
Reproducible big data science: A case study in continuous
FAIRness

Ravi Madduri1,2, Kyle Chard1,2, Mike D’Arcy3, Segun C. Jung1,2, Alexis Rodriguez1,2,
Dinanath Sulakhe1,2, Eric W. Deutsch4, Cory Funk4, Ben Heavner5, Matthew
Richards4, Paul Shannon4, Gustavo Glusman4, Nathan Price4, Carl Kesselman3, Ian
Foster1,2,6*

1 Globus, University of Chicago, Chicago, Illinois, United States of America
2 Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois,
United States of America
3 Information Sciences Institute, University of Southern California, Los Angeles,
California, United States of America
4 Institute for Systems Biology, Seattle, Washington, United States of America
5 Department of Biostatistics, School of Public Health, University of Washington,
Seattle, Washington, United States of America
6 Department of Computer Science, University of Chicago, Chicago, Illinois, United
States of America

* foster@uchicago.edu

Abstract

Big biomedical data create exciting opportunities for discovery, but make it difficult to
capture analyses and outputs in forms that are findable, accessible, interoperable, and
reusable (FAIR). In response, we describe tools that make it easy to capture, and assign
identifiers to, data and code throughout the data lifecycle. We illustrate the use of these
tools via a case study involving a multi-step analysis that creates an atlas of putative
transcription factor binding sites from terabytes of ENCODE DNase I hypersensitive
sites sequencing data. We show how the tools automate routine but complex tasks,
capture analysis algorithms in understandable and reusable forms, and harness fast
networks and powerful cloud computers to process data rapidly, all without sacrificing
usability or reproducibility—thus ensuring that big data are not hard-to-(re)use data.
We compare and contrast our approach with other approaches to big data analysis and
reproducibility.

1 Introduction 1

Rapidly growing data collections create exciting opportunities for a new mode of 2

scientific discovery in which alternative hypotheses are developed and tested against 3

existing data, rather than by generating new data to validate a predetermined 4

hypothesis [1, 2]. A key enabler of these data-driven discovery methods is the ability to 5

easily access and analyze data of unprecedented size, complexity, and generation rate 6

(i.e., volume, variety, and velocity)—so called big data. Equally important to the 7

scientific method is that results be easily consumed by other scientists [3,4]: that is that 8

results be findable, accessible, interoperable, and re-usable (FAIR) [5]. 9

Yet there is currently a considerable gap between the scientific potential and 10

practical realization of data-driven approaches in biomedical discovery [6]. This 11
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unfortunate situation results, in part at least, from inadequacies in the computational 12

and data management approaches available to biomedical researchers. In particular, 13

tools rarely scale to big data. For example, while a desktop tool may allow an analysis 14

method to be readily applied to a small dataset (e.g., a single genome), applying the 15

same method to a large dataset (e.g., 1,000 genomes) requires specialized infrastructure 16

and expertise. The complexity of the associated data and computation management 17

tasks frequently becomes a gating factor to progress. These difficulties are magnified by 18

the disjointed nature of the biomedical data landscape, which often lacks common 19

interfaces for data discovery and data access, conventions for bundling and transporting 20

datasets, and methods for referencing data produced in different locations,. and features 21

non-portable and idiosyncratic analysis suites. 22

We show here that these difficulties can be overcome via the use of relatively simple 23

tools that either entirely automate or significantly streamline the many, often mundane, 24

tasks that consume biomedical researcher time. These tools include Big Data Bags 25

(BDBags) for data exchange and minimal identifiers (Minids) as persistent identifiers for 26

intermediate data products [7]; Globus cloud services for authentication and data 27

transfer [8, 9]; and the Galaxy-based Globus Genomics [10] and Docker containers [11] 28

for reproducible cloud-based computations. Simple application programming interface 29

(API)-level integration means that, for example, whenever a new BDBag is created to 30

bundle outputs from a computation, a Minid can easily be created that can then be 31

consumed by a subsequent computational step. 32

To demonstrate what can be achieved in this space, we present here a case study of 33

big data analysis, a transcription factor binding site (TFBS) analysis that creates an 34

atlas of putative transcription factor binding sites from ENCODE DNase I 35

hypersensitive sites sequencing (DNase-seq) data, across 27 tissue types. This 36

application involves the retrieval and analysis of multiple terabytes of publicly available 37

DNase-seq data with an aggregated set of position weight matrices representing 38

transcription factor binding sites; a range of open source analysis programs, Galaxy 39

workflows, and customized R scripts; high-speed networks for data exchange; and tens 40

of thousands of core-hours of computation on workstations and public clouds. We 41

introduce the analysis method, review the tools used in its implementation, and present 42

the implementation itself, showing how the tools enable the principled capture of a 43

complex computational workflow in a reusable form. In particular, we show how all 44

resources used in this work, and the end-to-end process itself, are captured in reusable 45

forms that are accessible via persistent identifiers. 46

The remainder of this paper is as follows. In §2, we introduce the TFBS atlas 47

application and in §3 the tools that we use to create a FAIR implementation. We 48

describe the implementation in §4 and §5, discuss implications of this work and its 49

relationship to other approaches in §6, and conclude in §7. 50

2 An atlas of transcription factor binding sites 51

Large quantities of DNase I hypersensitive sites sequencing (DNase-seq) data are now 52

available, for example from the Encyclopedia of DNA Elements (ENCODE) [12]. Funk 53

et al. [13] show how such data can be used to construct genome-wide maps of candidate 54

transcription factor binding sites (TFBSs) via the large-scale application of footprinting 55

methods. As outlined in Fig 1, their method comprises five main steps, which are 56

labeled in the figure and referenced throughout this paper as 1 .. 5 : 57

1 Retrieve tissue-specific DNase-seq data from ENCODE, for hundreds of biosample 58

replicates and 27 tissue types. 59
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Fig 1. A high-level view of the TFBS identification workflow, showing the six principal
datasets, labeled D1–D6, and the five computational phases, labeled 1 – 5 .

2 Combine the DNase-seq replicates data for each aligned replicate in each tissue 60

and merge the results. Alignments are computed for two seed sizes, yielding 61

double the number of output files. 62

3 Apply two footprinting methods—Wellington [14] and HMM-based identification 63

of TF footprints (HINT) [15], each of which has distinct strengths and 64

limitations [16]—to each DNase-seq from 2 to infer footprints. (On average, this 65

process identifies a few million footprints for each tissue type, of which many but 66

certainly not all are found by both approaches.) 67

4 Starting with a supplied set of non-redundant position weight matrices (PWMs) 68

representing transcription-factor-DNA interactions, create a catalog of “hits” 69

within the human genome, i.e., the genomic coordinates of occurrences of the 70

supplied PWMs. 71

5 Intersect the footprints from 3 and the hits from 4 to identify candidate TFBSs 72

in the DNase-seq data. 73

We provide more details on each step in subsequent sections, where we also discuss 74

the specifics of the data that are passed between steps and preserved for subsequent 75

access. Here we note some characteristics of the overall workflow that are important 76

from a reproducibility perspective. The workflow involves many steps and files, making 77

it important that the provenance of final results be captured automatically rather than 78

manually. It involves considerable data (terabytes: TBs) and computation (hundreds of 79

node-hours on 32-core nodes) and thus requires parallel computing (e.g., on a cloud) in 80

order to complete in a timely manner. Finally, it makes use of multiple types of 81
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examplebag/ Top level name
bag-info.txt Metadata for the bag
bagit.txt BagIt version and encoding information
data/ The BDBag’s contents:

mydirectory/ User directory
file1 A first user file
file2 A second user file

fetch.txt How to fetch missing elements
manifest-md5.txt MD5 checksums for data files
manifest-sha256.txt SHA checksums for data files
metadata/ Tag directory for Research Object metadata

manifest.json Research Object metadata as JSON-LD
tagmanifest-md5.txt MD5 checksum for tags
tagmanifest-sha256.txt SHA checksum for tags

Fig 2. An example BDBag, with contents in the data folder, description in the
metadata folder, and other elements providing data required to fetch remote elements
(fetch.txt) and validate its components.

computation: an online service (encode2bag), big data Galaxy pipelines running in 82

parallel on the cloud, and R code running on a workstation or laptop. These diverse 83

characteristics are typical of many modern bioinformatics applications. 84

3 Tools used in TFBS atlas implementation 85

Before describing our implementation of the TFBS workflow, we introduce tools that we 86

leverage in its development. These tools, developed or enhanced within the NIH-funded 87

Big Data for Discovery Science center (BDDS) [17], simplify the development of scalable 88

and reusable software by providing robust solutions to a range of big data problems, 89

from data exchange to scalable analysis. 90

3.1 BDBags, Research Objects, and Minids for data exchange 91

Reproducible big data science requires mechanisms for describing, referring to, and 92

exchanging large and complex datasets that may comprise many directories and files 93

(elements). Key requirements here are [7] enumeration: explicit enumeration of a 94

dataset’s elements, so that subsequent additions or deletions can be detected; fixity: 95

enable verification of dataset contents, so that data consumers can detect errors in data 96

transmission or modifications to data elements; description: provide interoperable 97

methods for tracking the attributes (metadata) and origins (provenance) of dataset 98

contents; distribution: allow a dataset to contain elements from more than one location; 99

and identification: provide a reliable and concise way of referring to datasets for 100

purposes of collaboration, publication, and citation. 101

We leverage three technologies to meet these requirements. We use the BDBag to 102

define a dataset and its contents by enumerating its elements, regardless of their location 103

(enumeration, fixity, and distribution); the Research Object (RO) [18] to characterize a 104

dataset and its contents with arbitrary levels of detail, regardless of their location 105

(description); and the Minid to uniquely identify a dataset and, if desired, its constituent 106

elements, regardless of their location (identify, fixity). Importantly, these mechanisms 107

can all be used without deploying complex software on researcher computers. 108

The Big Data Bag (BDBag) exchange format and associated tools [7] provide a 109
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Fig 3. A Minid landing page for a BDBag generated by the encode2bag tool, showing
the associated metadata, including locations (in this case, just one).

robust mechanism for exchanging large and complex data collections. The BDBag 110

exchange format extends the BagIt specification [19] to provide a self-describing format 111

for representing large data. To give a flavor of the BDBag specification, we show an 112

example in Fig 2. The dataset contents are the directories and files contained within the 113

data directory. The other elements provide checksum and metadata information 114

required to verify and interpret the data. Importantly, a BDBag can encode references 115

to remotely accessible data, with the information required to retrieve those data 116

provided in the fetch.txt file as a (URL, LENGTH, FILENAME) triple. This 117

mechanisms supports the exchange of large datasets without copying large amounts of 118

data (a “holey” BDBag that contains only references, not data, may be just a few 119

hundreds of bytes in size); it also allows the definition of data collections that specific 120

individuals may not have immediate permission to access, as when access to data 121

elements is restricted by data use agreements. Given a BDBag, BDBag tools can be 122

used to materialize those data in a standard way, capture metadata, and verify contents 123

based on checksums of individual data and metadata items. 124

The BDBag specification adopts the Research Object (RO) framework to 125

associate attribution and provenance information, and structured and unstructured 126

annotations describing individual resources, with the data contained in a BDBag. A 127

BDBag’s metadata directory contains annotations and the RO manifest.json in 128

JSON-LD format [20]: see Fig 2. 129

Reproducible science requires mechanisms for robustly naming datasets, so that 130

researchers can uniquely reference and locate data, and share and exchange names 131

(rather than an entire dataset) while being able to ensure that a dataset’s contents are 132

unchanged. We use the minimal viable identifier (Minid) [7] for this purpose. As the 133

name suggests, Minids are lightweight identifiers that can be easily created, resolved, 134

and used. Minids take the form minid:[suffix], where the suffix is a unique sequence 135

of characters. The minid prefix is registered at identifiers.org and n2t.net, so 136
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that, for example, visiting the URL https://n2t.net/minid:b9q119) redirects the 137

browser to the landing page for the object with identifier minid:b9q119: see Fig 3. 138

A landing page is intended to be always available, even if the data are not. It 139

presents the complete metadata record for the Minid and links to one or more locations 140

where the referenced data can be obtained. Allowing more than one data location 141

enables data replication. For example, a Minid may reference one copy of a dataset in 142

the source repository, additional copies in different vendor cloud object stores, and yet 143

another copy on a local file system. Because the Minid includes a checksum of the 144

content, we can ensure that whatever copy is used, it contains the correct and intended 145

content. It is up to the consumer of the Minid to determine which copy of the data is 146

“best” for their purpose, and the responsibility of the Minid creator to interact with the 147

landing page service to register new copies. The GET methods for the landing page 148

support HTTP content negotiation; results may be returned in human-readable 149

(HTML) or machine-readable (JSON) form. 150

While Minids and BDBags can be used independently, they can be used together to 151

powerful effect. As we illustrate in later sections, we can create a Minid for a BDBag, 152

allowing us to uniquely identify the BDBag instance and providing a repeatable method 153

for referring to the BDBag. A Minid can be used as the URL for a remote file reference 154

within a BDBag’s fetch.txt file, in place of a direct URL to a file storage location. 155

The BDBag tooling knows how to resolve such a Minid reference through the landing 156

page to a copy of the BDBag data for materialization into the complete data set. We 157

leverage both of these combinations of Minids and bags in the TFBS workflows. 158

3.2 Globus data management services 159

The often distributed nature and large size of biomedical data complicates data 160

management tasks—such as, in our case study, moving ENCODE data to cloud 161

computers for analysis, and providing persistent access to analysis results. We use two 162

capabilities provided by Globus [9] to overcome these difficulties. 163

First, we use Globus identity management, authentication, and authorization 164

capabilities to enable researchers to authenticate with their institutional credentials and 165

then access different data sources and data services without requiring further 166

authentication. 167

Second, we use the Globus file-based data management services to enable efficient, 168

reliable, and secure remote data access, secure and reliable file transfer, and controlled 169

sharing. With more than 10,000 storage systems accessible via the Globus Connect 170

interface, and support for data access from many different file systems and object stores, 171

Globus translates the often baffling and heterogeneous world of distributed storage into 172

a uniform, easily navigable data space. 173

A third capability that we expect to leverage in future work is Globus data 174

publication [21] to support large-scale data publication. This service provides workflows 175

for making data immutable, associating descriptive metadata, and assigning persistent 176

identifiers such as digital object identifiers (DOIs) [22]. 177

3.3 Globus Genomics for parallel cloud-based computation 178

Small data analyses can be implemented effectively via R or Python scripts, that can be 179

executed on a workstation or a cloud-hosted virtual machine and then shared as 180

documents or via notebook environments such as Jupyter [23]. Big data analyses can be 181

more challenging to implement and share, due to the need to orchestrate the execution 182

of multiple application programs on many processors in order to process large quantities 183

of data in a timely manner, whether for quality control [24], computation of derived 184

quantities, or other purposes. 185
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We use Globus Genomics [10] to orchestrate multi-application analysis on 186

multi-processor cloud computing platforms. Globus Genomics builds on the Galaxy 187

workflow environment [25], widely used in bioinformatics to support the graphical 188

specification of multi-step computational analyses. Globus Genomics extends Galaxy’s 189

capabilities with support for Globus data access, parallel execution on cloud platforms, 190

dispatch of applications within Docker containers, input of BDBags referenced via 191

Minids, and other features useful for big data applications. 192

Other workflow systems with capabilities similar to those of the Galaxy system 193

include the Python-based Toil [26], the Pipeline environment [27, 28], and the Common 194

Workflow Language (CWL) [29]. The approach described here could be easily adopted 195

to use different workflow languages and systems. 196

3.4 Containers for capturing software used in computations 197

A final challenge in reproducible science is recording the software used to perform a 198

computation. Source code allows a reader to examine application logic [30, 31], but may 199

not run on a new platform. Container technologies such as Docker [11] and 200

Singularity [32] can be used to capture a complete software stack in a form that can be 201

executed on many platforms. We use Docker here to package the various applications 202

used in the footprinting workflow. A benefit of this technology is that a container image 203

can be described (and built) with a simple text script that describes the base operating 204

system and the components to be loaded: in the case of Docker, a Dockerfile. Thus it is 205

straightforward to version, share, and reproducibly rebuild a container [33]. 206

4 A scalable, reproducible TFBS workflow 207

Having described the major technologies on which we build, we now describe the 208

end-to-end workflow of Fig 1. We cover each of 1 – 5 in turn. Table 1 summarizes the 209

biosamples, data, and computations involved in the workflow. 210

4.1 Obtaining input data: encode2bag 211

The TFBS algorithm operates on DNase Hypersensitivity (DHS) data in the form of 212

DNase-seq data obtained by querying the ENCODE database for DNase-seq data for 213

each of 27 tissue types. These queries, when performed by Funk et al. [13], yielded a 214

total of 1,591 FASTQ files corresponding to 1,355 replicates from 193 biosamples. (Each 215

tissue-specific biosample may have multiple replicates: for example, the tissue type 216

adrenal gland has eight replicates from three biosamples. Also, some replicates are 217

broken into more than one FASTQ files.) Note that an identical query performed 218

against ENCODE at a different time may yield different results, as new data are added 219

or removed and quality control procedures evolve. Thus, it is important to record the 220

results of these queries at the time they were executed, in a reproducible form. 221

ENCODE provides a web portal that a researcher can use to query the ENCODE 222

database, using menus to specify parameters such as assay, biosample, and genomic 223

annotations. The result is a set of data URLs, which must be downloaded individually 224

and unfortunately do not come with associated metadata or context. Researchers often 225

resort to building shell scripts to download and store the raw datasets. These manual 226

data retrieval and management steps can be error-prone, time consuming, and difficult 227

to reproduce. Researchers must manually save queries to record data provenance, and 228

the only way to validate that downloaded files have not been corrupted is to download 229

them again. 230
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ENCODE	query

Minid for	BDBag
Globus	access

Fig 4. The encode2bag portal. The user has entered an ENCODE query for urinary
bladder DNase-seq data and clicked “Create BDBag.” The portal generates a Minid for
the BDBag and a Globus link for reliable, high-speed access.

To simplify this process, we used BDBag, Minid, and Globus tools to create a 231

lightweight command line utility and web service, encode2bag, shown as 1 in Fig 1. A 232

researcher can use either the web interface or the command line interface to either enter 233

an ENCODE query or upload an ENCODE metadata file describing a collection of 234

datasets. They can then access the corresponding data, plus associated metadata and 235

checksums, as a BDBag. Fig 4 shows an illustrative example in which the web interface 236

is used to request data from urinary bladder DNase-seq experiments. 237

Selecting the “Create BDBag” button triggers the creation of a ∼100 kilobyte 238

BDBag that encapsulates references to the files in question, metadata associated with 239

those files, the query used to identify the data, and the checksums required to validate 240

the files and metadata. The BDBag is stored in AWS Simple Storage Service (S3) cloud 241

storage from where it can be accessed for purposes of sharing, reproducibility, or 242

validation. Because this BDBag contains references to data, rather the data themselves, 243

it captures the entire response to the query in a small (hundreds of kilobytes) form that 244

can be easily downloaded, moved, and shared. When needed, all, or a subset of, the files 245

named within the BDBag’s fetch.txt file can be downloaded (using BDBag tools), while 246

ensuring that their contents match those of the original query. 247

To further streamline access to query results, encode2bag assigns a Minid for each 248

BDBag that it creates, so as to provide for unambiguous naming and identification of 249

research data products that are used for data provenance. In the example in Fig 4 the 250

Minid is minid:b9q119; as discussed earlier, resolving this identifier leads to a landing 251

page similar to that shown in Fig 3, which in turn contains a reference to the BDBag. 252

The Minid can be passed between services as a concise reference to the BDBag. 253

The Funk et al. [13] workflow uses encode2bag to create BDBags for each of the 27 254

tissue types in ENCODE, each with its own Minid. For example, the DNase-seq data 255

associated with adrenal tissue is at minid:b9w37t. These 27 BDBags contain references 256

to a total of 2.4 TB of ENCODE data; references that can be followed at any time to 257

access the associated data. It is these BDBags that are the input to the next step of the 258

TFBS workflow, 2 . 259

The fact that 1 produces one BDBag per tissue type, each with a Minid, allows 260

each tissue type to be processed independently in subsequent steps, providing 261

considerable opportunities for acceleration via parallel processing. When publishing 262

data for use by others, on the other hand, it would be cumbersome to share 27 separate 263

Minids. Thus, as described in later sections, we also create for each such collection of 264
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Table 1. Details of the per-tissue computations performed in the ensemble footprinting
phase. Data sizes are in GB. Times are in hours on a 32-core AWS node; they sum to
2,149.1 node hours or 68,771 core hours. DNase: DNase Hypersensitivity (DNase-seq)
data from ENCODE. Align: Aligned sequence data. Foot: Footprint data and footprint
inference computation. Numbers may not sum perfectly due to rounding.

Data size Compute time
Tissue Biosamples Replicates DNase Align Foot Align Foot
adrenal gland 3 8 31 68 0.5 7.4 18.7
blood vessel 10 129 117 234 2.1 32.7 68.9
bone element 1 7 4 6 0.2 1.4 3.1
brain 29 185 402 840 6.2 120.0 160.5
bronchus 2 9 18 36 0.4 3.1 9.7
esophagus 2 41 35 64 0.3 12.6 7.7
extraembryonic 11 66 193 412 3.0 46.5 89.9
eye 8 53 129 252 2.3 26.9 109.5
gonad 2 7 27 56 0.4 4.9 12.2
heart 8 69 169 342 2.0 38.8 76.0
kidney 8 29 84 174 2.0 19.5 96.5
large intestine 5 18 96 184 0.9 23.2 50.0
liver 3 8 26 62 0.5 4.9 19.8
lung 7 94 142 300 1.8 19.3 27.2
lymphatic vessel 2 30 21 286 0.4 3.6 11.9
lymphoblast 21 71 150 320 2.9 70.0 153.5
mammary gland 2 5 18 36 0.4 2.8 10.7
mouth 4 18 81 164 1.1 19.5 57.3
muscle organ 4 13 54 110 0.8 9.6 49.6
pancreas 2 13 38 84 0.5 8.1 30.9
prostate gland 2 8 23 50 0.3 4.2 78.1
skin 48 401 377 780 8.8 220.0 181.2
spinal cord 2 34 66 128 0.7 9.2 28.0
stomach 1 5 24 52 0.4 3.5 3.6
thyroid gland 3 24 63 136 0.7 13.6 27.0
tongue 2 8 51 106 0.7 13.7 26.1
urinary bladder 1 2 4 8 0.2 0.8 1.8
Total 193 1,355 2,443 5,291 40.8 739.7 1,409.4
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2nd Layer

Sub-workflow	 for	generating	footprints

Sub-workflow	 for	sequence	alignment	and	BAM	merge

Sub-workflow	 for	replicate	alignment

DFoot-
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Align-
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From:	 1

To: 5

Fig 5. Our DNase-seq ensemble footprinting workflow, used to implement 2 and 3 of
Fig 1. The master workflow A takes a BDBag from 1 as input. It executes from top to
bottom, using subworkflows B and C to implement 2 and then subworkflow D to
implement 3 . It produces as output BDBags containing aligned DNase-seq data and
footprints, with the latter serving as input to 5 .
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BDBags a “bag of bags,” a BDBag that contains references to a set of other BDBags. 265

This pervasive use of Minids and BDBags greatly simplifies the implementation and 266

documentation of the TFBS workflow. 267

4.2 Aligning DNase-seq sample data 268

Now that 1 has prepared the input data, 2 prepares those data for the footprinting 269

computation. For each of the 27 tissue types, the input to this phase comprises 270

DNase-seq replicates for one or more biosamples (typically multiple replicates for each 271

biosample), organized as a BDBag. The analysis first fetches the sequence data and, for 272

each biosample, uses the SNAP sequence aligner to align the associated replicates. The 273

resulting replicate alignments are merged and sorted to yield a single binary alignment 274

data (BAM) file per biosample. The BAM files for all biosamples for each tissue type 275

are combined into a BDBag. 276

As the ENCODE data consist primarily of short sequence reads, Funk et al. [13] ran 277

the sequence alignment process twice, with seed lengths of 16 and 20, respectively. 1 278

thus produces two BDBags per tissue type, for a total of 54. (The two sets of outputs 279

allow 5 to compare the merits of the two seed lengths for identifying footprints.) 280

While the computations involved in 2 are relatively simple, the size of the datasets 281

being manipulated and the cost of the computations make it important to execute 282

subcomputations in parallel whenever possible. Each tissue and seed can be processed 283

independently, as can the alignments of the replicates for each biosample, the merge and 284

sort for each biosample, and (in 3 ) the footprint generation by HINT and Wellington. 285

We use Globus Genomics to manage the resulting parallel computations in a way that 286

both enables cloud-based parallel execution and reproducibility. 287

Fig 5 shows the Galaxy workflow that implements 2 and 3 . In this figure, each 288

smaller box represents a separate application, with a name (the shaded header), one or 289

more inputs (below the header and above the line), and one or more outputs (below the 290

line). Each link connects an output from one application to the input of another. 291

Fig 5 comprises four distinct workflows. The (A) master workflow, on the left, is run 292

once for each tissue type, with each run taking a BDBag from 1 as input and 293

producing multiple BDBags as output. This workflow runs seven different applications 294

in sequence, from top to bottom. Two of these applications, the boxes labeled “Batch 295

Submit” (color-coded in red and green) themselves invoke substantial subworkflows. 296

The two subworkflows leverage Globus Genomics features to launch multiple processes 297

in parallel on the Amazon cloud, for (B) replicate alignment and (D) biosample 298

footprint generation, respectively. 299

We mention a few additional features of the workflow. The first application in the 300

master workflow, “Get BDBag from Minid,” dereferences a supplied Minid to retrieve 301

the contents of the BDBag that it identifies. Thus the workflow can operate on any 302

DNase-seq dataset contained in a BDBag and referenced by a Minid, including but not 303

restricted to those produced by the encode2bag service. 304

This third application in the master workflow, “SNAP Workflow Batch,” invokes a 305

subworkflow that comprises five applications (see Fig 5B). This subworkflow resolves 306

the BDBag to identify the number of biosamples and replicates for an input tissue. Its 307

second step manages a second subworkflow, Fig 5C, to execute the SNAP alignment 308

algorithm for the input replicates of a biosample, All replicate alignments are executed 309

in parallel and monitored for completeness. Once all replicate BAM files of a biosample 310

are generated, the workflow merges and sorts them to produce a single BAM file for the 311

biosample. 312
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4.3 Identifying footprints 313

Having assembled the DNase-seq data into a set of aligned BAM files, 3 of Fig 1 uses 314

the F-Seq program [34] to identify regions of open chromatin and then applies the HINT 315

and Wellington footprint algorithms to those regions to generate footprints. This logic 316

is implemented by the lower three applications in the master workflow shown in Fig 5A. 317

The “Footprints Workflow Batch Submit” application runs the footprint generation 318

subworkflow of Fig 5D, which first converts BAM files to Browser Extensible Data 319

(BED) format, as required by the F-Seq tool; then runs the F-Seq tool on the BED file 320

to identify areas of open chromatin; and finally runs the Wellington and HINT 321

footprinting algorithms on both BED and BAM files to generate candidate footprints. 322

Additional information on the generation process is available online [35]. 323

4.4 Generating the catalog of hits 324

While each footprint identified in 3 is a potential TFBS, simply calling each footprint 325

as a TFBS does not identify the cognate TF. Additionally, some footprints may 326

correspond to unidentified or uncharacterized TFs that cannot be utilized. In 327

preparation for eliminating such footprints, 4 creates a hit catalog that links the 328

observed footprints to known TF binding motifs. 329

The input to 4 , shown as Motif in Fig 1, is a collection of 1,530 nonredundant TF 330

binding motifs assembled by Funk et al. [13]. This motif collection was assembled by 331

using the Tomtom program from the MEME suite [36] to identify non-redundant motifs 332

within the JASPAR 2016 [37], HOCOMOCO v10 [38], UniPROBE [39], and 333

SwissRegulon [40] motif libraries, each of which was accessed via the Bioconductor R 334

package MotifDb [41]. Tomtom was then used to compute pair-wise simularity scores for 335

motifs from different libraries and then used those scores to eliminate redundant motifs. 336

More details are available online [35]. This process involves human judgment and so we 337

do not record the associated code as part of our reproducibility package. Rather we 338

make available the resulting human-curated catalog to enable reproducibility of the 339

subsequent workflow. 340

4 uses the Find Individual Motif Occurrences (FIMO) tool [42], also from the 341

MEME suite, to identity potential TF binding sites in the GRCh38 human reference 342

genome. It uses FIMO (from the Regulatory Genomics toolkit version 0.11.2 as 343

captured in the Docker container minid:b9jd6f) to search GRCh38 (captured in the 344

hg38 folder of minid:b9fx1s) for matches with each of the 1,530 non-redundant motifs. 345

An individual motif can match multiple times, and thus the output of this step is a total 346

of 1,344,953,740 hits, each comprising a motif, a genomic location, the probability of the 347

motif occurring at that location, and the match score of the sequence position. 348

4.5 TFBS inference 349

The final step in the TFBS workflow involves intersecting the footprints produced in 3 350

with the hits produced in 4 to generate a set of candidate TFBSs. To accelerate the 351

process of intersecting genomic locations, the Bioconductor R package 352

GenomicRanges [43] is used to create GRanges objects for each of the 108 footprint files 353

and for the hits catalog. Each footprint file is then intersected with the hits catalog 354

independently to produce a total of 108 TFBS candidate files. For convenience, the 355

footprints and TFBSs are also loaded into a cloud-based relational database, organized 356

by tissue type, accessible as described online [44]. 357
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Table 2. The six datasets shown in Fig 1, D1–D6. For each we indicate whether it is
an input or output.
# Name Identifier Role Description Size

D1 DNase-seq minid:b9dt2t In
BDBag of 27 BDBags extracted from ENCODE by
1 , one per tissue: 1,591 FASTQ files in all.

2.40 TB

D2 Alignment minid:b9vx04 Out
BDBag of 54 BDBags produced by 2 , 1 per {tissue,
seed}: 386 BAM files in all.

5.30 TB

D3 Footprints minid:b9496p Out

BDBag of 54 BDBags containing footprints com-
puted by 3 , one per {tissue, seed}. Each BDBag
contains two BED files per biosample, one per foot-
printing method.

0.04 TB

D4 Motifs minid:b97957 In
Database dump file containing the non-redundant
motifs provided by Funk et al. [13].

31.5 GB

D5 Hits minid:b9p09p Out
Database dump file containing the hits produced by
4 .

0.04 TB

D6 TFBSs minid:b9v398 Out

BDBag of 54 BDBags containing candidate TF-
BSs produced by 5 , one per {tissue, seed}. Each
BDBag contains two database dump files, one per
footprinting method.

0.35 TB

Table 3. The software used to implement the five steps shown in Fig 1. As the
software for 1 is used only to produce the input data at minid:b9dt2t, we do not
provide identifiers for specific versions of that software.

# Name Identifiers for software

1
Extract
DNase-Seq

encode2bag service: https://github.com/ini-bdds/encode2bag-service
encode2bag client: https://github.com/ini-bdds/encode2bag

2 , 3
Alignment,
Footprints

Galaxy pipeline: minid:b93m4q
Dockerfile: minid:b9jd6f
Docker image: minid:b97x0j

4 Hits R script: minid:b9zh5t

5 TFBSs R scripts: minid:b9fx1s

5 Recap: A FAIR TFBS workflow 358

We review here the complete TFBS workflow, for which we specify the input datasets 359

consumed by the workflow, the output datasets produced by the workflow, and the 360

programs used to transform the inputs into the outputs. The inputs and programs are 361

provided to enable readers to reproduce the results of the workflow; the outputs are 362

provided for readers who want to use those results. 363

We specify each input, output, and program by providing a Minid. Several of these 364

Minids reference what we call a “bag of bags” BDBag: a single BDBag that itself 365

contains a set of BDBags, for example one per tissue. This use of a bag of bags allows 366

us to refer to the dataset with a single identifier; the reader (or a program) can access 367

the complete dataset by retrieving the bag of bags and using the BDBag tools to 368

automatically download and materialize the constituent BDBags contained in its data 369

directory. Each BDBag contains descriptive metadata for its contents. 370

Table 2 provide identifiers for the six datasets shown in Fig 1, and Table 3 provides 371

identifiers for the software used to implement the five computational steps of Fig 1. We 372

also aggregate the information in these tables into a single document so that they can 373

be accessed via a persistent digital object identifier [45]. To simplify the creation of 374

Docker container components, we created a tool that generates a Docker manifest from 375

a Galaxy tool definition [46]. 376

As a first step towards evaluating whether this information is enough to enable 377

reproducibility, we asked a colleague to reproduce an analysis described in this paper: 378

specifically, to regenerate the results for urinary bladder, for which, as shown in Table 1, 379

there are only two replicates. They were successful. 380
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6 Discussion 381

The TFBS inference workflow implementation presented in Section 4 is structured in a 382

way that it can be easily re-run by others. It is, furthermore, organized in a way that 383

allows it to make easy use of parallel cloud computing. These desirable properties are 384

the result of a disciplined approach to application development that aims for compliance 385

with the ten simple rules for reproducible computational research defined by Sandve et 386

al. [47]: 387

1. For every result, keep track of how it was produced. We preserve workflows and 388

assign Minids to workflow results. 389

2. Avoid manual data manipulation steps. We encode all data manipulation steps in 390

either Galaxy workflows or R scripts. 391

3. Archive the exact versions of all external programs used. We create a Docker 392

container with versions of the tools used in the analysis, and generate Minids for 393

the Docker file and Docker image of the container. 394

4. Version control all custom scripts. We maintain our programs in GitHub, which 395

supports versioning, and provide Minids for the versions used. 396

5. Record all intermediate results, when possible in standardized formats. We record 397

the major intermediate results, in the same manner as inputs and output, using 398

FASTQ, BAM, and BED formats. In the case of database files, we dump tables to 399

a text file via SQL commands. 400

6. For analyses that include randomness, note underlying random seeds. F-Seq uses 401

the Java random number generator, but does not set or record a seed. We would 402

need to modify F-Seq to record that information. 403

7. Always store raw data behind plots. Minids provide concise references to the raw 404

data used to create the plots in the paper, which are bundled in BDBags. 405

8. Generate hierarchical analysis output, allowing layers of increasing detail to be 406

inspected. Because we record the complete provenance of each result, a reader can 407

easily trace lineage from a fact, plot, or summarized result back through the 408

processing steps and intermediate and raw data used to derive that result. 409

9. Connect textual statements to underlying results. Our use of Minids would make it 410

easy for Funk et al. [13] to reference specific data in their text. They do not do at 411

present, but may in a future version of their paper. 412

10. Provide public access to scripts, runs, and results. Each is publicly available at a 413

location accessible via a persistent identifier, as detailed in Tables 2 and 3. 414

The tools used in this case study do not in themselves ensure reproducibility and 415

scalable execution, but they make it easy to create an implementation with those 416

characteristics. For example, BDBag tools and Minid and Globus APIs allowed us to 417

create the encode2bag web interface to ENCODE in just a few hours of effort, 418

permitting a streamlining of the overall workflow that we likely would not have 419

attempted otherwise. Similarly, the ability to create a new Minid at any time via a 420

simple API call made it straightforward to create persistent identifiers for intermediate 421

data products, which contributes to those data being Findable, Accessible, 422

Interoperable, and Reusable (FAIR)—four attributes of digital objects that are often 423

viewed as fundamental to data-driven discovery [5]. And the fact that we could easily 424
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create a readable specification of the ensemble footprinting method as a Galaxy 425

workflow, and then dispatch that workflow to Globus Genomics for parallel cloud 426

execution without regard to the location of input and output data, reduced both time 427

requirements and opportunities for error in those logistically complex computations. So 428

too did the ease with which we could package applications within Docker containers. 429

6.1 Other approaches 430

It is instructive to compare and contrast the methods described in this paper with other 431

approaches to big data and/or reproducible science. 432

Biomedicine is not alone in struggling with the complexities described here [48]. But 433

big data tools from outside biomedicine tend to focus on narrow aspects of the analytic 434

problem, leaving researchers on their own when it comes to managing the end-to-end 435

discovery process [49]. 436

Many approaches to reproducibility focus on using mechanisms such as 437

makefiles [50,51], open source software [30,31], specialized programming 438

environments [52], and virtual machines [53] to organize the code and/or data required 439

for a computation. These approaches work well for small data but face challenges when 440

computations must scale to terabytes and span sites. 441

Another set of approaches require that all data be placed, and analysis occur, within 442

a single, homogeneous environment. In the case of the Analysis Commons [54] and 443

Genomic Data Commons [55], this environment is a (public or private) cloud. Other 444

systems leverage containers and related technologies to create a single reproducible 445

artifact. Binder [56] allows researchers to create computational environments to interact 446

with published code and data. Interactive notebooks, housed in public GitHub 447

repositories, can be run in a version-controlled computational environment. Researchers 448

structure their repository following simple conventions and include build files to 449

describe the computational environment. Binder then uses a JupyterHub-like model to 450

construct and spawn a computational environment in which to execute the notebook. 451

Similarly, WholeTale [57] allows a researcher to construct a “Tale,” a computational 452

narrative for a result. The researcher constructs a computational environment, selects 453

one or more frontend analysis environments (e.g., Jupyter), and conducts their research 454

within that environment. WholeTale tracks data imported into the environment (via 455

linkage to identifiers or checksums) to produce a reproducible artifact (data, 456

computation, and environment) for subsequent reuse and verification. 457

These approaches reduce complexity by enforcing physical or logical locality. They 458

can work well when all required data and code can be integrated into the required 459

homogenous environment. However, as the TFBS case study illustrates, data and 460

computation are often distributed. Furthermore, the ability to move seamlessly among 461

different storage and computational environments, as enabled by tools such as Globus, 462

BDBags, and Globus Genomics, increases flexibility. The approach presented in this 463

paper represents an alternative strategy for making science reproducible by directly 464

addressing the needs of researchers working in loosely coupled environments in which 465

multiple tools, services, and scripts are combined with distributed data products to 466

conduct a given analysis. 467

6.2 A data commons 468

Rather than requiring the use of a single computational environment, the technologies 469

used in this case study facilitate interoperability among environments, so that data can 470

be accessed from many locations (Globus Connect) using common security mechanisms 471

(Globus Auth), transferred in a compact form (BDBags) with consistent naming and 472

checksums for verification of integrity (Minids), and then analyzed rapidly using 473
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software in common formats (Docker), declarative workflows (Galaxy), and parallel 474

computation (Globus Genomics). These elements represent useful steps towards a data 475

commons, which Bonnazi et al. [58] have described in these terms: 476

a shared virtual space where scientists can work with the digital objects of 477

biomedical research; i.e., it is a system that will allow investigators to find, 478

manage, share, use, and reuse data, software, metadata and workflows. It is 479

a digital ecosystem that supports open science and leverages currently 480

available computing platforms in a flexible and scalable manner to allow 481

researchers to find and use computing environments, access public data sets 482

and connect with other resources and tools (e.g. other data, software, 483

workflows, etc.) associated with scholarly research. 484

By thus reducing barriers to finding and working with large data and complex 485

software, our strategy makes it easier for researchers to access, analyze, and share data 486

without regard to scale or location. 487

7 Summary 488

We have presented tools designed to facilitate the implementation of complex, “big data” 489

computations in ways that make the associated data and code findable, accessible, 490

interoperable, and reusable (FAIR). To illustrate the use of these tools, we have 491

described the implementation of a multi-stage DNase I hypersensitive sites sequencing 492

data analysis that retrieves large datasets from a public repository and uses a mix of 493

parallel cloud and workstation computation to identify candidate transcription factor 494

binding sites. This pipeline can be rerun in its current form, for example as new DNase 495

I hypersensitive sites sequencing data become available; extended with additional 496

footprinting methods (for example, protein interaction quantification [59]) as new 497

techniques become available; or modified to apply different integration and analysis 498

methods. The case study thus demonstrates solutions to problems of scale and 499

reproducibility in the heterogeneous, distributed world that characterizes much of 500

modern biomedicine. We hope to see others experiment with these tools in other 501

contexts and report their experiences. 502
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