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During perceptual decisions subjects often rely more strongly on early rather than late 21	

sensory evidence even in tasks when both are equally informative about the correct 22	

decision. This early psychophysical weighting has been explained by an integration-to-23	

bound decision process, in which the stimulus is ignored after the accumulated evidence 24	

reaches a certain bound, or confidence level. Here, we derive predictions about how the 25	

average temporal weighting of the evidence depends on a subject’s decision-confidence 26	

in this model. To test these predictions empirically, we devised a method to infer 27	

decision-confidence from pupil size in monkeys performing a disparity discrimination 28	

task. Our animals’ data confirmed the integration-to-bound predictions, with different 29	

internal decision-bounds accounting for differences between animals. However, the data 30	

could not be explained by two alternative accounts for early psychophysical weighting: 31	

attractor dynamics either within the decision area or due to feedback to sensory areas, or 32	

a feedforward account due to neuronal response adaptation. This approach also opens 33	

the door to using confidence more broadly when studying the neural basis of decision-34	

making. 35	

 36	

  37	
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 2 

Introduction  38	

During perceptual discrimination tasks subjects often rely more strongly on early rather than late 39	

sensory evidence even when both are equally informative about the correct decision e.g. 1–4. 40	

(But note that some studies in rodents and humans reported uniform weighting of the stimulus 41	

throughout the trial 5–7). From the perspective of maximizing the sensory information and hence 42	

performance such early weighting is non-optimal. Understanding this behavior may shed light 43	

on how the activity, or the read-out of sensory neurons limits our perceptual abilities, a major 44	

goal of contemporary neuroscience (e.g. 8–10). The classical explanation for such early 45	

psychophysical weighting is that it reflects an integration-to-bound decision-process in which 46	

sensory evidence is ignored once an internal decision-bound is reached 1. For simple 47	

perceptual discrimination tasks, decision confidence can be defined statistically 11, and hence 48	

also measured for such a model. Here, we derived new predictions of this model for how the 49	

temporal weighting of sensory evidence should vary as a function of decision confidence on 50	

individual trials. These revealed characteristic differences in the temporal weighting for high and 51	

low confidence trials, depending on the decision bound. We then sought to test these 52	

predictions in macaques performing a fixed duration visual discrimination task while also 53	

measuring the animal’s subjective decision confidence.  54	

 55	

Measuring decision confidence psychophysically is relatively difficult, particularly in animals, and 56	

increases the complexity of a task, as e.g. for post-decision wagering 12,13, hence requiring 57	

additional training. To avoid these difficulties we devised a metric based on the monkeys’ pupil 58	

size. Combining this metric for decision confidence with psychophysical reverse correlation 3,14,15 59	

allowed us to quantify the animals’ psychophysical weighting strategy for different levels of 60	

inferred decision-confidence, and test our model predictions. The animals showed clear early 61	

psychophysical weighting on average. But separating this analysis by inferred decision 62	

confidence revealed that early psychophysical weighting was largely restricted to high 63	

confidence trials. In fact, on low inferred confidence trials the animals weighted the stimulus 64	

relatively uniformly or even slightly more towards the end of the trial. Such behavior matched 65	

the predictions of the integration-to-bound model. Furthermore, the differences between both 66	

animals could be accounted for by the model by differences in the only free parameter – their 67	

internal decision-bound. 68	

 69	

In contrast, the animals’ behavior could not be fully explained by two alternative accounts of 70	

early psychophysical weighting. The first alternative account are models in which the decision-71	
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stage provides self-reinforcing feedback to the sensory neurons 16, as suggested, e.g. for 72	

probabilistic inference 17, or by attractor dynamics within the decision-making area 28. The 73	

second, recent alternative proposal is that the early weighting simply reflects the feed-forward 74	

effect of the dynamics (gain control or adaptation) of the activity of the sensory neurons 4. 75	

Although each of these alternatives predicts the early weighting, we were unable to fully capture 76	

the animals’ data with the temporal weighting predictions of these models when separating trials 77	

by decision-confidence.  78	

 79	

Together, our data suggest that the animals rely on a bounded decision-formation process. In 80	

this model, evidence at the end of the trial is only ignored once a certain level of decision-81	

confidence is reached, thereby reducing the impact on performance. Moreover, this combination 82	

of techniques provides a novel tool for a more fine-grained dissection of an animal’s 83	

psychophysical behavior. 84	

 85	

Results 86	

Integration-to-bound models predict characteristic differences in temporal sensory weighting 87	

when separating trials by decision-confidence  88	

Subjects during psychophysical discrimination task often give more weight to the early than late 89	

part of the stimulus presentation even in tasks when both are equally informative about the 90	

correct answer 1,3,4. We refer to this behavior as early psychophysical weighting, and the 91	

standard computational account is that it reflects an integration-to-bound decision process 1. In 92	

brief, this explanation suggests that subjects accumulate sensory evidence only up to a 93	

predefined bound not only in reaction time tasks but also in tasks when the stimulus duration is 94	

fixed by the experimenter, and when a complete accumulation of evidence over the course of 95	

the entire trial would be optimal. As a result, sensory evidence after the internal bound is 96	

reached is ignored and, together with a variable time at which this bound is reached, on average, 97	

early evidence is weighted more strongly than evidence presented late in the trial. If this 98	

explanation for the observed early weighting is correct, then across trials in which the decision-99	

variable never reaches the bound, all evidence would be weighted equally, regardless when it 100	

was presented during the trial.  101	

 102	

Interestingly, for simple perceptual discriminations tasks, decision confidence can be defined 103	

statistically 11, and directly linked to the decision-variable. In an integration-to-bound model it 104	

simply reflects the distance of the decision-variable to the category boundary. Here, we 105	
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exploited this link and systematically explored how the temporal weighting of the sensory 106	

stimulus should depend on decision-confidence according to the integration-to-bound model. To 107	

do so we categorized trials into high or low confidence trials (median split) and measured the 108	

temporal weighting of the sensory evidence as the amplitude of the psychophysical kernel 109	

(PKA) over time (see Methods) for each category. We compared these for high confidence trials, 110	

low confidence trials and across all trials while systematically varying the decision bound of the 111	

model (Fig. 1). As expected we found that the average PKA decreases more steeply if the 112	

decision bound is lower (see black lines in Fig. 1a through 1e), indicating that the decision-113	

bound was reached earlier on average, and therefore the sensory evidence ignored from an 114	

earlier point in the trial. It is also intuitive that the PKA was typically larger for high compared to 115	

low confidence trials reflecting the stronger sensory evidence, and hence confidence, on those 116	

trials. Note that if the decision-bound is low, the decision-bound is reached on a large proportion 117	

of trials, and the assigned decision-confidence identical. These trials are therefore randomly 118	

assigned to the high and low confidence category, resulting in the similarity of the PKAs (Fig. 119	

1a). However, an interesting, non-trivial characteristic emerges for intermediate values of the 120	

decision bound (Fig. 1b-c). Relatively strong evidence early during the trial led to high-121	

confidence and early reaching of the decision boundary, resulting in the pronounced decrease 122	

of the PKA for high confidence trials. But for low confidence trials, the PKA not only showed no 123	

decrease but an increase over time (Fig. 1b-d). As a result the PKAs for high and low 124	

confidence trials crossed and the PKA for low confidence trials exceeded that for high 125	

confidence trials at the end of the stimulus presentation. Over a range of values of the decision-126	

bound the difference between the PKA for high and low confidence trials was therefore negative 127	

(Fig. 1f). This characteristic behavior was even more pronounced when we defined decision-128	

confidence not only based on evidence but also decision time, as previously suggested 12,18 (cf. 129	

Fig. 1g-l). (Since our analysis depended only on the rank-order of the decision confidence these 130	

results hold generally, regardless of the relative weighting of time and evidence for decision 131	

confidence, see Methods.) Note that after sorting zero-signal trials by decision-variable, the PKA 132	

cannot easily be interpreted as a weight on the stimulus. For instance, the temporal weights on 133	

any one trial are always a non-zero constant starting at the beginning of the trial, and zero after 134	

some point. As a result, the averaged weights across all trials must be decreasing. The fact that 135	

the PKA may be increasing is the result of sorting the trials by confidence which separates the 136	

stimulus distributions between the high and the low signal trials. Equally, the more pronounced 137	

early difference in PKAs for low decision bounds (cf. Fig. 1a and 1g) reflects the fact that when 138	

decision-confidence is based on both time and evidence, trials with stronger early sensory 139	
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evidence, and hence early decision-times, are assigned to the high confidence category. 140	

Nonetheless, these simulations reveal characteristic predictions about how a particular statistic 141	

– the psychophysical kernel as measured by taking the difference between the choice-triggered 142	

averages – should vary as a function of confidence for a bounded decision-formation process. 143	

We therefore next aimed to test these predictions in monkeys performing a visual discrimination 144	

task for which early psychophysical weighting was previously reported 3. 145	

 146	

 147	
 148	

The animals exhibit early psychophysical weighting behavior in this task 149	

Two macaque monkeys performed a coarse disparity discrimination task (Fig. 2a), similar to that 150	

described previously 3. The animals initiated each trial by fixating on a small fixation marker, and 151	

after a delay of 500ms a dynamic random dot stimulus was presented for a fixed duration of 152	

1500ms. The stimulus was a circular random dot pattern defining a central disk and a 153	

Figure 1. Integration-to-bound models predict 
characteristic differences in temporal sensory 
weighting for high and low confidence trials. a-
e) The amplitude of the psychophysical kernel 
(PKA) is plotted over time for integration-to-bound 
models with different decision bounds. PKAs for 
low confidence, high confidence and averaged 
across all trials are shown in green, yellow and 
black, respectively, and normalized by the peak of 
the average psychophysical kernel. Note that for 
intermediate levels of the decision-bound the PKAs 
cross such that the PKA for low confidence trials 
exceeds that for high confidence trials at the end of 
the stimulus presentation. The value of the decision 
bound is marked in each panel. f) PKAt_last is plotted 
for high (yellow) and low (green) confidence trials. 
The difference, ΔPKAt_last, depends 
characteristically on the level of the decision-bound 
in the model and the stimulus strength. Note that 
the decision-bound is normalized by the standard 
deviation of the sensory variability. The relationship 
between ΔPKAt_last and the value of the decision 
bound therefore holds generally across tasks with 
different stimulus variability. g-l) Same as a-f) but 
for in an integration-to-bound model in which 
decision-confidence is based on both decision-time 
and evidence. Note that since our analysis only 
relied on the rank-order of the decision-confidence 
the results are independent of the relative weight of 
these influences on decision-confidence. 
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surrounding annulus. The animals’ task was to determine whether the disparity-varying center 154	

was either protruding (“near”) or receding (“far”) relative to the surrounding annulus. Following 155	

the stimulus presentations two choice targets appeared above and below the fixation point, one 156	

symbolizing a “near” choice, the other a “far” choice. Importantly, the positions of the choice 157	

targets were randomized between trials such that the animals’ choices were independent of 158	

their saccade direction. While the animals performed this task we measured their eye positions 159	

and pupil size.  160	

  161	

Similar to previous findings, e.g. 1,3,4 the animals relied more strongly on the stimulus early than 162	

late during the stimulus presentation. We quantified this as a decrease in the PKA (see 163	

Methods) throughout the stimulus presentation (Fig. 2b). In order to test the model predictions 164	

separated by decision-confidence in the animals’ data we therefore sought to devise an 165	

approach to infer the animals’ decision confidence from pupil size measurements in this task. 166	

 167	

 168	
Figure 2. Task and early psychophysical weighting behavior. a) Two choice disparity discrimination 169	
task. After the animals maintained fixation for 0.5 sec the stimulus was shown for 1.5 sec. The animals 170	
had to decide whether the stimulus was ‘far’ or  ‘near’ by making a saccade to one of two targets after the 171	
stimulus offset and received a liquid reward for correct choices. b) The time-course of the psychophysical 172	
kernel amplitude (normalized) shows that the animals weight the stimulus more strongly early during the 173	
trial. Data were obtained from 0% signal small available reward trials and collapsed across animals (A: 174	
36,222 trials in 213 sessions, B: 13,334 trials in 84 sessions). Error bars are SEM derived by resampling.  175	

 176	

Pupil size is systematically associated with experimental covariates, consistent with pupil-linked 177	

changes in arousal 178	

Pupil size has been linked to a subjects’ arousal in both humans 19 and monkeys 20–23. Our 179	

animals performed a substantial number of trials in each session (mean; animal A: 828, animal 180	

B: 1067). We therefore wondered whether a signature of their decreasing motivation with 181	

increased satiation during the behavioral session could be found in the animals’ pupil sizes. To 182	

this end we split the trials of each session into five equally sized bins (quintiles) and computed 183	

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2018. ; https://doi.org/10.1101/269159doi: bioRxiv preprint 

https://doi.org/10.1101/269159
http://creativecommons.org/licenses/by/4.0/


 7 

the average pupil size aligned on stimulus onset (Fig. 3a). For these averages only 0% signal 184	

trials on which the available reward size was small (see Methods) were used. Moreover, to 185	

allow for the detection of slow trends throughout the session the pupil size data were not high-186	

pass filtered for this analysis. We found that in both animals pupil size systematically decreased 187	

throughout the session, as expected for a decrease in arousal with decreased motivation or task 188	

engagement with progressive satiation.  189	

 190	

We next explored the effect of varying the available reward size in a predictable way (see 191	

Methods). Consistent with previous results 24 the animals’ psychophysical performance on large 192	

available reward trials exceeded that on small available reward trials (Fig. 3d). When averaging 193	

the time-course of the pupil size for 0% signal trials separated by available reward size, we 194	

found that pupil size for large available reward trials increased progressively compared to that 195	

on small available reward trials (Fig. 3b). The animals were rewarded after correct choices 196	

following the stimulus presentation. The time-course of this pupil-size modulation with available 197	

reward size is therefore consistent with modulation related to the animals’ expectation of the 198	

reward towards the end of the trial. Indeed, the difference in mean pupil with available reward 199	

size over the last 250ms of the stimulus presentation was highly statistically reliable (Fig. 3e), 200	

similar to previous findings 25.  201	

 202	

Note that previous studies that revealed arousal linked pupil size modulation typically used long 203	

inter-trial-intervals lasting several seconds 20–23, which were deemed necessary to stabilize pupil 204	

size prior to stimulus or trial onset. Conversely, our task allowed for short inter-trial-intervals 205	

(animal A: 65-4772ms, median: 136ms; animal B: 115-3933,median: 146ms) to yield a large 206	

number of trials per session. Nonetheless, the above analyses revealed robust signatures of 207	

pupil size modulation with experimental manipulations of arousal also for this task. 208	

 209	

Previous work in humans found that pupil size increased with task difficulty, which is thought to 210	

reflect changes in arousal related to “cognitive load” or “mental effort” 26–28. To explore whether 211	

such a signature was evident for our task, we divided our data into easy (≥50% signal) and hard 212	

trials (≤10% signal, excluding 0% signal trials) (Fig. 3c). To remove effects of available reward 213	

size this analysis was restricted to small available reward trials. Consistent with the expected 214	

modulation for cognitive load, pupil size in hard trials weakly exceeded that for easy trials in the 215	

initial period of the stimulus presentation (before ~750ms after stimulus onset). However, the 216	
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 8 

more pronounced modulation with task difficulty occurred in the opposite direction towards the 217	

end of the trial. 218	

 219	

 220	
 221	

 222	

Figure 3. Pupil size modulation with 
task covariates is consistent with 
pupil-linked arousal. a-c Average z-
scores (across conditions) ± SEM of 
pupil size aligned on stimulus onset are 
shown for monkey A (left) and B (right). 
Horizontal lines at the bottom of each 
panel depict epochs of significant 
(p<0.05, corrected for multiple 
comparisons) pupil size modulation (by 
ANOVA in a), two sample t-tests in b-c). 
a) Mean pupil size for five equally sized 
bins throughout each experimental 
session. Only small available reward 0% 
signal trials are used. Pupil size 
decreases throughout the session as 
expected for decreasing motivation. (A: 
6,987 trials from 213 sessions, B: 2,571 
trials from 84 sessions). b) Average time 
courses of pupil size on 0% signal trials 
for large (red) and small (blue) available 
reward trials. (A: 18,855 small available 
reward trials and 18,678 large available 
reward trials from 213 sessions, B: 6,843 
small available reward trials and 6,832 
large available reward trials from 84 
sessions) c) Average time courses of 
pupil size on hard (<10%, excluding 0% 
signal, green) and easy (≥50% signal, 
yellow) trials. Only trials with the small 
available reward were used. (A: 39,390 
hard trials and 8,651 easy trials from 213 
sessions, B: 10,813 hard trials and 
14,020 easy trials from 84 sessions). d) 
Psychophysical thresholds on high 
available reward trials were significantly 
smaller than in small available reward 
trials (A: n = 213, p < 10-22, B: n = 84, p < 
0.01). e) Average pupil size during the 
250ms prior to the stimulus offset were 
significantly larger in large compared to 
small available reward trials  in trials (A: 
n = 213, p < 10-31, B: n = 84, p < 10-19, all 
paired t-tests).  
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Remarkably, plotting this modulation across training sessions revealed that this late modulation 223	

only emerged once the animals knew the task well (Fig. 4a) and was correlated with task 224	

performance (Fig. 4b). This late modulation appears to reflect the animals’ expectation to 225	

receive a reward based on their knowledge of the probability of being correct given the stimulus 226	

difficulty. It might thus be interpretable as a modulation based on the animal’s confidence to 227	

make the correct decision. We will show next that this modulation indeed exhibits established 228	

key signatures 11,29 of decision confidence, supporting this interpretation. 229	

 230	

 231	
Figure 4. The signature of decision-confidence requires good task performance.  a) Discriminability 232	
between hard (<10%, excluding the 0% signal) and easy (≥50% signal) trials, quantified as aROC for 233	
each session (ordinate; 213 sessions from animal A, 84 sessions from animal B), plotted as a function of 234	
time (abscissa) in the trial after stimulus onset. Note that the systematically larger pupil size for easy trials 235	
(bright colors) late in the trial emerge only after extensive training, particularly in monkey B. b) The 236	
average aROC during the 250ms prior to the stimulus offset is significantly correlated with the 237	
psychophysical threshold (A: n = 213, r = -0.48, p < 10-13, B: n = 84, r = -0.45, p < 10-5; Pearson’s 238	
correlation coefficient).  239	

 240	

 241	

 242	

 243	

 244	
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Pupil size in this task can be used to infer the animal’s decision confidence 245	

For a two-alternative sensory discrimination task analogous to the one used here decision 246	

confidence is monotonically related to the distance to a category boundary 11,30, i.e. the 247	

integrated sensory evidence, as schematically shown in Fig. 5a. From a statistical perspective 248	

decision confidence in such discrimination tasks should be systematically associated with 249	

evidence discriminability, accuracy and choice outcome (model predictions in Fig. 5b top row). 250	

Empirically, we found that mean pupil size during the 250ms before stimulus offset showed the 251	

three characteristics of statistical decision confidence keeping reward size constant (we 252	

restricted these analyses to small available reward trials to eliminate the effect of available 253	

reward size). The findings were qualitatively the same when only analyzing large available 254	

reward trials (supplementary Fig. 1). First, in both animals, pupil size increased monotonically 255	

with performance accuracy (Fig. 5b, first column). Second, when separating trials based on 256	

pupil size (median split), the animals showed better discrimination performance for trials on 257	

which pupil size was larger, as expected for improved evidence discrimination with higher 258	

decision confidence 11 (Fig. 5b, middle column). Third, as predicted, when separating correct 259	

and error trials, decision confidence increased on correct and decreased on error trials. 260	

Interestingly, we also observe a slight increase in pupil size with signal strength for higher signal 261	

strengths in animal B. Such a pattern is expected if decision confidence is informed not only by 262	

the strength of the sensory evidence, as described above, but also by decision time as 263	

observed in human observers 18. 264	

 265	

Since we used a white fixation marker our results pupil size measurements might in principle 266	

have been affected by the animals’ fixation precision. To control for this potential confound we 267	

therefore performed a number of control sessions in which instead of a white fixation dot we 268	

used a black fixation marker. If our results were mostly driven by differences in luminance 269	

resulting from differences in fixation precision across conditions the modulation with our 270	

experimental co-variates should reverse. However, our results were robust when instead of a 271	

white fixation marker we used a black fixation marker (see supplementary Fig. 2). Together, 272	

these analyses support our conclusion that mean pupil size at the end of the stimulus 273	

presentation can be used to infer the animals’ decision confidence.   274	

 275	
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 276	
Figure 5. Pupil size shows signatures of decision confidence. a) Schematic of a drift-diffusion model 277	
in which the decision confidence depends on the distance of the decision variable to the category 278	
boundary. b) Signatures of statistical decision confidence (top row) are compared to our metric based on 279	
pupil size (average pupil size during the 250ms prior to stimulus offset) (middle and bottom rows). Left 280	
column: Statistical decision confidence predicts accuracy. Similarly, mean pupil size increases 281	
monotonically with accuracy. Middle column: For high decision confidence statistical decision confidence 282	
predicts steeper psychometric functions than for low decision confidence. The monkeys’ psychometric 283	
functions separated by mean pupil size are slightly steeper for large compared to small mean pupil size, 284	
as predicted for decision confidence. Right column: Decision confidence is predicted to increase with 285	
signal strength in correct trials and decrease with signal strength in error trials. Mean pupil size increases 286	
for correct and slightly decreases on error trials (monkey A), and for low signal strengths in monkey B. 287	
Data points are slightly offset for better visualization. For animal A all the sessions were included (213 288	
sessions). For animal B analyses are restricted to the last 40 sessions with good performance (cf. Fig. 4). 289	
Data are shown as mean ± SEM. 290	

 291	

The animals’ data separated by inferred decision confidence supports the predictions of the 292	

integration-to-bound model  293	

Having established the relationship between pupil-size and decision confidence in our task, we 294	

now use it to test the confidence-related predictions of the integration-to-bound model using our 295	

data. To do so, we computed the animals’ psychophysical kernels separately after categorizing 296	

high or low inferred decision confidence trials (median split based on the pupil-size metric). For 297	

inferred high-confidence trials, we observed a decrease in psychophysical kernel amplitude 298	
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(PKA) for both monkeys. In contrast, for inferred low confidence trials the PKA either stayed 299	

relatively constant throughout the trial (monkey B, Fig. 6c), or first increased and then 300	

decreased (monkey A, Fig. 6b). Furthermore, the PKA at the end of low-confidence trials was 301	

approximately equal (monkey B) or higher (monkey A) than the PKA for high-confidence trials. 302	

Importantly, the data for both monkeys best agree with the predictions of an integration-to-303	

bound model when subjective confidence is based on both evidence and time 18 with the 304	

difference between the two animals naturally explainable by differing internal integration bounds 305	

(cf Fig. 1i and 1j). 306	

 307	

We next wondered whether the data was also explainable by two alternative accounts of the 308	

early psychophysical weighting: first, models with attractor dynamics resulting from recurrent 309	

feedback, or second a purely feed-forward account that includes adaptation.  310	

 311	

 312	
Figure 6. The animals’ psychophysical weighting on low and high confidence trials is compared to 313	
model predictions. Psychophysical kernel amplitudes for high (yellow) and low (green) confidence trials 314	
(median split) are plotted as a function of time. a) Psychophysical kernel separated by confidence inferred 315	
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from pupil size. Data from 0% signal trials were collapsed across animals a) and shown separately for 316	
each animal (b, c) (A: 213 sessions, B: 40 sessions. To avoid confounding the pupil size modulation for 317	
available reward size with that for inferred decision-confidence, the median split based on pupil size to 318	
assign trials to the high or low confidence bin was performed separately for small and high available 319	
reward trials.) Note the similarity of this result to the prediction by an integration-to-bound model (Fig. 6d, 320	
e). d) Integration-to-bound model in which trials were separated based on decision confidence defined as 321	
|decision variable|. e) Integration-to-bound model in with decision confidence depended on both |decision 322	
variable| and the model’s decision time on each trials (see Methods). f) Neural sampling-based 323	
probabilistic inference model for which decision-confidence is defined by the Bayesian posterior 324	
probability. g) Early sensory weighting model after 4	 based on a linear-nonlinear model reflecting the 325	
response dynamics (gain control) of sensory neurons. h) An extension of the model used in g) to also 326	
include a post-spike filter to capture a neuron’s spiking history4.	 Error bars (SEM) were derived by 327	
resampling. 328	

 329	

To test the first alternative account, we implemented a model 17 in which the decrease of the 330	

amplitude of the psychophysical kernel results from self-reinforcing feedback from decision 331	

neurons to sensory neurons. Because of its recurrent connectivity this model exhibits attractor 332	

dynamics, in which early evidence is effectively weighted more strongly than evidence 333	

presented late in the trial. Other recurrent models of perceptual-decision making, whether 334	

across cortical hierarchies 16, or proposing attractor dynamics within the decision area itself 31,32 335	

share this attractor behavior. In these models the behavior of decision variable after stimulus 336	

onset can be described by a double-well energy landscape, where the minimum of each well 337	

corresponds to a choice attractor (cf. 16; inset in their Fig. 2d). As a result, the effect of early 338	

evidence on the decision variable will be amplified by the subsequent pull exerted by whatever 339	

attractor towards which the early evidence had pushed the decision variable. While this 340	

behavior resembles that of the integration-to-bound model, it differs in its predictions when 341	

separating trials according to confidence (Fig. 6f). Specifically, we were unable to identify model 342	

parameters for which the kernel amplitude in low confidence trials exceeded that for high 343	

confidence trials at the end of the stimulus presentation (supplementary Fig. 4a). In order to 344	

convince ourselves that an attractor dynamic by itself is indeed unable to account for our data, 345	

we confirmed this finding for two idealized attractor models in which attractor strength and 346	

hence slope of the PKA were determined by a single parameter (similar to the integration-to-347	

bound model) – see Supplementary Fig. 4b-c. As for the neural sampling-based probabilistic 348	

inference model, varying this parameter did not yield kernels for which the kernel amplitude in 349	

low confidence trials exceeded that for high confidence trials at the end of the stimulus 350	

presentation. Indeed, the only way to achieve a similar late-trial PKA for high and low 351	

confidence was to strengthen the attractor dynamics in one of the models to a degree that made 352	
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the late-trial PKA close to zero – in contradiction to the data (see supplementary Fig. 4b for 353	

details). 354	

 355	

Finally, we tested the behavior of two versions of an early sensory weighting model after 4 (their 356	

Fig. 4a and 6a), in which the decrease in PKA results from adaptation of the sensory responses 357	

in a purely feed-forward way. The model generates choices based on the integrated inputs of 358	

stimulus-selective sensory neurons, whose response decreases over the time of the stimulus 359	

presentation. Such decrease in response amplitude after response onset is typically observed 360	

for sensory neurons and may reflect a gain control mechanism or stimulus-dependent 361	

adaptation. As expected, we found a decreasing PKA across all trials. But like for the attractor-362	

based models investigated above, and unlike for our data, the amplitude of the high-confidence 363	

PKA was consistently larger than the low-confidence PKA (Fig. 6g). This pattern remained 364	

unchanged over a wide range of model parameters that yielded plausible sensory responses 365	

(compare supplementary Fig. 4d). We also extended this model to include a post-spike filter 4 to 366	

account for a neuron’s refractory period and autocorrelation of the spiking response (Fig. 6h). 367	

Similar to the model without the post-spike filter, the amplitude of the psychophysical kernel for 368	

high confidence trials was consistently higher than that for low confidence trials, differing from 369	

the animals’ behavioral data. 370	

 371	

Together, these results indicate that while each of these models could account for early 372	

psychophysical weighting, a decision bound was necessary to account for the monkeys’ 373	

behavioral differences with inferred decision-confidence. 374	

 375	

Discussion 376	

The frequently observed 1–4 early weighting of sensory evidence in perceptual decision-making 377	

tasks has classically been explained to reflect an integration-to-bound decision process 1,33. 378	

Here, we first derived decision confidence-specific predictions for this account. Second, in order 379	

to test these predictions, we devised a metric based on pupil size that allowed us to estimate 380	

two macaques’ subjective decision confidence on individual trials without the use of a wagering 381	

paradigm. Finally, we compared our confidence-specific data to two alternative accounts of 382	

early weighting – attractor dynamics and response adaptation – and found that neither of those 383	

models could explain our data. This combined approach provided new insights into the animals’ 384	

decision-formation process. It revealed that the frequently observed 1–4 early weighting of the 385	

sensory evidence was largely restricted to high-confidence trials, and that the shape of the 386	
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psychophysical kernel amplitude (PKA) confirmed our predictions based on the integration-to-387	

bound model. In fact, the match between data and model was best when we incorporated a 388	

recent proposal about how subjective confidence was not just based on the strength of the 389	

presented evidence, but also integration time 18. Moreover, our data could not be fully explained 390	

by other computational accounts for early psychophysical weighting such as sensory adaptation 391	
4 or models of perceptual decision-making with recurrent processing 16,17,32. We note that our 392	

findings do not preclude the contribution of these alternative models. However, our results 393	

highlight that none of these accounts is sufficient to explain the data by itself and that a 394	

decision-rule that implements an early stopping of the evidence integration process appears 395	

necessary. 396	

 397	

Our analysis of pupil size showed that even without the stabilizing effect of long inter-trial 398	

intervals pupil size was reliably correlated with experimental covariates, and could be used to 399	

infer the animal’s decision confidence. The correlation of pupil size with decision confidence is 400	

similar to that in a recent psychophysical study in humans 34 that queried decision confidence 401	

directly. As we did here, this study found a positive correlation between subjects’ pupil size 402	

before they made their judgment and their reported decision confidence. Previous work inferring 403	

an animal’s decision confidence typically relied on behavioral measurements such as post-404	

decision wagering 12,13 and the time an animal is willing to wait for a reward 35, which increases 405	

the complexity of the behavioral paradigm and hence the required training of the animals. To 406	

our knowledge the present study is the first to relate pupil size measurements in animals to 407	

decision-confidence. Such a pupil-size based metric opens up studies of decision making in 408	

animals to include decision confidence without increasing the complexity of the behavioral 409	

paradigm.  410	

 411	

In our task the animals were rewarded on each trial directly after making their choice. 412	

Consistent with modulation of pupil-linked arousal due to reward expectation 25,36, pupil size was 413	

progressively larger towards the end of the trial when the (known) available reward was large 414	

compared to when it was small (cf. Fig. 3b). Such reward-based interpretation of the pupil-size 415	

modulation associated with decision-confidence may explain our and 34 findings here, which 416	

contrasts with studies associating increases in pupil size with uncertainty e.g. 29,37–40. 417	

Specifically, a recent study 29 observed the opposite relationship between inferred decision 418	

confidence and pupil size, measured after the subject’s perceptual report: larger pupil size after 419	

the subject’s report, and before receiving feedback, was associated with higher decision 420	
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uncertainty. Access to information, e.g. whether or not a choice is correct, can be rewarding by 421	

itself 41,42. It may therefore be that in 29 the reward was such access to information, i.e. the 422	

feedback on each trial. When the confidence about the correct choice is low, the information is 423	

more valuable, hence resulting in the observed negative correlation with pupil size. Alternatively, 424	

this discrepancy may also reflect methodological differences such as the time-interval used for 425	

the analysis (before or after the choice was made, but see also 38). More generally, these 426	

findings underscore the importance to consider a subject’s motivational context when 427	

interpreting pupil size modulation. 428	

 429	

Moreover, pupil-size modulation by cognitive factors has been linked to a number of neural 430	

circuits mirroring the complexity of the signal. These include the locus coeruleus noradrenergic 431	

system 43,44, a brain-wide neuromodulatory system involved in arousal, the inferior and superior 432	

colliculi, which mediate a subject’s orienting response to salient stimuli 45,46, but there is also 433	

evidence for an association with cholinergic modulation 47,48, which is also linked to attention.   434	

 435	

The emergence of a reliable signature of decision-confidence required that the animals 436	

performed the task well (cf. Fig. 4). We propose two possible, not mutually exclusive, accounts 437	

for this. First, in line with the notion that the observed pupil-size modulation linked to decision 438	

confidence is driven in part by reward expectation, it may reflect the animal’s improved 439	

knowledge of the timing of the task and hence the anticipation of the reward. Second, it may 440	

reflect the fact that in order to engage the pupil-linked arousal circuitry a certain threshold of 441	

decision-confidence needs to be exceeded. Such an interpretation would mean that once the 442	

signature of decision-confidence emerges a higher level of decision-confidence is reached at 443	

least on some trials.  444	

 445	

Our animals’ psychophysical behavior separated by inferred decision-confidence was well 446	

described by a bounded accumulation decision process. These results imply that in a subset of 447	

trials sensory evidence was ignored after a certain level of decision-confidence had been gained. 448	

We find that in our task, across all difficulty levels, the loss in performance is small for the 449	

bounds required to explain our data (suppl. Fig. 5). Since the overall loss will differ between 450	

different experiments, it might explain some of the differences seen in the temporal profile of 451	

PKAs across studies (e.g. 1–5,7,49). Furthermore, under the assumption that evidence 452	

accumulation is costly, it may provide a normative reason for the early termination of evidence 453	

integration 50,51. 454	
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 455	

 456	

Materials & Methods 457	

Animal preparation and surgery. All experimental protocols were approved by the local 458	

authorities (Regierungspräsidium Tübingen). Two adult male rhesus monkeys (Macaca 459	

mulatta); A (7 kg; 11 years old) and animal B (8 kg; 11 years old), housed in pairs, participated 460	

in the experiments. The animals were surgically implanted with a titanium head post under 461	

general anesthesia using aseptic techniques as described previously 52.  462	

Visual discrimination task. The animals were trained to perform a two choice disparity 463	

discrimination task (Fig.2a). The animals initiated trials with the visual fixation on a small white 464	

fixation spot (size: 0.08-0.12o) located on the center of the screen. After the animals maintained 465	

fixation for 500ms, a visual stimulus was presented (median eccentricity for Animal A:  5.3o; 466	

range 3.0 – 9.0o, median eccentricity for Animal B: 3.0o, range 2.3 – 5.0o) for 1,500ms. After that 467	

two choice targets, each consisting of a symbol representing either a near or a far choice and 468	

whose positions were randomized between trials, appeared above and below the fixation spot. 469	

Once the fixation spot disappeared, the animals were allowed to make a choice via saccade to 470	

one of these targets. The animals received a liquid reward for correct choices. Randomizing 471	

target positions allowed us to disentangle saccade direction and choice. 472	

Visual stimuli. Visual stimuli (luminance linearized) were back-projected on a screen using a 473	

DLP LED Propixx projector (ViewPixx; run at 100Hz; 1920 x 1080 pixel resolution, 30 cd/m2 474	

mean luminance) and an active circular polarizer (Depth Q; 200Hz) for animal B (viewing 475	

distance 97.5cm), or two projection design projectors (F21 DLP; 60Hz; 1920 x 1080 pixel 476	

resolution, 225 cd/m2 mean luminance, and a viewing distance of 149 cm) and passive linear 477	

polarizing filters for animal A. The animals viewed the screen through passive circular (animal 478	

A) or linear (animal B), respectively, polarizing filter. Stimuli were generated with custom written 479	

software using Matlab (Mathworks, USA) and the psychophysics toolbox 53–55.  480	

The stimuli were circular dynamic random dot stereograms (RDS), which consisted of equal 481	

numbers of white and black dots, similar to those previously used 3. Each RDS had a disparity-482	

varying circular center (3° diameter) surrounded by an annulus (1° wide) shown at 0° disparity. 483	

On each video-frame, all center dots had the same disparity whose value was changed 484	

randomly on each video-frame according to the probability mass distribution set for the stimulus. 485	

For the 0% signal stimulus the disparity drawn from a uniform distribution (typically 11 values in 486	

0.05° increments from -0.25° to 0.25°). The monkeys were rewarded randomly on half of the 487	

trials on 0% signal trials. These 0% signal trials were randomly interleaved with near disparity or 488	
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far disparity signal trials. For each session, one near and one far disparity value was used to 489	

introduce disparity signal by increasing the probability of this disparity on each video frame 490	

during the stimulus presentation on this trial. The range of signal strengths was adjusted 491	

between sessions to manipulate task difficulty and encourage performance at psychophysical 492	

threshold. Typical added signal values were 3%, 6%, 12%, 25% and 50%. 493	

The choice target symbols were random dot stereograms very similar to 100% signal stimuli 494	

except that their diameter was smaller (2.2°). 495	

To allow for constant mean luminance across the screen, equal numbers of black and white 496	

dots were used for the stimulus and the target symbols. Since we used a white fixation dot 497	

systematic differences in fixation precision could- in principle- influence our findings. If this were 498	

the case a black fixation marker should give the opposite results. We therefore also conducted 499	

control experiments using a black fixation marker, which yielded very similar results, indicating 500	

that systematic differences in fixation precision are insufficient to explain our findings.  501	

Reward size. To discourage the animals from guessing the available reward size was increased 502	

based on their task performance. After 3 consecutive trials with correct choices, the available 503	

reward size was doubled compared to the original reward size. After 4 consecutive trials with 504	

correct choices, the available reward size was again doubled (quadruple compared to the 505	

original size) and remained at this size until the next error. After every error trial, the available 506	

reward size was reset to the original.  507	

Pupil data acquisition and analysis. During the experiments, the animals’ eye positions and pupil 508	

size were measured at 500Hz using an infrared video-based eye tracker (Eyelink 1000, SR 509	

Research Ltd, Canada), digitized and stored for the subsequent offline analysis. The eye tracker 510	

was mounted in a fixed position on the primate chair to minimize variability in pupil size 511	

measurements between sessions. Our pupil analysis focused on the period of animals’ fixation 512	

in which the gaze angles were constant.  513	

Only successfully completed trials (correct and error trials) were included for the analysis. 514	

During pre-processing we first down-sampled the pupil size data such that the sampling rate 515	

matched the refresh rates of our screens (60Hz for animal A, 100Hz for animal B), effectively 516	

low-pass filtering the data. We next high-pass filtered the data by subtracting on each trial the 517	

mean pupil size of the preceding 10 and following 10 trials (excluding the value of the current 518	

trial). This analysis removed linear trends on the pupil size within a session and was omitted for 519	

the analysis of pupil size changes throughout a session (Fig. 3a). Finally, pupil size 520	

measurements were z-scored using the mean and standard deviation during the stimulus 521	

presentation period across all trials. 522	
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When comparing pupil size across conditions we aimed to minimize any mean difference of 523	

pupil size between conditions at stimulus onset. To do so, we computed a baseline pupil size, 524	

which was defined as the average pupil size in the epoch 200ms prior to stimulus onset, and 525	

iteratively excluded trials in which the baseline value deviated most from the condition with the 526	

higher number of trials until the absolute mean difference of the z-score of the baseline pupil 527	

size was below 0.05. This procedure successfully made the baseline pupil size statistically 528	

indistinguishable across conditions with a small loss of trials in each session (mean ± SD of the 529	

lost trials; Animal A, 6.89± 3.90%; Animal B, 8.24 ± 3.20%).  530	

Psychometric threshold. The animals’ choice-behaviors were summarized as a psychometric 531	

function by plotting the percentage of ‘far’ choices as a function of the signed disparity signals 532	

and then fitted with a cumulative Gaussian function using maximum likelihood estimation. The 533	

standard deviation of the cumulative Gaussian fit was defined as the psychophysical threshold 534	

and corresponds to the 84% correct level. The mean of the cumulative Gaussian quantified the 535	

subject’s bias. 536	

Psychophysical kernel. Psychophysical kernels were computed to quantify how the animals 537	

used the stimulus for their choices 3,15. Only 0% signal trials were used for this analysis. First, 538	

the stimulus was converted into an n-by-m matrix (n: number of discrete disparity values used 539	

for the stimulus; m: number of trials) that contained the number of video frames on which each 540	

disparity was presented per trial. Next, the trials were divided into ‘far’ choice and ‘near’ choice 541	

trials. The time-averaged psychophysical kernel was then computed as the difference between 542	

the mean matrix for ‘near’ choice trials and that for ‘far’ choice trials. We also computed a time-543	

resolved psychophysical kernel as the psychophysical kernels for four non-overlapping 544	

consecutive time bins (each of 375ms duration) during the stimulus presentation period. Kernels 545	

were averaged across sessions, weighted by the number of trials in that session. The amplitude 546	

of the psychophysical kernels over time was calculated as the inner product between the time-547	

averaged psychophysical kernel and the psychophysical kernel for each time bin. Kernel 548	

amplitudes separated by inferred decision confidence were then normalized by the maximum of 549	

the psychophysical kernel averaged across both conditions such that the relative differences 550	

between conditions remained. The standard error of the amplitude was calculated by 551	

bootstrapping (1000 repeats).  552	

Operationalizing decision-confidence: When viewed from a statistical perspective decision 553	

confidence can be linked to several behavioral metrics such as accuracy, discriminability and 554	

choices on error or correct trials 11 (Fig. 5b). Here, we simulated an observer’s decision-555	

variables on each trial analogously to 29. The decision variable (d) was drawn from a normal 556	
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distribution whose mean depended on the signed signal strength (with negative and positive 557	

signal reflecting near and far stimuli, respectively) and the standard deviation on the observer’s 558	

internal noise (22.8 % signal, the median of the animals’ psychophysical thresholds). The sign 559	

of the d determined the choice on each trial. Assuming a category boundary c, trial-by-trial 560	

confidence (the distance between the decision variable and the category boundary) was 561	

transformed into a percent correct 35:   562	

                                                             confidence =  !
!

𝑓(|𝑑!!
!!! − 𝑐|)                                  563	

where f is the cumulative density function of the normal distribution.  564	

f x =  !
!
1 + erf !

! !
×100%                                                              565	

To simulate the relationship between accuracy and confidence, we generated the d for 108 trials, 566	

binned these based on the level of confidence (20 bins) and computed the accuracy for each 567	

bin. To examine the relationship between confidence and psychophysical performance 568	

performed a median split of the trials based on confidence and measured the psychometric 569	

function for high and low confidence trials. Finally, we calculated the mean confidence as a 570	

function of signal strength separately for correct and error trials.  571	

 572	

Perceptual decision models: To compare the animals’ psychophysical kernels to different 573	

decision-strategies we simulated different perceptual decision models and calculated 574	

psychophysical kernels for the model data. For all simulations only 0% signal trials were used, 575	

and the model “decision-confidence” was defined as |decision-variable| at the end of each trial, 576	

unless stated otherwise. Psychophysical kernel amplitudes were then computed separately for 577	

high and low confidence trials, after a median split based on this metric for decision-confidence.  578	

Integration-to-bound model: In this model the decision-variable (d) is computed as the 579	

integrated time-varying difference of the population response of two pools of sensory neurons. 580	

(For the disparity discrimination task these would consist of one pool preferring near disparities, 581	

the other preferring far disparities.) We computed the time-varying population response as the 582	

dot product between the time-varying stimulus (analogous to that used in the experiments) and 583	

an idealized version of the animals’ time-averaged psychophysical kernel. On each trial, once 584	

the decision variable reached a decision bound (at decision time, t) 1,33 the decision-variable 585	

was fixed at that value (absorbing bound) until the end of the trial. The choice of the model was 586	

based on sign(d) at the end of the trial. We used two approaches to derive decision confidence 587	

for this model. First, it was defined as |d| at the end of the trial. This approach ignores the 588	

decision time. This model had one free parameter (the height of the decision bound), which we 589	
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varied to best account for the time-courses of the psychophysical kernel amplitudes for low and 590	

high confidence trials. In this model, all trials in which the decision bound was reached are 591	

assigned the same confidence. Second, we also generated predictions for the proposal that 592	

subjective confidence is higher for those trials in which the bound is reached earlier 12,18. Since 593	

our analysis only relied on the rank-order of the trials based on confidence our results are 594	

independent of how exactly this time is converted into confidence. 595	

Neural sampling-based probabilistic inference model (Haefner et al 2016): We used the model 596	

by 17, implemented for an orientation discrimination task. In this model, the decision is based on 597	

a belief over the correct decision (posterior-probability over the correct decision), which is 598	

updated throughout each trial. The decision-confidence was computed as |posterior-probability-599	

0.5|, which effectively reflects the distance of the posterior to the category boundary. To 600	

approximate the time-course of the psychophysical kernel amplitude for high and low 601	

confidence trials we varied the strength of the feedback in the model, the contrast of the 602	

orientation-selective component of the stimulus and the trial duration. The parameters used to 603	

generate the sampling model predictions were largely the same as in the original paper (κ =2, λ 604	

=3, δ =0.08, ns =20, stimulus contrast on each individual frame=10, see 17) and only differed in 605	

the number of sensory neurons (nx =256, ng =64) to reduce computation time. The decreasing 606	

PKA in this model is the result of a feedback loop between the decision-making area and the 607	

sensory representation. 608	

Evidence-accumulation toy-model: To be able to systematically explore the predictions of 609	

attractor-based models for confidence-specific PKAs, we devised two simple abstract models. In 610	

the first the decision variable 𝑑! at time t is defined as: 611	

𝑑! = 𝑑!!! 1 + 𝛼 + 𝜇!,                                     612	

where 𝜇! is the sensory evidence at time t, and 𝛼 is an acceleration parameter of accumulation 613	

process (cf. 5): For 𝛼 =0 the model performs perfect integration. For 𝛼 <0 it is a leaky integrator, 614	

and for 𝛼 > 0 the model implements a confirmation bias or attractor. In the second model, a 615	

variant of the previous one, the acceleration parameter 𝛼 depends on a sigmoidal function of d 616	

such that instead:  617	

    𝑑! = 𝑑!!! 1 + 𝛼 tanh (𝑑!!!) + 𝜇!. 618	

For 𝛼 > 0 the behavior of the 𝑑! can then be described by an attractor with a double-well energy 619	

landscape in which the minimum of each well correspond to the choice attractors (cf. 16), a 620	

behavior also observed for the sampling model by 17.  621	
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 622	

Early sensory weighting model after Yates et al. (2017) 4: We simulated psychophysical model 623	

decisions based on sensory responses of a linear-nonlinear (LN) model. The linear stage 624	

consisted of two temporal filters (k, one for contrast, one for disparity): 625	

 𝑘 𝑡 =  𝑒!! ! 1 − 𝑒!! ! + 𝑎𝑡 + 𝑏, where 0<t<tmax, a≥0, b≤0,  𝜏>0. 626	

The time-varying disparity stimulus and the stimulus contrast were each convolved with the 627	

temporal filter, and their sum (x(t)) was exponentiated to generate spike rates: 628	

                                                                    𝜆 𝑡 = 𝑒!(!)                                                             629	

The model parameters a, b, tmax, 𝜏 as well as the relative weights of the disparity and contrast 630	

kernels were chosen such that the dynamics of the output of the LN model approximately 631	

matched that of the average peri-stimulus-time histograms (PSTHs) neurons in area MT (Yates 632	

et al.; their Fig. 3b). (Starting from these initial values we then varied these model parameters to 633	

explore a range of adaptation levels as shown in supplementary Fig. 4.) To simulate the 634	

decision process we used two of these MT responses but with opposite tuning, and computed 635	

the decision variable (d(t)) as the integral of the difference of these time-varying MT responses. 636	

The decision on each trial was based on sign(d(t)) at the end of the trial, and decision 637	

confidence defined as |d| at the end of the trial.  638	

To additionally account for the temporal autocorrelation of the spiking response we also 639	

simulated a variant of this basic model, also after 4. This variant was identical to the first except 640	

that, first, we generated spikes based on the spike rates using a Poisson process. Second, we 641	

included spike history term such that:  642	

    𝜆 𝑡 = 𝑒(! ! !!∗! !!! ), 643	

where h (“history filter” as in 4, their suppl. Fig. 1c) are the post-spike weights that integrate the 644	

neuron’s own spiking history (r(t-1)).  645	

Inclusion Criteria. Trials with fixation errors were excluded, and we only included sessions in 646	

which the animals completed at least 600 trials, and in which each experimental condition had 647	

at least 10 trials. For each session, three psychometric functions were computed (one using all 648	

the completed trials, one each including only trials for which the large available reward size was 649	

large or small, respectively). We fitted cumulative Gaussians to each of these psychometric 650	

functions, and only sessions for which each of these fits explained > 90% of the variance were 651	

included. 652	

  653	
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