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Abstract 30 

Differential gene expression (DGE) is one of the most common applications of RNA-sequencing (RNA-seq) 31 

data. This process allows for the elucidation of differentially expressed genes (DEGs) across two or more 32 

conditions. Interpretation of the DGE results can be non-intuitive and time consuming due to the variety of 33 

formats based on the tool of choice and the numerous pieces of information provided in these results files. 34 

Here we present an R package, ViDGER (Visualization of Differential Gene Expression Results using R), 35 

which contains nine functions that generate information-rich visualizations for the interpretation of DGE 36 

results from three widely-used tools, Cuffdiff, DESeq2, and edgeR. 37 

  38 

Introduction 39 

Next-generation sequencing techniques enable researchers to access far more massive amounts of data 40 

than previously available. Specifically, RNA-seq procedures provide a plethora of information regarding the 41 

genetic expression levels of various organisms across multiple conditions at a high resolution [1, 2]. Naturally 42 

arising from this information is the concept of DEGs, which are genes that have expression levels determined 43 

to be significantly differentially expressed across two or more conditions. Cuffdiff [3, 4], edgeR [5], and 44 

DESeq2 [6] are three widely-used tools to determine which genes are differentially expressed, based on 45 

quantifications of expressed genes derived from computational analyses of raw RNA-seq reads (e.g., 46 

mapping [7-15] and assembly [16-21]). Each of the three has been shown to be among the highest performing 47 

tools for DGE analysis of RNA-seq data [22-24] and contribute to the highest number of citations for DGE 48 

tools (Table 1), representing roughly 80% of all cited DGE tools. However, interpreting the results files from 49 

each program is not entirely intuitive, especially for researchers who have limited computational backgrounds. 50 
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One of the best ways to provide a summary of the DGE results is to generate figures, giving a global 51 

representation of the expression changes across multiple conditions. The three tools create output files 52 

sharing some information, such as mean gene expression across replicates for each sample, 𝑙𝑜𝑔2  fold 53 

change (lfc), and adjusted p-value. However, these output files have many differences in content and 54 

structure, which makes generating comprehensive visualizations time-intensive and potentially challenging 55 

task. CummeRbund [25] is an available tool to generate visualizations for Cuffdiff outputs but has no 56 

functionality for users of edgeR and DESeq2. This limited functionality leaves many researchers with no 57 

readily available method to create visualizations for their DGE results. To remediate this issue, we have 58 

created an R package, ViDGER, to assist users in generating publication-quality visualizations from Cuffdiff, 59 

edgeR, and DESeq2 capable of providing valuable insight into their generated DGE results.  60 

 61 

Table 1. Citation counts, percentages of commonly referenced DGE tool citations, and year of release for edgeR [5], 62 

Cuffdiff/Cuffdiff2 [3, 4], DESeq2 [6], limma [26], DEGseq [27], baySeq [28], SAMseq [29], and NOIseq [30]. All counts 63 

were tabulated using the Google Scholar citation counts for the respective tool references as of Feb. 2, 2018. 64 

DGE Tool Citation Count Percentage Publish Year 

edgeR [5] 7,032 32.4% 2010 

Cuffdiff/Cuffdiff2 [3, 4] 6,001 27.7% 2012/2013 

DESeq2 [6] 4,195 19.3% 2014 

limma [26] 2,369 10.9% 2015 

DEGseq [27] 1,229 5.7% 2009 

baySeq [28] 561 2.6% 2010 

SAMseq [29] 274 1.3% 2013 

NOIseq [30] 38 0.2% 2012 

 65 

This package can generate six different types of expression-based visualizations—boxplots, scatterplots, 66 

DEG counts, MA plots, volcano plots, and Four-way plots—as shown in Figure 1 and Examples S1-S9. 67 

Additionally, matrices of all pair-wise comparisons can be generated with scatterplots, MA plots, and volcano 68 
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plots (Examples S4, S7, and S9, respectively). All the visualizations can be classified into two tiers, with the 69 

Tier 1 functions (Figure 1A-C, Examples S2-S5) representing more basic information, whereas the Tier 2 70 

functions (Figure 1D-F, Examples S6-S10) being used to derive more advanced information with p-values, 71 

fold changes, and mean expression values (Method S1). All generated figures and extracted data can then 72 

be saved and used for further purposes, including reports and publications. 73 

 74 

Figure 1. (A) Boxplot generation of RNA-seq data using vsBoxplot; (B) scatterplot generation using vsScatterPlot; (C) 75 

differential gene expression matrix using vsDEGMatrix; (D) MA plot generation using vsMAPlot; (E) volcano plot 76 

generation using vsVolcano; (F) four-way plot generation using vsFourWay. Arrow and text color refer to visualizations 77 

generated using Cuffdiff data (black), DESeq2 data (blue), and edgeR data (red). 78 

 79 

Functions and Methods 80 

Nine functions are included in ViDGER, each of which is capable of using Cuffdiff, DESeq2, and edgeR 81 

objects. Included in the ViDGER package are three toy datasets representing the three DGE tools object 82 

types. Specifically, df.cuff is based on Cuffdiff data from the cummeRbund package [25]; df.deseq is a 83 

DESeqDataSet object based on gene expression data from the pasilla package [31]; df.edger is an example 84 

DGEList object derived from the edgeR package (Example S1). In addition to the toy data sets, we tested 85 

ViDGER on five real-world data sets, consisting of one human, one M. domestica, and three V. riparia 86 
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datasets (Example S1). It is important to note that the input data for this package should be the direct output 87 

and of one of the classes corresponding to the specific tool used (DESeqDataSet, DGEList or other edgeR 88 

objects, or Cuffdiff object) and not a basic matrix or data frame containing the results of these tools. The 89 

following examples are illustrated using the df.deseq object, with full demonstrations with the Cuffdiff, 90 

DESeq2, and edgeR objects found in the supplementary file (Examples S2-S10). 91 

 92 

Tier I Functions 93 

(i) vsBoxPlot visualizes 𝑙𝑜𝑔10 distributions for treatments in an experiment as box and whisker diagrams 94 

(Figure 2, Example S2), where only the data frame and analytical type are needed unless using a DESeq2 95 

object where the factor is also required. This figure is useful for determining the distribution of mapped read 96 

counts for each treatment in an experiment and can highlight specific samples that have distributions differing 97 

significantly from what is expected or what is displayed with the other samples. Visualizing this information 98 

can provide insight into the base quality of the read distributions to ensure semi-consistent sample-based 99 

quality levels. The DESeq2 object (df.deseq) is used in the following example, and the factor variable, d.factor, 100 

for the treatments need to be specified. 101 

vsBoxPlot(data = df.deseq, d.factor = 'condition', type = 'deseq') 102 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 21, 2018. ; https://doi.org/10.1101/268896doi: bioRxiv preprint 

https://doi.org/10.1101/268896
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

 103 
Figure 2. Visualization generated by the vsBoxPlot function from the ViDGER package using a DESeq2 dataset, 104 

requiring a dataset, factor type, and appropriate tool type. Optional parameters include inclusion/exclusion of the main 105 

title, legend, and grid. 106 

 107 

(ii) vsScatterPlot creates a scatterplot of 𝑙𝑜𝑔10  comparison of either FPKM (Reads Per Kilobase of 108 

transcript per Million mapped reads) or CPM (cost per thousand impressions) measurements for two 109 

treatments depending on analytical type (Figure 3, Example S3). This function can be used to compare 110 

measurements of mapped reads to transcripts from two treatments, which allows for a global view of the 111 

expression similarity between the two selected treatments. Scatterplots that generate most data points falling 112 

along the diagonal indicate more similar expression patterns for the two treatments, whereas data points 113 

falling further from the diagonal would indicate relatively less similar expression levels. By stating x and y 114 

treatment variables and/or the data source, we can generate a scatterplot of the pairwise x vs. y comparison. 115 

vsScatterPlot (x = 'treated_paired.end', y = 'untreated_paired.end', data = df.deseq, type ='deseq', d.factor = 116 

'condition') 117 
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 118 

Figure 3. Visualization generated by the vsScatterPlot function from the ViDGER package using a DESeq2 dataset, 119 

requiring a dataset, factor type, two factor levels, and appropriate tool type. Optional parameters include 120 

inclusion/exclusion of the main title and grid. 121 

 122 

(iii) vsScatterMatrix generates a matrix of scatterplots for all possible treatment combinations with additional 123 

distribution information (Figure 4, Example S4). In addition to the scatterplots which are generated as with 124 

the vsScatterPlot function, the matrix option provides FPKM/CPM distributions for each sample and 125 

correlation values for each pairwise comparison. This approach allows for a view of each relative expression 126 

pattern and correlation all in one visualization. 127 

vsScatterMatrix(data = df.deseq, d.factor = 'condition', type = 'deseq') 128 
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 129 

Figure 4. Visualization generated by the vsScatterMatrix function from the ViDGER package using a DESeq2 dataset, 130 

requiring a dataset, factor type, and appropriate tool type. Optional parameters include inclusion/exclusion of the main 131 

title, legend, and grid, manual specification of the main title, and manual specification of comparisons of interest. In 132 

addition to the pairwise scatterplots, density plots are provided along the diagonal and pairwise correlation values are 133 

provided in the opposite half of the matrix. 134 

 135 

(iv) vsDEGMatrix visualizes the number of DEGs at a specified adjusted p-value for each treatment 136 

comparison (Figure 5, Example S5). It can be utilized to quantify the number of significantly DEGs 137 

for each comparison and provides a heatmap-based color scheme with a gradient to represent the 138 

relative magnitude of DEGs for each comparison. Like the other matrix functions, data specification 139 

and analytical type are required. The user can also specify an adjusted p-value which defaults to 140 

0.05. 141 

vsDEGMatrix(data = df.deseq, d.factor = 'condition', type='deseq') 142 
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 143 

Figure 5. Visualization generated by the vsDEGMatrix function from the ViDGER package using a DESeq2 dataset, 144 

requiring a dataset, factor type, and appropriate tool type. Optional parameters include inclusion/exclusion of the main 145 

title, legend, and grid and specification of adjusted p-value cutoff (default is 0.05). 146 

 147 

Tier II Functions 148 

(v) vsMAPlot creates an MA plot, which is a scatter plot with M (log ratio) and A (mean average) 149 

scales, of lfc versus normalized mean counts (Figure 6, Example S6). In addition to the basic plotting 150 

of the data points relative to the mean expression values and lfc, the vsMAPlot function also 151 

integrates visualization features that allow for a better understanding of the data. Data points in the 152 

MA plot are colored based on thresholds for the adjusted p-value and lfc of the gene in the indicated 153 

comparison to provide valuable global interpretability. Additionally, it is inevitable with most datasets 154 

that some points will be extreme relative to the majority of the data, which caused problems when 155 

generating visualizations. To address this issue, vsMAPlot scales the window based on the bulk of 156 

the data and represents outliers with distinct data points, indicating the magnitude of the outlier 157 

based on the size of the point. This process allows for the visualization to present the majority of the 158 
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information in a viewable, usable format that is robust to outliers. Visualizing the data through this 159 

approach allows for the comparison of two treatment groups relative to the mean expression value 160 

and lfc. The x and y parameters specify how the fold changes are generated (e.g., 𝐹𝐶 =161 

𝑙𝑜𝑔2(sample y/sample x)).  162 

vsMAPlot(x='treated_paired.end', y='untreated_paired.end', data=df.deseq, d.factor='condition', 163 

type='deseq') 164 

 165 
Figure 6. Visualization generated by the vsMAPlot function from the ViDGER package using a DESeq2 dataset, 166 

requiring a dataset, factor type, two factor levels, and appropriate tool type. Optional parameters include 167 

inclusion/exclusion of the main title, legend, and grid, manual specification of the y-axis limits, lfc threshold (default is 168 

1), and adjusted p-value cutoff (default is 0.05), and specification of returning data in tabular form. 169 

 170 

(vi) vsMAMatrix generates a matrix of MA plots for all possible pairwise treatment comparisons 171 

(Figure 7, Example S7). This process, as with the other matrix options, allows users to visualize all 172 

their treatment-based comparisons in one figure. This matrix option also includes counts for each 173 

figure based on lfc and adjusted p-value thresholds, which can be specified by the user or revert to 174 
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the default 1 and 0.05, respectively.   175 

vsMAMatrix(data = df.deseq, d.factor = 'condition’, type ='deseq') 176 

 177 

Figure 7. Visualization generated by the vsMAMatrix function from the ViDGER package using a DESeq2 dataset, 178 

requiring a dataset, factor type, and appropriate tool type. Optional parameters include inclusion/exclusion of the main 179 

title, legend, grid, and partitioned counts and manual specification of the x-axis limits, lfc threshold (default is 1), and 180 

adjusted p-value cutoff (default is 0.05). 181 

 182 

(vii) vsVolcano creates a volcano plot for two treatments comparison by plotting the −𝑙𝑜𝑔10(p-183 

value) against the lfc (Figure 8, Example S8). As with the vsMAPlot function, the vsVolcano function 184 

utilizes coloring schemes to indicate the significance of magnitude of differential expression for the 185 
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individual data points. Additionally, this function integrates the same data point and sizing structure 186 

to focus the plot window on the majority of the data, indicating outliers in this format.    187 

vsVolcano(x = 'treated_paired.end', y = 'untreated_paired.end', data = df.deseq, d.factor = 'condition', type = 188 

'deseq') 189 

 190 

Figure 8. Visualization generated by the vsVolcano function from the ViDGER package using a DESeq2 dataset, 191 

requiring a dataset, factor type, two factor levels, and appropriate tool type. Optional parameters include 192 

inclusion/exclusion of the main title, legend, and grid, manual specification of the x-axis limits, lfc threshold (default is 193 

1), and adjusted p-value cutoff (default is 0.05), and specification of returning data in tabular form. 194 

 195 

(viii) vsVolcanoMatrix generates a matrix of volcano plots for all possible pairwise treatment 196 

comparison (Figure 9, Example S9). This process, as with the other matrix options, allows users to 197 

visualize all their treatment-based comparisons in one figure. Additionally, to provide a more 198 

comprehensive view with a single figure, we included a count for each separate Volcano plot based 199 

on the number of data points in each section as specified by the lfc and adjusted p-value thresholds. 200 
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Although this option may have experience limited use, it would be useful in situations where users 201 

wish to show mass similarity across all comparisons, highlight the individual or limited deviations, or 202 

display situations where the comparisons vary widely. 203 

vsVolcanoMatrix(data = df.deseq, d.factor = 'condition', type ='deseq') 204 

 205 

Figure 9. Visualization generated by the vsVolcanoMatrix function from the ViDGER package using a DESeq2 dataset, 206 

requiring a dataset, factor type, and appropriate tool type. Optional parameters include inclusion/exclusion of the main 207 

title, legend, grid, and partitioned counts and manual specification of the y-axis limits, lfc threshold (default is 1), and 208 

adjusted p-value cutoff (default is 0.05). 209 

 210 

(ix) vsFourWay creates a scatter plot comparing the lfc between two samples and one control 211 

(Figure 10, Example S10). This approach is most useful when there are multiple comparisons being 212 

made against a specific control or relative sample. Using this function, a plot can be generated for 213 
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visualizing the expression scatterplots, relative to another expression scatterplot.  As with the other 214 

two main Tier 2 functions, vsFourWay integrates data point features to highlight significant adjusted 215 

p-values, over-threshold lfc, and outliers. In this function, x and y arguments are needed, and a 216 

control level is also required. Although it is possible to generate a matrix option for the FourWay plot, 217 

the authors decided against this because of two main issues.  First, the vsFourWay function 218 

generates a significant amount of information in a single figure, with nine distinct sections 219 

representing nine distinct combinations of relative lfc. Creating a matrix visualization with this figure 220 

would then force each FourWay plot to be too small to collect meaningful interpretations from, thus 221 

counteracting the purpose of the package.  Secondly, the vsFourWay function already requires 222 

three factor levels for comparison—one reference level and two comparison levels. A matrix option 223 

for this functionality would then require a minimum of four factor levels, with at least five factor levels 224 

being preferred to generate a fully-informative matrix option. This requirement would potentially put 225 

most applications out of the scope of the matrix option for the vsFourWay function.   226 

vsFourWay(x = 'treated_paired.end', y = 'untreated_single.end', control = 'untreated_paired.end', data = 227 

df.deseq, d.factor = 'condition', type = 'deseq') 228 
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 229 

Figure 10. Visualization generated by the vsFourWay function from the ViDGER package using a DESeq2 dataset, 230 

requiring a dataset, factor type, two factor levels, reference factor level, and appropriate tool type. Optional parameters 231 

include inclusion/exclusion of the main title, legend, and grid, manual specification of the x- and y-axis limits, lfc threshold 232 

(default is 1), and adjusted p-value cutoff (default is 0.05), and specification or returning data in tabular form. 233 

 234 

Data Extraction 235 

It is noteworthy that functions (v), (vii), and (ix) can return interpreting results shown in the 236 

visualizations for further analysis and interpretation (Table 2). The data extracted contains all 237 

relevant information used to generate the specified figure, including mean expression for the x, y, 238 

and control (in the vsFourWay function) factor levels, x- and y-axis values for the relevant figure, an 239 

‘isDE’ column indicating whether the gene ID is differentially expressed based on the adjusted p-240 

value threshold, ‘color’ indicating the color of the data point in the figure—which corresponds to the 241 

lfc and adjusted p-value thresholds—and ‘size’ indicating whether the data point is on the plot or an 242 

outlier and magnitude of that outlier. The data extraction is accomplished by setting the data.return 243 

parameter to TRUE. 244 
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tmp <- vsVolcano(x = 'treated_paired.end', y = 'untreated_paired.end', data = df.deseq, d.factor = 245 

'condition', type = 'deseq', data.return = TRUE) 246 

df.tmp <- tmp$data; head(df.tmp) 247 

write.csv(df.tmp, file = 'df.tmp.csv ') 248 

 249 

Table 2. Data extraction from the vsVolcano function from the ViDGER package using a DESeq2 dataset.  250 

This is the same parameterization as used in Figure 8, except data.return = TRUE. This modification will 251 

allow the user to extract relevant data from the figure. In this case, the extracted data frame includes mean 252 

expression values for the x and y factor levels, log2 fold change (logFC), p-value (pval), adjusted p-value 253 

(padj), ‘isDE’ which represents whether the differential expression is significant, ‘color’ which signifies the 254 

color of the data point corresponding to the adjusted p-value and lfc thresholds, and ‘size’ which indicates 255 

whether the data point is within the plot frame or an outlier of a particular magnitude. 256 

 257 

 

x y logFC pval padj isDE color size 

FBgn0000008 7.922277 8.322253 0.071059 0.828806 0.974685 FALSE grey sub 

FBgn0000017 318.9575 383.2851 0.265054 0.090161 0.467683 FALSE grey sub 

FBgn0000018 30.25862 31.26999 0.047433 0.801233 0.971289 FALSE grey sub 

FBgn0000032 72.34193 72.90323 0.011151 0.949842 0.993072 FALSE grey sub 

FBgn0000037 1.539581 0.812298 -0.92246 0.231142 0.700057 FALSE grey sub 

FBgn0000042 7928.525 5600.305 -0.50155 0.000611 0.013572 TRUE green sub 

FBgn0000043 3273.939 1943.285 -0.75253 7.96E-08 5.68E-06 TRUE green sub 

FBgn0000044 2.222025 1.599588 -0.47417 0.456526 0.872166 FALSE grey sub 

FBgn0000046 2.235611 1.530254 -0.5469 0.439278 0.865892 FALSE grey sub 

FBgn0000052 187.1546 201.4374 0.106101 0.498756 0.889058 FALSE grey sub 

FBgn0000053 200.4191 161.0824 -0.31522 0.03254 0.260826 FALSE grey sub 

FBgn0000054 50.24601 52.8436 0.07272 0.675076 0.949335 FALSE grey sub 

FBgn0000057 56.88491 55.52939 -0.03479 0.831612 0.974685 FALSE grey sub 

FBgn0000063 34.43974 27.58587 -0.32014 0.084865 0.453512 FALSE grey sub 

FBgn0000064 738.3808 597.9759 -0.30428 0.010905 0.125567 FALSE grey sub 

FBgn0000071 54.98497 9.358834 -2.55464 1.98E-27 1.17E-24 TRUE blue t4 

FBgn0000077 17.98973 17.58636 -0.03272 0.898181 0.985072 FALSE grey sub 

FBgn0000078 1.743642 3.473474 0.994276 0.058949 0.37159 FALSE grey sub 

FBgn0000079 9.722732 21.87556 1.169886 3.45E-06 0.000156 TRUE blue sub 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 21, 2018. ; https://doi.org/10.1101/268896doi: bioRxiv preprint 

https://doi.org/10.1101/268896
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

Implementation 258 

ViDGER is a package developed for the R environment (>= 3.3.2) and is freely available at 259 

https://github.com/btmonier/vidger. Several package dependencies are required, i.e., ggplot2 [32], ggally 260 

[33], dplyr [34], and tidyr [35]. Currently, it is compatible with three commonly used DGE analysis packages, 261 

which are Cuffdiff, edgeR, and DESeq2. Function efficiency varies depending on what type of RNA-seq 262 

package is used. Functions used for Cuffdiff and edgeR objects complete in < 1s and while DESeq2 objects 263 

can take up to 5s to complete. DESeq2 objects take longer to process due to the nature of the object, which 264 

contains more stored information than the relatively simple objects for Cuffdiff and edgeR.  One exception 265 

is the volcano plot matrix function (vii). Cuffdiff and edgeR objects took < 10s to complete while DESeq2 266 

objects took >10s (Method S2). Calculations were performed on three toy data sets from Cuffdiff, DESeq2, 267 

and edgeR outputs. Additionally, we tested the robustness of this package on multiple large-scale RNA-seq 268 

datasets from human and plant samples (Example S1). All computations were performed on a computer with 269 

a 64-bit Windows 10 operating system, 8 GB of RAM, and an Intel Core i5-6400 processor running at 2.7 270 

GHz.   271 

 272 

Conclusions 273 

DEGs are frequently used to determine genotypical differences between two or more conditions of cells, in 274 

support of specific hypothesis-driven studies. Interpretation of this information can benefit significantly from 275 

the graphical representation of results files. We have created an R package to assist in the process of 276 

generating publication quality figures of DGE results files from Cuffdiff, DESeq2, and edgeR. We believe that 277 

this package will greatly assist biologists and bioinformaticians in their interpretations of DGE results. Utilizing 278 

this package will provide a straightforward method for comprehensively viewing DEGs between samples of 279 

interest and allows researchers to generate usable figures for furthered dissemination of their DGE studies. 280 

 281 

Key Points 282 
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 The ViDGER R package provides a straightforward method for visualizing DGE results files. 283 

 This package integrates DGE results from the three most commonly used DGE tools: DESeq2, edgeR, 284 

& Cuffdiff. 285 

 Nine functions are provided, including six distinct visualizations with three matrix options. 286 

 The generated visualizations provide comprehensive views of the DGE results files in highly-287 

informative, publication-quality figures, all of which can be extracted in multiple formats.   288 

 ViDGER also provides a useful method for extracting relevant data from the generated figures, which 289 

is useful for further interpretation of the DGE results. 290 

 291 

Supplemental Materials 292 

A supplemental file is included with this manuscript that provides more detailed information on the 293 

implementation and applications of the ViDGER R/Bioconductor package. 294 
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