delayed. E. MATR3(S85C dRRM1/2)-EGFP droplets displayed significantly 1060 

higher viscosity in comparison to other variants (comparing to S85C MATR3(dRRM1/2)-1061 

EGFP n = 5: WT MATR3(dRRM1/2)-EGFP n = 5, p = 0.0045; F115C MATR3(dRRM1/2)-1062 

EGFP n = 5, p = 0.0046; P154S MATR3(dRRM1/2)-EGFP n = 5, p = 0.0046; T622A 1063 

MATR3(dRRM1/2)-EGFP n = 4, p = 0.0079; one-way ANOVA with Tukey’s post-hoc 1064 

test). F-G. FRAP experiments involving full-length MATR3-EGFP variants showed no 1065 

differences in rates of return. H. Similarly, there were no differences in diffusion 1066 

coefficients (DC) among full-length MATR3 variants (MATR3(WT)-EGFP n = 5, 1067 

MATR3(S85C)-EGFP n = 5, MATR3(F115C)-EGFP n = 5, MATR3(P154S)-EGFP n = 5, 1068 

MATR3(T622A)-EGFP n = 4); p = 0.17; one-way ANOVA). Scale bars in (A) and (B), 10 1069 

µm; scale bars in (C) and (F), 5 µm. 1070 

 1071 
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Figure 6. Reducing MATR3 nuclear localization mitigates overexpression toxicity. 1072 

A. Schematic showing putative MATR3 nuclear localization signals (NLS). B-C. Deletion 1073 

of the N-terminal arm of NLS4 (dNLS4N) led to nuclear MATR3 clearance in neurons. D. 1074 

MATR3(dNLS4N)-EGFP forms granular structures in the cytoplasm and neuronal 1075 

processes (white arrows). E. Disrupting nuclear localization of MATR3 prevents 1076 

neurotoxicity from overexpression (MATR3(WT)-EGFP n = 2459; MATR3(dNLS4N)-1077 

EGFP n = 1864, HR = 0.89, p = 0.00041; Cox proportional hazards). F-G. Pathogenic 1078 

MATR3 mutants display no difference in subcellular protein localization as assessed by 1079 

automated image nuclear/cytoplasmic analysis (F; MATR3(WT)-EGFP n = 824, 1080 

MATR3(S85C)-EGFP n = 499, MATR3(F115C)-EGFP n = 634, MATR3(P154S)-EGFP n 1081 

= 554, MATR3(T622A)-EGFP n = 677; p = 0.067; one-way ANOVA) or biochemical 1082 

fractionation in transfected HEK293T cells (G). Nevertheless, Western blot 1083 

demonstrated reduced abundance of the S85C mutant in transfected HEK293T cells. 1084 

Scale bars in (B) and (C), 10 µm; scale bar in (D), 50 µm. 1085 

 1086 

Figure 7. Pathogenic MATR3 mutations have little effect on MATR3 turnover, but a 1087 

subset reduce solubility. A. Optical pulse labeling of Dendra2-tagged MATR3 variants. 1088 

Each neuron is transfected with EGFP alone to outline the cell body, as well as MATR3-1089 

Dendra2, which fluoresces in the red channel (TRITC) upon photoconversion. Scale bar, 1090 

50 µm. B. Normalized red fluorescence (TRITC) signal for individual neurons. The time-1091 

dependent decay of red fluorescence over time is used to calculate MATR3-Dendra2 1092 

half-life for each neuron. C-D. MATR3(S85C)-Dendra2 displayed a subtle but significant 1093 

reduction in half-life compared to MATR3(WT)-Dendra2 and the other pathogenic 1094 

mutants tested (comparing to MATR3(S85C)-Dendra2 n = 1670: MATR3(WT)-Dendra2, 1095 

n = 1269, p < 0.0001; MATR3(F115C)-Dendra2, n = 1122, p = 0.0001; MATR3(P154S)-1096 
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Dendra2, n = 1509, p < 0.0001; MATR3(T622A)-Dendra2, n = 923, p < 0.0001; one-way 1097 

ANOVA with Tukey’s post-hoc test). E. Sonication in RIPA resulted in equivalent 1098 

amounts of all MATR3 variants by Western blotting. The S85C variant was markedly 1099 

enriched in the RIPA-insoluble, urea-soluble fraction, while the T622A variant showed 1100 

more modest enrichment. 1101 
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