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Abstract 

Background: Detecting similar ligand-binding sites in globally unrelated proteins has a wide range 

of applications in modern drug discovery, including drug repurposing, the prediction of side 

effects, and drug-target interactions. Although a number of techniques to compare binding 

pockets have been developed, this problem still poses significant challenges. 

Results: We evaluate the performance of three algorithms to calculate similarities between 

ligand-binding sites, APoc, SiteEngine, and G-LoSA. Our assessment considers not only the 

capabilities to identify similar pockets and to construct accurate local alignments, but also the 

dependence of these alignments on the sequence order. We point out certain drawbacks of 

previously compiled datasets, such as the inclusion of structurally similar proteins, leading to an 

overestimated performance. To address these issues, a rigorous procedure to prepare unbiased, 

high-quality benchmarking sets is proposed. Further, we conduct a comparative assessment of 

techniques directly aligning binding pockets to indirect strategies employing structure-based 

virtual screening with AutoDock Vina and rDock. 

Conclusions: Thorough benchmarks reveal that G-LoSA offers a fairly robust overall performance, 

whereas the accuracy of APoc and SiteEngine is satisfactory only against easy datasets. 

Moreover, combining various algorithms into a meta-predictor improves the performance of 

existing methods to detect similar binding sites in unrelated proteins by 5-10%. All data reported 

in this paper are freely available at https://osf.io/6ngbs/. 
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Background 

Molecular functions of many proteins involve binding a variety of other molecules, including 

hormones, metabolites, neurotransmitters, and peptides. The analysis of ligand-protein complex 

structures deposited in the Protein Data Bank (PDB) [1] reveals that the majority of small organic 

molecules interact with specific surface regions on their macromolecular targets forming pocket-

like indentations, called binding sites or binding pockets [2]. A number of computational 

approaches have been developed to quantify the similarity of binding sites in proteins in order 

to infer their molecular functions and to investigate drug-protein interactions [3]. It is now widely 

known that unrelated proteins may have similar binding sites with capabilities to recognize 

chemically similar ligands [4]. Thus, binding site matching holds a significant promise to 

repurpose existing drugs by facilitating the identification of novel targets. Since marketed drugs 

have acceptable bioavailability and safety profiles, binding site matching can efficaciously guide 

drug repositioning, reducing the overall costs, risks of failure, and time of drug development [5]. 

 Accumulated evidence suggests that drugs designed for specific therapeutic targets 

inevitably bind to other proteins as well. Over 50% of compounds approved by the U.S. Food and 

Drug Administration (FDA) interact with more than five proteins often leading to unanticipated 

biological effects [6]. For instance, imatinib was rationally designed to treat chronic myeloid 

leukemia by inhibiting Bcr-Abl tyrosine-kinase [7]. Later on, imatinib was found to affect bone-

resorbing osteoclasts and bone-forming osteoblasts through the inhibition of c-fms, c-kit, 

carbonic anhydrase II, and the platelet-derived growth factor receptor [8]; it was also shown to 

bind to quinone reductase 2 [9]. By employing the binding site similarity detection, off-targets 

can be identified at the outset of drug development in order to minimize the risk of undesired 

side effects. 

On the other hand, the knowledge of off-binding for existing drugs opens up the 

possibility to find inexpensive treatments for about 7,000 rare diseases, defined as those 

affecting fewer than 200,000 individuals in the United States, 50,000 in Japan, and 2,000 in 

Australia [10]. It is estimated that only about 5% of rare diseases are of interest to the 

pharmaceutical industry, because developing drugs for relatively small groups of patients is 

considered unprofitable [11]. Compared to conventional drug discovery, much cheaper drug 
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repositioning offers an attractive alternative to find treatments for orphan diseases [12, 13]. For 

instance, the rare disease late infantile neuronal ceroid lipofuscinosis (LINCL) is a 

neurodegenerative disorder associated with mutations in the Cln2 gene encoding tripeptidyl-

peptidase I (TPP1). Because TPP1 removes tripeptides in the lysosomal compartment, its 

mutations lead to the accumulation of ceroid-lipofuscin causing brain cell damage. A novel use 

of FDA-approved lipid-lowering drugs, gemfibrozil and fenofibrate, was suggested to treat 

patients with LINCL by up-regulating TPP1 in brain cells [14]. 

Biologically meaningful similarities among proteins can be detected with sequence and 

structure alignment tools, such as Dynamic Programing (DP) [15], Basic Local Alignment Search 

Tool (BLAST) [16], TM-align [17], Combinatorial Extension (CE) [18], and Dali [19]. Although 

proteins with similar sequences and structures often share evolutionary ancestry and various 

aspects of molecular function, globally unrelated proteins may have common functional 

elements as well. Indeed, there are many examples of unrelated proteins binding to similar 

ligands and performing similar functions [4]. Despite some variations across sets of pockets 

interacting with the same class of small molecules [20], ligand-binding requires a certain degree 

of geometrical and physicochemical complementarity. Therefore, similar microenvironments 

generally tend to interact with similar ligands [21]. On that account, the analysis and classification 

of ligand-binding pockets in protein structures play an important role in drug discovery. 

The last decade has witnessed a tremendous progress in the development of algorithms 

to measure the similarity of pockets extracted from unrelated proteins. Current methods to 

match binding sites can be classified into two groups, alignment-free and alignment-based 

techniques. Methods belonging to the former class calculate the overall similarity of binding 

pockets by matching various physiochemical and geometric features, and assessing the shape 

complementarity. For example, PocketMatch describes binding sites as lists of sorted distances 

encoding their shape and chemical properties, which are matched by an incremental alignment 

approach to compute a binding site similarity score [22]. Another algorithm, eF-seek, measures 

the pocket similarity according to the shapes of molecular surfaces and their electrostatic 

potentials [23]. Further, Patch-Surfer employs Zernike descriptors to determine the similarity of 
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protein surfaces [24], whereas eF-site [25] and CavBase [26] capture similarities between binding 

sites with graph theory and clique detection algorithms. 

In contrast, alignment-based methods compute local alignments of either ligand-binding 

residues or individual atoms in order to detect pocket similarities. Although these techniques can 

be computationally more expensive than alignment-free algorithms, the constructed local 

alignments provide valuable structural information to analyze binding modes of ligand molecules. 

A number of alignment-based approaches were developed to date. For instance, surface-based 

SiteEngine measures the pocket similarity with geometric hashing and the matching of triangles 

of physicochemical property centers, assuming no sequence or fold similarities [27]. SiteEngine 

can be applied in three modes, to scan a given functional site against a large set of complete 

protein structures, to compare a potential functional site with known binding sites recognizing 

similar features, and to search for the presence of an a priori unknown functional site in a 

complete protein structure. This algorithm was proposed to identify secondary binding sites of 

drugs that may be responsible for unwanted side effects. 

The Alignment of Pockets (APoc) implements iterative dynamic programming and integer 

programming to calculate the optimal alignment between a pair of binding sites considering the 

secondary structure and fragment fitting [28]. Parameterized against millions of pocket pairs, this 

method can be applied not only to ligand-binding sites observed in experimental complex 

structures, but also to those computationally predicted by pocket-detection techniques. The 

Sequence Order-Independent Profile-Profile Alignment (SOIPPA) is another alignment-based 

approach employing a reduced representation of protein structures and sequence order-

independent profile-profile alignments [29]. SOIPPA effectively detects distant evolutionary 

relationships despite low global sequence and structure similarities and was used to test the 

notion that the fold space is continuous rather than discrete. Finally, the Graph-based Local 

Structure Alignment (G-LoSA) has been developed to construct binding site alignments with 

iterative maximum clique search and fragment superimposition algorithms [30]. G-LoSA 

computes all possible alignments between two local structures and then the optimal solution is 

selected by a size-independent, chemical feature-based similarity score. Validation benchmarks 

demonstrated that G-LoSA efficiently identifies conserved local regions on the entire surface of 
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a given protein. Unquestionably, these alignment-based techniques developed to predict ligand-

binding sites, find template ligands, and match binding sites have a strong potential to 

computationally support modern drug design. 

The performance of algorithms to directly compare protein binding sites heavily depends 

on the selection of appropriate benchmarking datasets. Several datasets have been reported to 

date. The Kahraman set, compiled to analyze the shapes of protein binding pockets with respect 

to the shapes of their ligands, contains 100 proteins binding 9 different ligands selected from 

different CATH homologous superfamilies [31]. Further, the Hoffman set was prepared to 

benchmark the performance of sup-CK, a method to quantify the similarity between binding 

pockets [32]. This homogeneous set contains 100 pockets extracted from non-redundant 

proteins binding 10 ligands of a similar size. Other datasets are composed of proteins binding a 

certain type of ligands. For example, the SOIPPA set comprises adenine-binding proteins as well 

as control proteins binding ligands that do not have the adenine moiety [29]. SOIPPA proteins 

represent 167 superfamilies and 146 folds according to the SCOP classification [33]. The Steroid 

dataset contains 8 pharmacologically relevant steroid-binding proteins complexed with 17b-

estradiol, estradiol-17b-hemisuccinate, and equilenin [34]. The control subset of the Steroid 

dataset includes 1,854 proteins binding 334 groups of chemically diverse non-steroid molecules 

whose size is comparable to that of steroids. According to the SCOP classification, these target 

proteins represent 185 superfamilies and 150 folds. 

Benchmarking datasets typically contain known binding sites extracted from the 

experimental structures of ligand-protein complexes, however, they may also include 

computationally predicted pockets. For instance, the validation of an alignment-free method to 

compare binding sites [35] was conducted against potential binding regions predicted with 

ghecom, which efficiently detects pockets on the protein surface [36]. Moreover, in addition to 

ligand-contacting residues detected by the Ligand-Protein Contacts (LPC) program [37], the APoc 

dataset contains pockets predicted with geometry-based methods LIGSITE [38] and CAVITATOR 

[28]. The latter was designed to be less sensitive to minor structural distortions in target 

structures than other techniques. Undoubtedly, employing computationally predicted pockets 

represents a practical approach because a number of protein structures are solved 
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experimentally in their ligand-free conformations. On the other hand, predicted pockets with 

potentially incorrectly annotated binding residues certainly pose a significant challenge for 

binding site matching programs. 

Many benchmarking sets found in the literature include structurally similar proteins as 

well as biologically impertinent sites that bind solvents, precipitants and additives, or are 

incorrectly defined based on modified amino acid residues, such as selenomethionine. These 

problems may cause the performance of binding site matching algorithms to be overestimated. 

For example, a recent paper reported that some binding sites in the APoc dataset are inadequate 

due to a small number of binding residues [39]. Another study revealed that although the 

performance of APoc against its original dataset is encouraging, it does not yield a satisfactory 

accuracy when applied to other datasets [30]. In contrast, G-LoSA was demonstrated to give 

considerably better performance than APoc in diverse benchmarks. A comprehensive review of 

contemporary methods to compare binding sites pointed out that these techniques generally 

have capabilities to predict pocket matches within diverse protein families, however, appropriate 

datasets to conduct an objective and unbiased assessment of their performance are lacking at 

present [3]. 

To address these issues, we carry out a thorough performance evaluation of pocket 

comparison algorithms. We first assess three alignment-based tools, APoc [28], SiteEngine [27] 

and G-LoSA [30], against an existing dataset previously compiled for that purpose. Subsequently, 

we construct a representative dataset comprising over one million unique pairs of drug-binding 

sites extracted from the PDB. The results are analyzed not only with respect to the capabilities to 

identify similar pockets and to construct accurate local alignments, but also taking into account 

the dependence of these alignments on the sequence order. Next, we propose an indirect 

approach to quantify the pocket similarity with structure-based virtual screening employing two 

popular molecular docking programs, AutoDock Vina [40] and rDock [41]. Finally, we 

demonstrate that combining direct and indirect approaches to compare binding sites into a meta-

predictor improves the accuracy of pocket matching over individual algorithms. Important 

aspects related to the quality of predictions made by various pocket matching tools are illustrated 

by representative examples. Taken together, this study sets up practical guidelines to conduct 
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comprehensive and objective performance assessments of binding site matching programs, 

provides a high-quality benchmarking dataset of drug-binding pockets in globally unrelated 

proteins, and introduces new strategies to detect similar functional sites combining direct, 

alignment-based methods with indirect techniques employing structure-based virtual screening. 

 

Methods 

APoc dataset 

The performance of binding site matching algorithms is first assessed against the APoc dataset 

[28], which is divided into two groups, the Subject set and the Control set. The former subset 

consists of non-homologous protein pairs with <30% sequence identity, binding ligands that are 

either identical or structurally similar at a Tanimoto coefficient [42] (TC) of ³0.5, and sharing ³50 

atomic ligand-protein contacts of the same type. The latter subset comprises pairs of holo-

proteins with <30% sequence identity, a low global structure similarity at a Template Modeling 

(TM)-score [43] of <0.5, and binding chemically dissimilar ligands whose TC is <0.25. TM-score 

ranges from 0 to 1 with values greater than 0.4 denoting statistically significant global structure 

similarity. Only those pockets computationally predicted by LIGSITE [38] are employed in our 

study. The APoc dataset comprises 34,970 Subject and 20,744 Control pairs. 

 

TOUGH-M1 dataset 

We also compiled a new daTaset tO evalUate alGoritHms for binding site Matching, referred to 

as the TOUGH-M1 dataset, according to a procedure shown in Figure 1. First, we identified in the 

PDB protein chains composed of 50-999 amino acids that non-covalently bind small organic 

molecules (“Select ligand-bound proteins”). No constraints were imposed on the resolution to 

maximize the coverage and include experimentally determined structures of varied quality. Next, 

we retained those proteins binding a single ligand whose TC to at least one FDA-approved drug 

is ³0.5 (“Select drug-like molecules”). The TC is calculated for 1024-bit molecular fingerprints 

with OpenBabel [44] against FDA-approved drugs in the DrugBank database [45]. Subsequently, 

protein sequences were clustered with CD-HIT [46] at 40% sequence similarity (“Cluster 

proteins”). From each homologous cluster, we selected a representative set of proteins binding 
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chemically dissimilar ligands whose pairwise TC is <0.5 at different locations separated by at least 

8 Å (“Select representative complexes”). Our intent is to evaluate the performance of binding site 

matching algorithms against predicted pockets. Therefore, we identified ligand-binding sites in 

target proteins with Fpocket 2.0, which employs Voronoi tessellation and alpha spheres to detect 

cavities in protein structures [47] (“Identify pockets”). We kept predicted pockets for which the 

Matthews correlation coefficient [48] (MCC) calculated against binding residues in the 

experimental complex structure reported by LPC [37] is ³0.4. This procedure resulted in a non-

redundant and representative dataset of 7,524 protein-drug complexes with computationally 

predicted pockets. 

In the next step, all target-bound ligands were clustered with the SUBSET program [49] 

(“Cluster ligands”). Using a TC threshold of 0.7 produced 1,266 groups of chemically similar 

molecules. From all possible combinations of protein pairs within each cluster of similar 

compounds, we selected those having a TM-score of <0.4 as reported by Fr-TM-align [50] (“Select 

globally dissimilar protein pairs”). The Positive subset of TOUGH-M1 comprises 505,116 protein 

pairs having different structures, yet binding chemically similar ligands. Finally, we identified a 

representative structure within each group of proteins binding similar compounds, and 

considered all pairwise combinations of structures from different clusters that have a TM-score 

to one another of <0.4 (“Select globally dissimilar protein pairs”). The Negative subset of TOUGH-

M1 comprises 556,810 protein pairs that have different structures and bind chemically dissimilar 

ligands. 

 

Structural comparison of binding pockets 

Three algorithms to match binding sites, APoc, SiteEngine and G-LoSA, are evaluated in this study 

against the APoc and TOUGH-M1 datasets. APoc constructs sequence order-independent 

structural alignments of pockets in proteins [28]. It implements a scoring function called the 

Pocket Similarity (PS)-score quantifying the pocket similarity based on the backbone geometry, 

the orientation of side-chains, and the chemical matching of aligned pocket residues. The average 

PS-score for randomly selected pairs of pockets is 0.4. SiteEngine is a surface-based method 

developed to recognize similar functional sites in proteins having different sequences and folds 
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[27]. The Match score is a scoring function implemented in SiteEngine to quantify the similarity 

of binding sites based on the number of equivalent atoms, physicochemical properties, and 

molecular shape complementarity. This score provides a ranking of the template sites according 

to the percentage of their features recognized in the target sites. Finally, we test the G-LoSA 

algorithm, which aligns protein binding sites in a sequence order-independent way [30]. Its 

scoring function, the G-LoSA Alignment (GA)-score, is calculated based on the chemical features 

of aligned pocket residues. The average GA-score for random pairs of local structures is 0.49. 

Stand-alone version of APoc v1.0b15, SiteEngine 1.0 and G-LoSA v2.1 were used in this work with 

default parameters for each program. 

 

Structure-based virtual screening 

Each target binding site in the TOUGH-M1 dataset was subjected to virtual screening (VS) against 

a non-redundant library of 1,515 FDA-approved drugs obtained from the DrugBank database 

[45]. Here, the redundancy was removed with the SUBSET program [49] at a TC of 0.95. Two 

docking tools have been used in structure-based virtual screening, AutoDock Vina [40] and rDock 

[41]. Vina combines empirical and knowledge-based scoring functions with an efficient iterated 

local search algorithm to generate a series of docking modes ranked by the predicted binding 

affinity. MGL tools [51] and Open Babel [52] were used to add polar hydrogens and partial 

charges, as well as to convert target proteins and library compounds to the PDBQT format. For 

each docking ligand, the optimal search space centered on the binding site annotated with 

Fpocket was defined from its radius of gyration as described previously [53]. Molecular docking 

was carried out with AutoDock Vina 1.1.2 and the default set of parameters. 

 Specifically designed for high-throughput virtual screening, rDock employs a combination 

of stochastic and deterministic search techniques to generate low-energy ligand poses [41]. Open 

Babel [52] was used to convert target proteins and library compounds to the required Tripos 

MOL2 and SDFile formats. The docking box was defined by the rcavity program within a distance 

of 6 Å from the binding site center reported by Fpocket. Simulations with rDock were conducted 

with the default scoring function and docking parameters. 
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Analysis of binding environments 

The similarity of ligand-binding environments formed by two pockets is quantified with the 

Szymkiewicz-Simpson overlap coefficient (SSC) [54]: 

 

𝑆𝐶𝐶 =
|𝐴 ∩ 𝐵|

𝑚𝑖𝑛(|𝐴|, |𝐵|) 

 

(1) 

where A and B are the lists of protein-ligand contacts within the two pockets according to the 

LPC program [37]. In order to calculate the intersection, we employ a similar procedure to that 

used to compile the APoc dataset [28]. Specifically, two contacts in different structures are of the 

same type if the ligand atoms are equivalent according to the chemical alignment by the kcombu 

program [55] and the protein residues belong to the same group (I-VIII) defined as: I (LVIMC), II 

(AG), III (ST), IV (P), V (FYW), VI (EDNQ), VII (KR), VIII (H) [56]. 

 

Evaluation metrics 

Recognizing those pockets binding similar ligands in different proteins is essentially a binary 

classification problem, viz. pairs of pockets are classified as either similar or dissimilar. Therefore, 

the performance of pocket matching algorithms can be evaluated with the Receiver Operating 

Characteristic (ROC) analysis and the corresponding area under the ROC curve (AUC). Pairs of 

pockets binding either the same or chemically similar ligands in the APoc dataset (Subject) and 

the TOUGH-M1 dataset (Positive) are positives, P, whereas those pockets binding dissimilar 

ligands, the Control subset of the APoc dataset and Negative subset of TOUGH-M1 are negatives, 

N. ROC analysis is based on a true positive rate (TPR) also known as the sensitivity, and a false 

positive rate (FPR) also known as the fall-out, defined as: 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

 

(2) 
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𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 (3) 

 

where TP is the number of true positives, i.e. Subject (APoc) and Positive (TOUGH-M1) pairs 

classified as similar pockets, and TN is the number of true negatives, i.e. Control (APoc) and 

Negative (TOUGH-M1) pairs classified as dissimilar pockets. FP is the number of false positives or 

over-predictions, i.e. Control (APoc) and Negative (TOUGH-M1) pairs classified as similar pockets, 

and FN is the number of false negatives or under-predictions, i.e. Subject (APoc) and Positive 

(TOUGH-M1) pairs classified as dissimilar pockets. 

The sequence order of alignments constructed by individual binding site matching 

algorithms is quantified by the Kendall t rank correlation coefficient [57]. The Kendall t measuring 

the degree of the ordinal association of binding site residues is given by: 

 

𝜏 =
(𝑛5 − 𝑛7)
𝑛(𝑛 − 1)/2 

(4) 

 

where nC and nD are the numbers of concordant and discordant pairs, respectively. A pair of 

pocket residues is concordant if their order in the protein sequence and the local alignment is 

the same, otherwise the residue pair is discordant. Sequence order-dependent alignments tend 

to have high Kendall t values, with t = 1 for completely sequential alignments calculated by e.g. 

DP [15], BLAST [16], TM-align [17], CE [18], and DALI [19]. A Kendall t value of -1 corresponds to 

an alignment in which the order of one binding site is reversed. Fully sequence order-

independent alignments theoretically have the Kendall t of around 0. 

In addition to direct pocket matching, the pocket similarity across the TOUGH-M1 dataset 

is also indirectly measured with structure-based virtual screening. Here, the statistical 

dependence between the ranking of library compounds against a pair of target pockets is 

evaluated by non-parametric Spearman's r rank correlation coefficient: 

 

𝜌 = 1 −
6∑𝑑?@

𝑛(𝑛@ − 1) 
(5) 
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where di is a difference between the ranks of a compound docked against two target pockets and 

n is the total number of screening compounds, in our case n = 1,515 (the number of FDA-

approved drugs). Spearman's r ranges from -1 to 1 with negative and positive values 

corresponding to an indirect and direct correlation, respectively. Therefore, a high and positive 

Spearman's r indicates that two target binding sites are chemically similar, i.e. tend to bind 

similar compounds. 

Finally, the quality of local alignments is assessed by a ligand root-mean-square deviation 

(RMSD) calculated upon the superposition of binding pockets residues. Here, the assumption is 

that the correct alignment of binding residues causes bound ligands to adopt a similar 

orientation. On that account, two proteins are first superposed using Cα atoms of equivalent 

binding residues according to a given local alignment and then the RMSD is calculated over ligand 

heavy atoms. In addition, the accuracy of pocket alignments is evaluated with the MCC against 

reference alignments obtained by the superposition of bound ligands [34]. 

 

Results and Discussion 

Performance of pocket matching algorithms on the APoc dataset 

We begin by evaluating the performance of APoc, SiteEngine, and G-LoSA on the APoc dataset 

[28] with pockets predicted by LIGSITE [38]. The solid gray line in Figure 2 shows the accuracy of 

predicted ligand-binding pockets assessed by the MCC against experimental binding residues 

reported by LPC [37]. The majority of pockets are accurately predicted with the MCC of ³0.6 

(³0.4) in 44% (81.7%) of the cases. Further, as many as 88.3% of the best pockets are top-ranked, 

corresponding to the largest cavity detected in a given target structure (inset in Figure 2, gray 

bars). 

A ROC analysis is conducted to assess the performance of APoc, SiteEngine, and G-LoSA 

detecting similar binding pockets for the APoc dataset (Figure 3 and Table 1). Here, APoc and G-

LoSA are the best performing algorithms with AUC values of 0.82 and 0.77, respectively, whereas 

the AUC for SiteEngine is somewhat lower (0.60). We also compare the performance of pocket 

matching tools to that obtained using the global sequence identity computed with DP [15] as well 
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as the global structure similarity calculated with Fr-TM-align [50]. Distinguishing between 

proteins binding similar and dissimilar compounds on the basis of just the sequence identity 

yields an AUC of 0.56, which is fairly close to the performance of a random classifier. This is 

expected because a sequence similarity threshold of 30% between the two associated proteins 

was used to compile both the Subject (pockets binding similar ligands) and the Control (pockets 

binding dissimilar ligands) sets [28]. Nonetheless, classifying pockets based on the global 

structure similarity of the associated proteins measured by the TM-score [43] yields a much 

higher performance on this dataset with an AUC of 0.75. This can be expected as well because a 

global TM-score threshold of 0.5 was imposed only on target pairs within the Control set and not 

on those within the Subject set [28]. 

To further assess how the performance of pocket matching algorithms is affected by the 

global structure similarity, we identified globally structurally similar protein pairs included in the 

APoc dataset. Only 4.7% Control pairs have a TM-score of ³0.4, whereas as many as 36.5% 

Subject pairs are structurally similar at a TM-score of ³0.4. On that account, we divide the Subject 

set into two subsets, one comprising 12,773 pairs having globally similar structures and the other 

consisting of 22,197 pairs with different global structures. Figure 4 shows a ROC plot assessing 

the performance of APoc, set as an example, against the entire dataset (the dashed-dotted blue 

line), as well as globally similar Subject pairs (the dotted red line) and dissimilar Subject pairs (the 

solid green line). Note that we employ the entire Control set in this analysis because it contains 

only a negligible fraction of structurally similar proteins. On the entire dataset, APoc achieves the 

sensitivity values of 43.6% and 55.9% at an FPR of 1% and 5%, respectively, just as reported in 

the original publication [28]. However, the sensitivity values are as high as 78.2% at 1% FPR and 

87.4% at 5% FPR when only globally similar Subject pairs are included in the ROC analysis. 

Furthermore, excluding any global structure similarity from the benchmarking dataset 

dramatically decreases the performance of APoc to the sensitivity values of only 23.8% and 37.9% 

at an FPR of 1% and 5%, respectively. In the following sections, we look into the potential causes 

of this high discrepancy in the performance of APoc and the correspondingly uneven results. 

 

Characteristics of alignments constructed for the APoc dataset 
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We found that local alignment scores reported by pocket matching algorithms, APoc in 

particular, are correlated with the global structure similarity. Figure 5 shows that the Pearson 

correlation coefficient (PCC) between the TM-score and the PS-score from APoc (Figure 5A), the 

Match score from SiteEngine (Figure 5B), and the GA-score from G-LoSA (Figure 5C) calculated 

across the Subject set are 0.72, 0.53, and 0.52, respectively. Because significantly fewer 

structurally similar proteins are included in the Control set, there is no correlation between the 

global and local structure similarity for SiteEngine (PCC = 0.10) and G-LoSA (PCC = -0.02), 

however, PS-score values computed by APoc still correlate with the TM-score (PCC = 0.48). 

Another important issue that needs to be addressed is whether binding site similarity 

scores reported by pocket matching algorithms depend on the sequence order of the constructed 

alignments. Kendall t values measuring the ordinal association of binding residues in local 

alignments are broadly distributed across the Control set with a central tendency around 0 (red 

dots in Figures 5D and 5E). Clearly, pocket matching algorithms tested in this study construct fully 

sequence order-independent alignments for dissimilar pockets extracted from unrelated protein 

structures, which are also assigned low similarity scores. Nevertheless, the distribution of green 

dots in Figure 5D shows that the vast majority of highly significant PS-score values computed by 

APoc for the Subject set actually correspond to mainly sequential alignments as indicated by high 

Kendall t values. This is also the case for G-LoSA (Figure 5F) and, to a lesser extent, for SiteEngine 

(Figure 5E). The majority of similar pockets extracted from unrelated structures in the Subject set 

are assigned low similarity scores that are no different from the Control set. It appears that high 

pocket similarity scores are computed for mainly sequential local alignments constructed for 

those target pairs in the Subject set having globally similar structures. Considering that 36.5% 

Subject pairs are structurally similar, these results corroborate ROC plots presented in Figure 4. 

 

Representative examples from the APoc dataset 

We selected a couple of representative examples to illustrate difficulties in conducting an 

objective assessment of the performance of pocket matching algorithms on the APoc dataset. 

The first case is a pair of protein kinases, inositol 1,4,5-trisphosphate 3-kinase B from mouse 

bound to ATP [IP(3)-3KB, PDB ID: 2aqx, chain A, 287 aa) [58] and inositol polyphosphate 
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multikinase 2 from yeast bound to ADP (Ipk2, PDB ID: 2if8, chain A, 255 aa) [59]. Binding sites in 

both targets are highly similar with a SSC of 0.67. Figure 6 shows local alignments constructed for 

IP(3)-3KB (violet) and Ipk2 (blue). The reference alignment presented in Figure 6A was obtained 

by superposing proteins using the coordinates of bound ligands. Because adenine nucleotides 

bound to these targets have slightly different internal conformations, the ligand RMSD in the 

reference alignment is 0.81 Å. The alignment by G-LoSA (Figure 6B) has a GA-score of 0.59, 

revealing a significant similarity of both binding sites. Likewise, the PS-score reported by APoc for 

these target pockets is 0.57 with the corresponding p-value of 1.08 ´10-6 (Figure 6C), also 

indicating a significant pocket similarity. 

The alignment accuracy can be assessed by an RMSD computed over ligand heavy atoms 

upon the superposition of aligned binding residues. Both programs constructed a correct 

alignment with a ligand RMSD of 1.00 Å (G-LoSA) and 0.95 Å (APoc). In addition, textual 

alignments between IP(3)-3KB and Ipk2 are shown in Figures 6D-G. The reference alignment 

(Figure 6D↔E) is mostly sequential with the Kendall t of 0.67. MCC values calculated for 

alignments generated by G-LoSA (Figure 6D↔F) and APoc (Figure 6D↔G) are as high as 0.74 and 

0.71, respectively. Despite a low sequence identity of 23.1%, both kinases are structurally globally 

similar with a TM-score of 0.74 and a Ca-RMSD of 1.93 Å over 204 aligned residues. 

Consequently, pocket alignments are mainly sequential with the Kendall t of 0.62 for G-LoSA and 

0.77 for APoc. These high ordinal association values are likely the reason for significant pocket 

similarity scores because these quantities depend on each other as shown in Figures 5D and 5F. 

To further look into this issue, we consider another ADP-bound protein, glutathione 

synthetase from Escherichia coli (GSHase, PDB ID: 1gsa, chain A, 314 aa) [60], whose sequence 

identity to IP(3)-3KB is 19.9%. Although GSHase and IP(3)-3KB are structurally unrelated with a 

TM-score of 0.28 and a Ca-RMSD of 5.56 Å over 130 aligned residues, their binding sites are 

similar with a SSC of 0.47. Figure 7 shows local alignments between IP(3)-3KB (violet) and GSHase 

(green). The ligand RMSD in the reference alignment presented in Figure 7A is 1.10 Å.  Adenine 

nucleotides bound to IP(3)-3KB and GSHase adopt a similar orientation with an RMSD of 1.28 Å 

when target proteins are superposed according to the alignment by G-LoSA (Figure 7B). Equally 

important, the pocket alignment by G-LoSA is assigned a significant similarity score of 0.51. In 
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contrast, the similarity of ATP/ADP-binding sites in IP(3)-3KB and GSHase was not recognized by 

APoc, which assigned a low PS-score of 0.32 and an insignificant p-value of 0.33 to this pair of 

target pockets. Further, the ligand RMSD calculated for the alignment reported by APoc is as high 

as 14.21 Å indicating that equivalent binding residues have not been correctly identified (Figure 

7C). 

These results are further corroborated by textual pocket alignments between IP(3)-3KB 

and GSHase shown in Figures 7D↔E (the reference alignment), 7D↔F (G-LoSA), and 7D↔G 

(APoc). Owing to the fact that target structures are globally unrelated, the reference alignment 

is fully sequence-order-independent with the Kendall t of 0.09. Encouragingly, the alignment by 

G-LoSA is not only non-sequential with the Kendall t of 0.10, but it is also highly accurate as 

assessed by an MCC of 0.71 against the reference alignment. On the other hand, APoc 

constructed an inaccurate (an MCC of 0.03) and partially sequential (the Kendall t of 0.29) local 

alignment between IP(3)-3KB and GSHase. These case studies illustrate difficulties in conducting 

an objective evaluation of pocket matching algorithms on the APoc dataset containing a 

significant number of structurally similar Subject pairs. Specifically, high similarity scores are 

typically computed by APoc from sequential alignments constructed for those targets having 

globally similar structures, whereas its performance against structurally unrelated target pairs is 

notably lower. 

 

TOUGH-M1 dataset 

In order to factor out the correlation between the local and global structure similarity as well as 

the dependence of the similarity score on the sequence order of target proteins, we compiled a 

new set of over 1 million pocket pairs, the TOUGH-M1 dataset. TOUGH-M1 is not only non-

redundant and representative, but it comprises pairs of pockets extracted from proteins with 

globally unrelated sequences and structures. It is further divided into two subsets, pairs of 

pockets binding chemically similar molecules (Positive) and pairs of pockets binding different 

ligands (Negative). Because we consider pockets predicted by a geometrical approach, 

benchmarking results against the TOUGH-M1 dataset are relevant for the subsequent large-scale 

applications utilizing computationally predicted binding sites. The dashed black line in Figure 2 
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shows that the MCC calculated against experimental binding residues is ³0.4 for all pockets, 

which was one of the criteria to construct this dataset, and it is ³0.6 for as many as 87.1% 

predicted pockets. Therefore, pockets in the TOUGH-M1 dataset are generally more accurate 

than those predicted by LIGSITE in the APoc dataset [28]. In terms of the pocket ranking, 69.3% 

pockets correspond to the largest, top-ranked cavity identified by Fpocket (inset in Figure 2, 

striped bars). 

We also analyze the similarity of binding environments for pairs of pockets in the TOUGH-

M1 dataset with the contact-based overlap coefficient, SCC. The distribution of SCC values across 

the Positive and Negative subsets of TOUGH-M1 are shown in Figure 8. Because pairs of pockets 

in the Positive subset bind either exactly the same compound or at least chemically very similar 

molecules, a significant overlap between their binding environments can be observed with a 

median SCC of 0.30. This result is in line with other studies demonstrating that although the 

complete functional sites binding similar ligands may be somewhat different as a result of binding 

to compounds with different compositions or conformations, they share similar subsites 

interacting with similar ligand fragments [29]. Further, the high similarity of binding 

environments across the Positive pairs likely arises from the presence of strongly conserved 

anchor functional groups in ligands binding to common binding sites within evolutionarily 

related, but distant protein families [61]. In contrast, binding environments formed by pockets in 

the Negative set are very different from one another with a median SCC of only 0.05. On that 

account, algorithms designed to recognize similar pockets should be able to effectively 

distinguish between Positive and Negative pairs even in the absence of any global structure 

similarity. 

 

Performance of pocket matching algorithms on the TOUGH-M1 dataset 

The performance of binding site alignment algorithms in identifying similar binding sites 

across the TOUGH-M1 dataset is assessed with the ROC analysis. Results for APoc, SiteEngine, 

and G-LoSA are shown in Figure 9. Notably, the performance of APoc with an AUC of 0.65 is lower 

than SiteEngine and G-LoSA, which yield AUC values of 0.66 and 0.69, respectively. Further, the 

ROC analysis includes the pairwise global sequence identity computed with DP [15] and global 
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structure similarity calculated with Fr-TM-align [50]. As expected, the classification of pockets 

based on sequence identity gives an AUC of 0.55, which is close to that of a random classifier. In 

contrast to the APoc dataset, the TM-score [43] yields a very low performance with an AUC of 

0.51, therefore, Positive and Negative protein pairs in the TOUGH-M1 dataset cannot be 

separated simply based on the similarity of their global structures. This result is not surprising 

because TOUGH-M1 was compiled at a global sequence similarity threshold of 40% and a TM-

score threshold of <0.4. Our benchmarking calculations reveal that G-LoSA is the only pocket 

matching algorithm offering a fairly robust performance on both datasets with AUC values of 0.77 

(APoc) and 0.69 (TOUGH-M1). This robustness likely develops from an efficient search algorithm, 

which generates sequence order-independent alignments by solving the assignment problem 

with a combination of an iterative maximum clique search and a fragment superimposition [30]. 

 

Characteristics of alignments constructed for the TOUGH-M1 dataset 

We next investigate the correlation between the global structure similarity and the local 

alignment score reported by individual binding site matching algorithms for the TOUGH-M1 

dataset. Figure 10 shows that local alignment scores are uncorrelated with the TM-score for APoc 

(Figure 10A), SiteEngine (Figure 10B), and G-LoSA (Figure 10C). These results are expected 

because both Positive as well as Negative pairs of proteins in TOUGH-M1 have different 

structures at a TM-score of <0.4. Further, binding site algorithms tested in this study have been 

reported to align protein binding sites in a sequence order-independent way to compute local 

alignment scores. On that account, similar to the APoc dataset, we check the order of alignments 

constructed across the TOUGH-M1 dataset with Kendall t. Although alignments generated by 

APoc for TOUGH-M1 are notably less dependent on the sequence order compared to those 

constructed for the APoc dataset, the average Kendall t ±standard deviation is 0.15 ±0.37 for 

Positive and 0.13±0.42 for Negative pairs (Figure 10D). Thus, the ordinal association of binding 

site residues can still be detected in APoc alignments. In contrast, the average Kendall t 

±standard deviation for Positive and Negative pairs is, respectively, 0.03 ±0.36 and 0.01 ±0.41 for 

SiteEngine (Figure 10E), and 0.06 ±0.31 and 0.07 ±0.35 for G-LoSA (Figure 10F), demonstrating 

that these alignments are indeed fully sequence order-independent. 
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Quantifying pocket similarity with virtual screening 

Structure-based virtual screening can, in principle, be used as an indirect approach to match 

binding sites with the underlying assumption that similar pockets should yield similar ranking by 

the predicted binding affinity. To validate this approach, we first conducted a self-docking test 

for TOUGH-M1 targets in order to evaluate the accuracy of molecular docking with Vina and 

rDock. Predicted ligand-binding poses are assessed in Figure 11 by a heavy atom RMSD and the 

Contact Mode Score (CMS) [62] against experimental complex structures. The median RMSD for 

Vina is 4.07 Å, which is significantly lower than the median RMSD of 6.32 Å for rDock (Figure 11A). 

The recently developed CMS evaluates docked poses by calculating the overlap between 

intermolecular contacts in the predicted and experimental complex structures [62]. It offers 

certain advantages over the RMSD, for instance, the CMS is ligand size-independent providing a 

better evaluation metric for heterogeneous datasets, such as TOUGH-M1. Consistent with the 

RMSD-based assessment, Figure 11B shows that the median CMS values for Vina and rDock are 

0.31 and 0.17, respectively. Our benchmarking calculations demonstrate that Vina outperforms 

rDock in binding pose prediction, which is in line with previous studies [41, 63]. 

Subsequently, a collection of 1,515 FDA-approved drugs were docked into 

computationally predicted binding pockets of target proteins in the TOUGH-M1 dataset with two 

molecular docking algorithms, AutoDock Vina [40] and rDock [41]. Here, we test the assumption 

that similar pockets should produce similar ranking in structure-based virtual screening. Table 2 

reports that the average Spearman's r calculated for Positive pairs binding similar compounds is 

higher than that computed for Negative pairs binding different molecules regardless of the 

docking program used. Although pairs of dissimilar pockets ideally should have Spearman's r 

around 0, these values are actually quite high, e.g. r is 0.67 ±0.21 for Vina. The reason for this 

result is that docking scores reported by many docking algorithms are highly correlated with the 

molecular weight of docking compounds [64-66]. On that account, we calculated Spearman's r 

between binding affinities predicted by docking and the molecular weight of library compounds 

to corroborate previous studies. As expected, Table 2 shows that these values are quite high as 
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well, e.g. r is 0.54 ±0.27 for Vina. For comparison, simply replacing molecular weight with random 

numbers yields Spearman's r of around 0 corresponding to the lack of any correlation. 

Despite the fact that molecular docking scores are correlated with the molecular weight 

of screening compounds, structure-based virtual screening can be used as an indirect method to 

recognize those target pockets binding similar molecules. Table 1 shows that although the 

performance of Vina is significantly lower than all direct techniques to match binding sites and 

comparable to a classification based on the global sequence identity, an AUC of 0.67 for rDock is 

actually higher than those for APoc and SiteEngine. Since the capability of virtual screening to 

match ligand-binding pockets generally depends on the accuracy of a scoring function used in 

docking, our results are in line with previous studies reporting that rDock outperforms Vina in 

virtual screening [41, 67]. More importantly, an indirect comparison of pockets by means of 

structure-based virtual screening is methodologically orthogonal to direct techniques employing 

local binding site alignments, creating opportunities for novel meta-predictors, which are 

explored in the following section. 

 

Rationale for a meta-predictor 

Finally, we evaluate the performance of a series of meta-predictors in distinguishing between 

similar and dissimilar ligand-binding pockets in the TOUGH-M1 dataset. Each meta-predictor 

combines a direct and an indirect method and calculates a similarity score simply by multiplying 

individual scores, i.e. the local alignment score reported by a binding site matching algorithm and 

Spearman's r calculated based on the results of structure-based virtual screening. Encouragingly, 

Table 1 shows that combining different techniques improves the prediction accuracy over 

individual algorithms. For instance, integrating G-LoSA (an AUC of 0.69) with rDock (an AUC of 

0.67) into a simple meta-predictor yields the highest AUC of 0.77. Even the somewhat low 

performance of APoc on the TOUGH-M1 dataset (an AUC of 0.65) can be increased to 0.70 by 

multiplying its score by Spearman's r by rDock. These results provide a solid rationale to include 

structure-based virtual screening conducted with an accurate molecular docking tool as part of 

protocols detecting similar ligand-binding sites in unrelated proteins. 
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Representative examples from the TOUGH-M1 dataset 

We selected two representative examples from the TOUGH-M1 dataset to discuss the results of 

binding site matching with APoc and SiteEngine in terms of potential improvements by including 

virtual screening. Proteins shown in Figure 12 are spermidine synthase (SPDS) from Plasmodium 

falciparum (PDB ID: 2pwp, chain A, 281 aa) [68], polyamine receptor SpuE from Pseudomonas 

aeruginosa (PDB ID: 3ttn, chain A, 330 aa) [69], phosphonoacetaldehyde dehydrogenase PhnY 

from Sinorhizobium meliloti (PDB ID: 4i3u, chain E, 473 aa) [70], and b-lactamase blaOXA-58 from 

Acinatobacter baumanii (PDB ID: 4y0u, chain A, 242 aa) [71]. SPDS and SpuE included in the 

Positive subset of TOUGH-M1 are the first example. Despite having unrelated sequences (19.5% 

identity) and structures (a TM-score of 0.34), these proteins bind the same ligand, spermidine. 

The superposition of both structures according to the local alignment constructed by APoc is 

presented in Figure 12A. The corresponding PS-score of 0.34 is below a threshold for the pocket 

similarity and the p-value of 0.16 is statistically insignificant, thus APoc failed to identify these 

proteins as binding similar ligands. The alignment constructed by APoc is partially sequential with 

the Kendall t of 0.47. Moreover, the ligand RMSD for spermidine molecules upon the pocket 

superposition is 6.84 Å revealing inaccuracies in this local alignment. 

On the other hand, results from virtual screening with Vina (Figure 12B) and rDock 

(Figures 12C) strongly indicate that these pockets are in fact chemically similar. Specifically, 

Spearman's r values calculated for ranks assigned by Vina and rDock are as high as 0.91 and 0.85, 

respectively. This high chemical correlation is generally contingent on the accuracy of structure-

based virtual screening against both target pockets, i.e. the docking program should provide 

reliable binding affinities to rank screening compounds. Indeed, spermidine shown as a large red 

dot in Figures 12B and 12C was ranked 94th/51st against SPDS/SpuE by Vina and 89th/16th by 

rDock. Further, many chemically similar compounds marked by warm colors in Figures 12B and 

11C are found within the top ranks as well. Overall, despite a moderately low PS-score reported 

by APoc, including virtual screening certainly helps recognize SPDS and SpuE as a pair of globally 

unrelated proteins yet binding similar compounds. 

The second example is a pair of targets, PhnY and blaOXA-58, included in the Negative 

subset of TOUGH-M1. These proteins have unrelated sequences (17.9% identity) and structures 
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(a TM-score of 0.31), and bind chemically different ligands, PhnY binds phosphonoacetaldehyde 

and blaOXA-58 binds 6a-hydroxymethyl penicillin derivative, whose pairwise TC is only 0.16. 

Figure 12D shows the local alignment between PhnY and blaOXA-58 constructed by SiteEngine. 

This pair of targets was assigned a fairly high Match score of 45, incorrectly indicating that PhnY 

and blaOXA-58 bind similar compounds. Further, the pocket alignment by SiteEngine is partially 

sequential with the Kendall t of 0.30. This obvious over-prediction by SiteEngine can be 

counterbalanced by virtual screening because Spearman's r is as low as 0.03 for Vina (Figure 12E) 

and 0.27 for rDock (Figure 12F). Both docking programs produced uncorrelated ranks in virtual 

screening against PhnY and blaOXA-58, correctly recognizing that these targets bind chemically 

different molecules. Case studies presented in this section illustrate how the accuracy of direct 

methods to detect similar pockets in globally unrelated proteins can be enhanced by including 

structure-based virtual screening as an indirect component in order to reduce the number of 

false positives and false negatives. 

 

Conclusions 

In this communication, we comprehensively evaluate the performance of several programs 

developed to identify similar binding sites in proteins. Benchmarking APoc, SiteEngine, and G-

LoSA against the existing APoc dataset leads to an overestimated accuracy of these algorithms 

because more than one-third of similar pocket pairs come from globally similar proteins. To 

address this issue, we compiled TOUGH-M1, a high-quality dataset to conduct rigorous 

assessments of pocket matching tools. Eliminating global similarities between target proteins in 

the TOUGH-M1 dataset causes the performance of APoc to drop by 17% and G-LoSA by 8%, 

whereas the performance of SiteEngine increases by 6%. Moreover, pocket matching programs 

selected for this study were reported to generate sequence order-independent alignments of 

ligand-binding sites. Nevertheless, the analysis of the sequential ordinal association of alignments 

generated by these algorithms reveals that only G-LoSA produces alignments fairly independent 

on the sequence order. Compared to APoc and SiteEngine, G-LoSA offers a better performance 

detecting similar pockets across the TOUGH-M1 dataset, however, the accuracy of the 

constructed local alignments is somewhat unsatisfactory. The quality of pocket alignments needs 
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to be significantly improved in order to employ ligand-binding poses predicted by G-LoSA in 

rational, structure-based drug repositioning. 

In addition, we compare the performance of algorithms directly matching binding pockets 

to an indirect strategy employing structure-based virtual screening with AutoDock Vina and 

rDock. Although this approach, particularly with rDock as a docking program, offers a similar 

performance to alignment-based pocket matching techniques, combining direct and indirect 

methods into a meta-predictor outperforms individual algorithms. Encouragingly, the 

performance of pocket matching tools against the TOUGH-M1 dataset can be increased by 5% 

(APoc) to 10% (SiteEngine) by including virtual screening with rDock. Overall, meta-predictors 

employing methodologically orthogonal techniques offer a new state-of-the-art in ligand-binding 

site matching. This improved accuracy can beneficially be exploited in protein function inference, 

polypharmacology, drug repurposing, and drug toxicity prediction, accelerating the development 

of new biopharmaceuticals. 
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RMSD: root-mean-square deviation 
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Tables 

Table 1. Performance of various strategies to match ligand-binding pockets assessed with the 

area under the ROC curve (AUC). Three types of algorithms are evaluated, direct methods based 

on the local alignment between a pair of pockets, indirect techniques employing structure-based 

virtual screening to detect chemically similar binding sites, and meta-predictors combining a 

direct and an indirect algorithm. Direct approaches are benchmarked on APoc and TOUGH-M1 

datasets, whereas indirect methods and meta-predictors are assessed against the TOUGH-M1 

dataset only. 

 

Algorithm Type 
Dataset 

APoc TOUGH-M1 
APoc direct 0.82 0.65 

SiteEngine direct 0.60 0.66 
G-LoSA direct 0.77 0.69 

Vina indirect - 0.55 
rDock indirect - 0.67 

APoc + Vina meta - 0.67 
APoc + rDock meta - 0.70 

SiteEngine + Vina meta - 0.66 
SiteEngine + rDock meta - 0.76 

G-LoSA + Vina meta - 0.66 
G-LoSA + rDock meta - 0.77 
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Table 2. Correlation between compound ranks from structure-based virtual screening. Vina and 

rDock were employed to screen a library of FDA-approved drugs against target sites in the 

TOUGH-M1 dataset. Average Spearman’s r rank correlation coefficient ±standard deviation 

values are reported. Positive and Negative sets correspond to pairs of TOUGH-M1 proteins 

binding similar and dissimilar molecules, respectively. For comparison, we include Spearman’s r 

between binding affinities calculated against each target by ligand docking algorithms, and the 

molecular weight and random numbers assigned to screening compounds. 

 

Comparison Vina rDock 
Positive set 0.71 ±0.16 0.56 ±0.06 
Negative set 0.67 ±0.21 0.49 ±0.12 

Molecular weight 0.54 ±0.27 0.28 ±0.23 
Random 0.00 ±0.01 0.00 ±0.02 
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Figures 

 
 

Figure 1. Procedure to compile the TOUGH-M1 dataset. Ligand-bound proteins selected from 

the Protein Data Bank are subjected to a series of filters to retain drug-like molecules and remove 

redundancy. Subsequently, binding pockets are computationally detected in representative 

complexes and the target-bound ligands are clustered to produce groups of chemically similar 

molecules. Finally, globally dissimilar protein pairs are identified either within each ligand cluster 

to create the Positive subset of TOUGH-M1, or between ligand clusters to compose the Negative 

subset of TOUGH-M1. 
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Figure 2. Ligand-binding pockets predicted across APoc and TOUGH-M1 datasets. The accuracy 

of pocket identification is evaluated by the Matthews correlation coefficient (MCC) calculated 

over binding residues against experimental complex structures. Inset: Pocket ranking assessed 

by the fraction of targets, for which the best pocket is found at a particular rank shown on the x-

axis. 
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Figure 3. ROC plot evaluating the performance of pocket matching algorithms on the APoc 

dataset. The accuracy of APoc, SiteEngine and G-LoSA is compared to global sequence and 

structural alignments. The x-axis shows the false positive rate (FPR) and the y-axis shows the true 

positive rate (TPR). The gray area represents a random prediction. 
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Figure 4. ROC plot assessing the performance of APoc on the APoc dataset. The dashed-dotted 

blue line shows the performance against the entire dataset as reported in the original publication 

of APoc. The dotted red line evaluates to the performance for globally similar Subject pairs, 

whereas the solid green line corresponds to the performance of APoc when globally similar 

Subject pairs are excluded from benchmarks. The x-axis shows the false positive rate (FPR) and 

the y-axis shows the true positive rate (TPR). The gray area represents a random prediction. 
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Figure 5. Characteristics of local alignments constructed by pocket matching algorithms for the 

APoc dataset. Top panel shows the correlation between the global structure similarity score, TM-

score, and the local alignment score, (A) PS-score by APoc, (B) Match score by SiteEngine, and (C) 

GA-score by G-LoSA. Bottom panel shows the correlation between local alignment scores 

reported by individual pocket matching algorithms, (D) APoc, (E) SiteEngine, and (F) G-LoSA, and 

Kendall t measuring the degree of the ordinal association of binding site alignments. Dotted lines 

mark thresholds for statistically significant alignments. 
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Figure 6. Examples of local alignments constructed by pocket matching algorithms for a pair of 

structurally similar ATP/ADP-binding proteins in the APoc dataset. Inositol 1,4,5-trisphosphate 

3-kinase B [IP(3)-3KB, violet] is aligned to inositol polyphosphate multikinase 2 (Ipk2, blue). (A) 

The reference alignment obtained by the superposition of bound ligands is compared to pocket 

alignments by (B) G-LoSA and (C) APoc. Ca atoms of binding residues are represented by solid 

spheres, whereas adenine nucleotides are shown as solid sticks. (D-G) Textual pocket alignments 

between IP(3)-3KB and Ipk2, (D↔E) the reference alignment and those constructed by (D↔F) G-

LoSA and (D↔G) APoc. Each box represents a binding residue. Alignments are sorted by the 

sequence order of IP(3)-3KB in D (violet). Equivalent residues in Ipk2 are colored in blue in E, 

whereas in F and G, correctly aligned residues with respect to the reference alignment are 

colored in yellow and misaligned residues are colored in red. Alignment positions reversing the 

sequence order are marked by asterisks. 
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Figure 7. Examples of local alignments constructed by pocket matching algorithms for a pair of 

structurally dissimilar ATP/ADP-binding proteins in the APoc dataset. Inositol 1,4,5-

trisphosphate 3-kinase B [IP(3)-3KB, violet] is aligned to glutathione synthetase (GSHase, green). 

(A) The reference alignment obtained by the superposition of bound ligands is compared to 

pocket alignments by (B) G-LoSA and (C) APoc. Ca atoms of binding residues are represented by 

solid spheres, whereas adenine nucleotides are shown as solid sticks. (D-G) Textual pocket 

alignments between IP(3)-3KB and GSHase, (D↔E) the reference alignment and those 

constructed by (D↔F) G-LoSA and (D↔G) APoc. Each box represents a binding residue. 

Alignments are sorted by the sequence order of IP(3)-3KB in D (violet). Equivalent residues in Ipk2 

are colored in green in E, whereas in F and G, correctly aligned residues with respect to the 

reference alignment are colored in yellow and misaligned residues are colored in red. Alignment 

positions reversing the sequence order are marked by asterisks. 
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Figure 8. Similarity of binding environments across the Positive and Negative subsets of the 

TOUGH-M1 dataset. The overlap of atomic ligand-protein contacts of a similar chemical type is 

measured with the Szymkiewicz-Simpson coefficient (SCC). Three black horizontal lines in each 

group represent (from the top) the maximum value, the median, and the minimum value. 
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Figure 9. ROC plot evaluating the performance of pocket matching algorithms on the TOUGH-

M1 dataset. The accuracy of APoc, SiteEngine and G-LoSA is compared to global sequence and 

structural alignments. The x-axis shows the false positive rate (FPR) and the y-axis shows the true 

positive rate (TPR). The gray area represents a random prediction.  

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/268565doi: bioRxiv preprint 

https://doi.org/10.1101/268565
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

 
 

Figure 10. Characteristics of local alignments constructed by pocket matching algorithms for 

the TOUGH-M1 dataset. Top panel shows the correlation between the global structure similarity 

score, TM-score, and the local alignment score, (A) PS-score by APoc, (B) Match score by 

SiteEngine, and (C) GA-score by G-LoSA. Bottom panel shows the correlation between local 

alignment scores reported by individual pocket matching algorithms, (D) APoc, (E) SiteEngine, 

and (F) G-LoSA, and Kendall t measuring the degree of the ordinal association of binding site 

alignments. Dotted lines mark thresholds for statistically significant alignments.  
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Figure 11. Violin plots assessing the performance of ligand docking algorithms on the TOUGH-

M1 dataset. The accuracy of binding modes predicted by Vina and rDock are evaluated against 

experimental structures with (A) the root-mean-square deviation, RMSD, and (B) the Contact 

Mode Score, CMS. Boxes on the top of violins end at quartiles Q1 and Q3, and a horizontal line in 

each box is the median. Whiskers point at the farthest points that are within 1.5 of the 

interquartile range. 
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Figure 12. Examples of pocket alignments and the chemical correlation from structure-based 

virtual screening for proteins selected from the TOUGH-M1 dataset. (A-C) A Positive pair of 

spermidine synthase (SPDS) and polyamine receptor SpuE, (D-F) a Negative pair of 

phosphonoacetaldehyde dehydrogenase PhnY and b-lactamase blaOXA-58. Target structures are 

aligned according to local alignments reported by (A) APoc and (D) SiteEngine; SPDS, SpuE, PhnY, 

and blaOXA-58 are colored in salmon, gray, cyan, and yellow, respectively. Ca atoms of binding 

residues are represented by solid spheres, whereas binding ligands are shown as sticks. Four 

scatter plots show the correlation of ranks from virtual screening conducted by (B, E) Vina and 

(C, F) rDock. Each dot represents one library compound, whose ranks against target pockets are 

displayed on x and y axes. A dashed black line is the diagonal corresponding to a perfect 

correlation. (B, C) The color and size of dots depend on the Tanimoto coefficient (TC) computed 

against spermidine that binds to both proteins, SPDS and SpuE, in experimental complex 

structures; the color scale is displayed on the right. 
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