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Abstract 17 

The metabolic symbiosis with photosynthetic algae of the genus Symbiodinium allows corals to 18 

thrive in the oligotrophic environments of tropical seas. Many aspects of this relationship have 19 

been investigated using transcriptomic analyses in the emerging model organism Aiptasia. 20 

However, previous studies identified thousands of putatively symbiosis-related genes, making it 21 

difficult to disentangle symbiosis-induced responses from undesired experimental parameters. 22 

Using a meta-analysis approach, we identified a core set of 731 high-confidence symbiosis-23 

associated genes that reveal host-dependent recycling of waste ammonium and amino acid 24 

synthesis as central processes in this relationship. Combining transcriptomic and metabolomic 25 

analyses, we show that symbiont-derived carbon enables host recycling of ammonium into 26 

nonessential amino acids. We propose that this provides a regulatory mechanism to control 27 

symbiont growth through a carbon-dependent negative feedback of nitrogen availability to the 28 

symbiont. The dependence of this mechanism on symbiont-derived carbon highlights the 29 

susceptibility of this symbiosis to changes in carbon translocation, as imposed by environmental 30 

stress. 31 

 32 

Introduction 33 

The symbiotic relationship between photosynthetic dinoflagellates of the genus Symbiodinium 34 

and corals is the foundation of the coral reef ecosystem. This metabolic symbiosis is thought to 35 

enable corals to thrive in the oligotrophic environment of tropical oceans by allowing efficient 36 

recycling of nitrogenous waste products in return for photosynthates from the symbionts1. 37 

Despite the importance of this symbiotic relationship, research has been hampered by the general 38 
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difficulties associated with the maintenance of corals, their slow growth rates, and the 39 

infeasibility of maintaining them in an aposymbiotic state2.  40 

To overcome these disadvantages, the sea anemone Aiptasia (sensu Exaiptasia pallida3) has 41 

emerged as a powerful model system in the study of cnidarian-Symbiodinium symbiosis. Aiptasia 42 

belongs to the same class (Anthozoa) as corals, and similarly establishes a symbiotic relationship 43 

with Symbiodinium4. In contrast to corals, it can be easily maintained and effectively 44 

manipulated under common laboratory conditions. Its rapid asexual reproduction provides 45 

relatively large amounts of experimental material for high-throughput studies5, while sexual 46 

reproduction can be induced efficiently under well-designed conditions6. More importantly for 47 

symbiosis-related studies, Aiptasia can be maintained in an unstressed, aposymbiotic state as 48 

long as it is fed regularly7, 8. It can also be re-infected with a variety of Symbiodinium strains9, 49 

which allows for comparative studies analyzing the effects of different symbionts on the host. 50 

The use of Aiptasia as a model organism has advanced our understanding of the metabolic 51 

aspects of symbiosis, in particular the identification of glucose as the main metabolite transferred 52 

from symbiont to host10. However, the molecular mechanisms underlying host-symbiont 53 

metabolic interactions are still largely unknown. Particularly the role of nitrogen recycling from 54 

waste ammonium is still debated. While it is generally assumed that ammonium assimilation is 55 

predominantly performed by the symbiont, some studies show that symbiont-growth is nitrogen 56 

limited in hospite11, 12, 13, 14, suggesting that the host might be able to control nitrogen availability. 57 

Consequently, it has been proposed that recycling of ammonium waste by the host might serve as 58 

a mechanism to control symbiont densities15, 16.  59 

Many genomic, transcriptomic, and proteomic studies have been conducted on the topic of 60 

cnidarian-Symbiodinium symbiosis in the last two decades to unravel the molecular 61 
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underpinnings of this relationship17, 18, 19, 20, 21, 22, 23. Due to technical limitations, most of these 62 

studies did not have the sensitivity required to detect extensive changes of symbiosis-associated 63 

genes. However, these limitations are gradually being overcome by next-generation sequencing 64 

techniques. The first Aiptasia-centered whole transcriptome comparison between symbiotic and 65 

aposymbiotic animals was performed by Lehnert et al.24. Since then, multiple studies on the 66 

Aiptasia-Symbiodinium symbiosis have explored different aspects of this relationship and raised 67 

several interesting hypotheses2, 25. Despite this increasing wealth of information, our knowledge 68 

of underlying key genes associated with this relationship is still limited. While transcriptomic 69 

studies have provided valuable information, the resulting lists of putative candidate genes 70 

contain thousands of genes, making it difficult to disentangle true symbiosis-related signals from 71 

other experimental and technical factors. Furthermore, it was difficult to contrast results across 72 

studies due to the lack of a reference genome when most of the studies were carried out. The 73 

recent availability of the Aiptasia genome2 provides a set of high-quality gene models as a 74 

reference for transcriptomic analyses. RNA-Seq data can now be mapped directly to these gene 75 

models for quantification, thus allowing the comparison of results across different studies. 76 

Here, we carried out a meta-analysis of four RNA-Seq datasets comparing expression differences 77 

between symbiotic and aposymbiotic Aiptasia (strain CC7) in order to discern sources of 78 

technical errors and experimental variations, and to identify a core set of genes and pathways 79 

involved in symbiosis establishment and maintenance.  80 

 81 
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Results 82 

We conducted our meta-analysis on 3 previous RNA-Seq studies that generated 4 separate83 

datasets, encompassing 17 biological replicates per symbiosis state (i.e., aposymbiotic and84 

symbiotic)2, 24, 26.  85 

 86 

Batch effects. In this study, we focused solely on the annotated genes of the previously87 

published Aiptasia genome2. To investigate the relationship between samples from different88 

studies, we first performed a principal component analysis (PCA) and a rank correlation analysis89 

(RCA) on inter-sample normalized transcripts per million (TPM) values. Both the PCA (Fig. 1A)90 

and RCA (Fig. 1B) showed clear grouping of samples by experiment rather than symbiotic state.91 

However, PCA performed on samples from individual studies showed a clear separation of the92 

samples by symbiotic condition (Fig. S1). This indicates that technical and/or experimental batch93 

effects from each study exert stronger effects on gene expression profiles than the actual94 

symbiotic state of the animals. 95 

 96 
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FIG 1 Relationship between samples from different studies. (A) Principal component analysis of 98 

samples across all four studies. The symbiotic state (condition) of the animals was indicated by 99 

the color of the points, while the source studies were represented as different shapes. (B) Kendall 100 

rank correlation of all samples, with high-correlation as blue, and low-correlation as red. The pie 101 

chart in each cell also indicates the correlation of the two samples from the corresponding row 102 

and column. In both figures, Apo and Sym represent the symbiotic state of the anemones: 103 

aposymbiotic and symbiotic, respectively. YL, SB, EML, and EML-36 are the initials of the first 104 

authors whose papers we obtained the RNA-Seq data (i.e. Yong Li26, Sebastian Baumgarten2, 105 

and Erik M. Lehnert24, respectively). 106 

 107 

Differential expression analyses. Although the four datasets were distinct, there was still a clear 108 

separation of symbiotic and aposymbiotic replicates within each of the datasets. We 109 

hypothesized that this separation was due to the differential expression of core genes involved in 110 

symbiosis initiation and/or maintenance. To identify these genes, we performed four independent 111 

differential expression analyses using the exact same pipeline and parameters. These analyses 112 

identified between 2,398 to 11,959 differentially expressed genes (DEGs), corresponding to 113 

~10–50% of all expressed genes in the respective studies (Table 1). Surprisingly, the overlap 114 

between these lists of DEGs was poor despite the large number of DEGs identified in the 115 

individual analyses: only 300 genes were consistently differentially expressed across all four 116 

studies. Out of these 300 genes, 166 were upregulated in symbiotic anemones in all comparisons, 117 

while 134 were found to be downregulated in symbiotic animals, relative to aposymbiotic 118 

controls (Table 1). Paradoxically, we also found 93 genes of 393 genes (23.7%) that were 119 
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differentially expressed in all studies, but in different directions. At this point, we sought a better 120 

technique to identify the core genes involved in symbiosis. 121 

 122 

TABLE 1 Number of differentially expressed genes in different analyses. “Upregulated” and 123 

“downregulated” refers to the number of genes that are expressed at higher levels and lower 124 

levels respectively in symbiotic Aiptasia, relative to aposymbiotic ones. 125 

Study Expressed DEGs Upregulated Downregulated 
YL 27,684 3,058 1,552 1,506 
SB 24,013 11,959 6,072 5,887 

EML 24,511 9,613 4,758 4,855 
EML-36 24,246 2,398 1,241 1,157 
Overlap 22,394 393 166 134 

Meta-analysis 25,857 731 366 365 
 126 

 127 

Performing a meta-analysis across four datasets. To obtain a more robust set of core genes 128 

involved in symbiosis, we performed a meta-analysis with random effects across the four 129 

independent differential gene expression analyses (Table S1). Using this approach, we identified 130 

731 genes that exhibited a more consistent response to symbiosis. 131 

To assess the robustness of these genes, we carried out a principal variance component analysis 132 

(PVCA)27 to detect the connections between the expression profiles and the different 133 

experimental parameters used in each study (Fig. 2, Table S2). For the four individual studies, 134 

we found that the symbiotic state of the anemones accounts for a relatively small fraction (6.5% 135 

in raw data, 8.4% in normalized data) of the observed variance. Most of the variance was 136 

introduced by differences in feeding frequency, days between feeding and sampling, water, light 137 

intensity, and temperature. We further noticed that a large proportion of the variance across these 138 

four datasets remained unaccountable, suggesting that technical variability, e.g. RNA extraction, 139 
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library preparation and sequencing, also introduces substantial unwanted heterogeneity to gene 140 

expression profiles. When the PVCA was similarly applied to the 731 genes identified through 141 

our meta-analysis, we observed that these genes had a significantly enhanced association with 142 

symbiosis. Symbiosis state accounted for 46.6% of the expression variance observed in these 143 

genes (Fig 2). 144 

We noticed that smaller gene lists tended to have variances that were better explained by 145 

symbiosis state, exemplified by DEG_YL and DEG_EML-36 having better association with 146 

symbiosis than DEG_SB and DEG_EML. Thus, one could argue that the meta-analysis merely 147 

achieved better association with symbiosis as it had the fewest genes of interest. To assess this 148 

confounding factor, we performed PVCA on a set of randomly picked 731 genes from DEG_YL. 149 

This was repeated 10,000 times (i.e., a Monte-Carlo approach), and for other DEG lists 150 

(DEG_SB, DEG_EML and DEG_EML-36). These simulations allowed us to estimate that the 151 

likelihood of our meta-analysis producing the observed 46.6% by random chance was p < 10-4 (0 152 

of 40,000 trials had symbiosis state accounting for > 46.6% of the variance). 153 

 154 
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155 

FIG 2 Principal variance component analysis of DEGs from different analyses. The contribution156 

of each factor to the overall variance in each analysis was estimated by PVCA. The variance157 

explained by symbiotic state (blue) is highest in the set of DEGs from the meta-analysis158 

(DEG_meta); the combined variation attributable to experimental factors (red) is lowest in159 

DEG_meta as well. Unresolved variance is in gray. DEG_YL, _SB, _EML and _EML-36160 

represents the set of differentially expressed genes identified in four independent differential161 

analyses. Raw and Normalized are the combined raw and inter-sample normalized expression162 

data across all Aiptasia genes, showing that < 10% of the variation in overall gene expression163 

can be attributed to symbiotic state. DAF: days after feeding. 164 

 165 
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Functional interpretation. To assess the impact of the previously identified experiment-specific 166 

biases, we conducted GO and KEGG pathway enrichment analyses on the DEGs identified using 167 

the four independent differential gene expression analyses, respectively. Across the analyses of 168 

four independent experiments, 283–645 GO terms and 9–55 KEGG pathways were enriched. 169 

However, the functional overlap across all studies was poor: a large proportion of the putatively 170 

enriched terms were only identified in a single dataset (~75% in GO, and ~65% in KEGG) (Fig. 171 

S2). Compared to these independent analyses, the GO and KEGG pathway enrichment of the 731 172 

symbiosis-associated core genes contained fewer significant GO terms (204), but comparatively 173 

more significantly enriched KEGG pathways (31). Many of the enriched GO terms and KEGG 174 

pathways, as well as their associated genes, fit well with processes previously reported to be 175 

involved in symbiosis, including symbiont recognition and the establishment of symbiosis, host 176 

tolerance of symbiont, and nutrient exchange between partners and host metabolism which are 177 

discussed separately (Supplementary Information S1). However, our analysis also identified 178 

several symbiosis-related processes that were previously overlooked; of these processes, 179 

pathways associated with amino acid metabolism exhibited the most extensive changes in 180 

response to symbiosis. 181 
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Extensive changes of amino acid metabolism in response to symbiosis. Amino acid and 182 

protein metabolism represented a major symbiosis-related aspect in our meta-analysis. 9 of 31 183 

enriched KEGG pathways and 18 of 125 enriched biological process GO terms were associated 184 

with amino acid and/or protein metabolism (Fig. 3). A total of 97 DEGs were involved in these 185 

processes, of which 43 were upregulated in symbiotic animals. Interestingly, the DEGs involved 186 

in most of the enriched biological processes exhibited consistent expression changes (Fig. 3A), 187 

i.e. the genes associated with the corresponding process were either exclusively upregulated or 188 

downregulated. 189 

 190 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2018. ; https://doi.org/10.1101/269183doi: bioRxiv preprint 

https://doi.org/10.1101/269183
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

191 

FIG 3 Amino acid metabolism biological processes (A) and pathways (B) enriched with DEGs192 

identified in meta-analysis. For the two Circos plots, the height of each bar in the inner circle193 

indicates statistical significance of the enriched GO terms (A) and KEGG pathways (B), while194 

color of the bars represents the overall regulation effect of each process. The outer circle shows195 

the differential expression of genes associated with each process, where red and blue represent196 

upregulation and downregulation in symbiotic anemones, respectively. The table describes the197 

annotation of each term or pathway. 198 

 199 
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Further integration of these enriched biological processes and pathways revealed an amino acid 200 

metabolism hub in Aiptasia-Symbiodinium symbiosis (Fig. 4). We observed that genes catalyzing 201 

glycine/serine biosynthesis from food-derived choline were systematically downregulated in 202 

symbiotic anemones. In contrast, the genes involved in de novo serine biosynthesis from 3-203 

phosphoglycerate, one of the glycolysis intermediates, and glutamine/glutamate metabolism 204 

were generally upregulated (Fig. 4A). The resulting change in amino acid synthesis pathways 205 

suggested that symbiotic hosts utilize glucose and waste ammonium to synthesize serine and 206 

glycine, which are both main precursors for many other amino acids (Supplementary Information 207 

S1). Based on these findings, we hypothesized that the host uses symbiont-derived glucose to 208 

assimilate waste ammonium to produce amino acids. 209 

To test this hypothesis, we further investigated metabolomes of symbiotic and aposymbiotic 210 

anemones using nuclear magnetic resonance (NMR) spectroscopy. Three metabolites in the de 211 

novo serine biosynthesis pathway were highly abundant in symbiotic Aiptasia (two of them 212 

significantly so, p < 0.05), while five out of the six intermediates in the alternative glycine/serine 213 

biosynthesis pathway using food-derived choline were significantly enriched in aposymbiotic 214 

anemones as predicted (Fig. 4B). However, as glucose produces multiple peaks in the 1H NMR 215 

spectrum, and most of these peaks overlap with many other potential metabolites in both 216 

symbiotic and aposymbiotic anemones, it was not possible to precisely determine glucose 217 

concentrations via NMR. Consequently, we performed 13C bicarbonate labeling experiments and 218 

compared metabolite profiles of symbiotic and aposymbiotic anemones using gas 219 

chromatography-mass spectrometry (GC-MS), in order to test if the glucose is indeed provided 220 

by the symbiont and if the downstream usage of symbiont derived organic carbon is in the host. 221 

Our experiments confirmed that symbionts provide large amounts of 13C-labeled glucose to the 222 
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host (Fig. S3) and that the 13C-labeling was significantly enriched in many amino acids and their 223 

precursors in symbiotic anemones compared to aposymbiotic ones (Table S2). Moreover, 224 

metabolite set enrichment analysis indicates that these 13C-enriched are associated mainly with 225 

several amino acid metabolism pathways (Fig. S4), which is consistent with the enrichment 226 

analysis of 731 differentially expressed genes. For the amino acids with good abundance in both 227 

symbiotic and aposymbiotic animals, we examined the proportion of 13C in each of them, 228 

respectively. Interestingly, we observed relatively stable increases (~1.5-fold) of 13C levels in 229 

symbiotic animals compared with aposymbiotic ones (Fig. 4C). This constant increase may 230 

indicate there is a unique carbon source (photosynthesis-produced glucose) rather than multiple 231 

sources (glucose and symbiont-derived amino acids) in host amino acid biosynthesis.  232 

 233 
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234 

FIG 4 Amino acid metabolism in Aiptasia-Symbiodinium symbiosis. (A) Serine biosynthesis in235 

Aiptasia with different symbiotic states. The pathway on the left indicates de novo serine236 

biosynthesis from symbiont-produced glucose, while the right part represents glycine/serine237 

biosynthesis from food-derived choline. Enzyme names are colored to indicate differential238 

expression of the corresponding genes, where red and blue mean upregulation and239 

downregulation in symbiotic anemones, respectively. (B) Metabolite abundance changes in240 

response to symbiosis. Color represent abundance changes, with red for significant increases in241 

symbiotic anemones, blue for significant increase in aposymbiotic animals, and gray for non-242 
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significant changes. (C) Increasing 13C proportion of glucose and amino acids in symbiotic 243 

Aiptasia. Asterisks denote statistical significance of the changes (two-tail t test: * p < 0.05, ** p 244 

< 0.01, *** p < 0.001). Statistical testing of isoleucine and valine was not possible as they were 245 

detected in only one aposymbiotic replicate with reasonable concentration.  Error bar represents 246 

standard error of the mean. 247 

 248 

Discussion 249 

Batch effects are known to introduce strong variation in high throughput sequencing studies28, 29. 250 

However, this is often overlooked in transcriptomic studies, and especially so in non-model 251 

organisms. Our analysis of RNA-Seq data from four independent experiments analyzing 252 

transcriptional changes between symbiotic and aposymbiotic Aiptasia highlighted that batch 253 

effects are indeed pervasive in published data, even among studies using the same genotype 254 

(clonal strain CC7). Analyses of the combined dataset from all four experiments showed clear 255 

grouping of samples by experiment rather than treatment. However, when each experiment was 256 

analyzed independently, replicates separated by symbiotic states as expected. Interestingly, we 257 

found that the observed batch effects were not restricted to technical biases. Our analyses 258 

showed that the specific experimental setups in each study were a greater source of variance than 259 

the symbiosis state, which was the actual factor of interest in these studies. More importantly, we 260 

found that genes closely related to the processes involved in symbiosis, such as nutrient 261 

exchanges, may also respond significantly to various parameters of culture conditions, such as 262 

the feeding frequency, days between sampling and feeding, water, light intensity, and the 263 

temperature. Without careful design, such factors may exert effects on gene expression that mask 264 

the changes specific to the treatment of interest (symbiotic state). 265 
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Based on our findings, we suggest two potential venues to reduce the high signal-to-noise ratio in 266 

differential expression studies. Firstly, future transcriptomic efforts should take extreme care to 267 

standardize all experimental conditions save for the one under study. For example, culture 268 

conditions should be identical, treatments should be performed on multiple independent batches, 269 

RNA extractions and library preparation should be carried out on all samples simultaneously. 270 

The prepared libraries should also be sequenced in the same run to further minimize technical 271 

variations. Secondly, one should not dogmatically adhere to the convention of using p = 0.05 as 272 

the cutoff for statistical significance. If a study considers one in every three genes as significantly 273 

differentially expressed, to a careful reader, the proclaimed significance of those genes is 274 

diminished. As the number of DEGs increase, the rate of type I errors would also increase, which 275 

would make the discovery of meaningful biological processes more difficult.  276 

From the functional interpretation of DEGs associated with enriched GO terms and KEGG 277 

pathways, we found that many processes in the host were significantly induced or suppressed in 278 

response to symbiosis. One of the key features that has been overlooked in previous studies is the 279 

switch of serine biosynthesis pathways in Aiptasia in response to symbiosis. 280 

The downregulation of choline transport indicates a decrease of the host’s demand on dietary 281 

choline during symbiosis. Correspondingly, genes involved in the downstream conversion of 282 

choline to betaine and the production of glycine from betaine are also downregulated. The 283 

decrease of glycine caused by this downregulation is likely compensated by the metabolism of 284 

serine, which can be achieved by the observed upregulation of serine hydroxymethyltransferase 285 

(SHMT, AIPGENE4781), which catalyzes the interconversions between glycine and serine. 286 

Interestingly, our results suggest that serine is one of the key components in the amino acid 287 

interconversions, as the genes involved in its de novo biosynthesis from 3-phosphoglycerate (one 288 
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of the intermediates of glycolysis) were consistently upregulated. The conversion from glutamate 289 

to 2-oxoglutarate, catalyzed by the upregulated phosphoserine aminotransferase (PSAT, 290 

AIPGENE17104), may serve as the main reaction to provide amino groups for the biosynthesis 291 

of amino acids. Since 2-oxoglutarate is also one of the intermediates in the citrate acid cycle, an 292 

increase of glucose provided by the symbionts may also increase the overall activity of the cycle, 293 

hence raising the relative abundance of 2-oxoglutarate in symbiotic animals. High levels of 2-294 

oxoglutarate have been reported to induce ammonium assimilation through glutamine synthetase 295 

/ glutamate synthase cycle30. Consistent with this finding, we observe all the genes involved in 296 

this pathway to be upregulated in symbiotic anemones. 297 

Metabolomic analyses of symbiotic and aposymbiotic anemones confirm the predictions derived 298 

from our transcriptomic meta-analysis. Most of the intermediates in the de novo serine 299 

biosynthesis using symbiont-derived glucose were highly enriched in symbiotic anemones and 300 

showed increased 13C-labeling. whereas many of the metabolites from choline-betaine-glycine-301 

serine conversion have decreased abundance in symbiotic animals. Furthermore, we also 302 

identified many other amino acids showing significantly increased abundance and 13C-labeling 303 

signals, suggesting that serine may serves as metabolic intermediate for the production of other 304 

amino acids. Taken together, these results highlight that symbiont-derived glucose fuels 305 

ammonium assimilation and amino acid production in the host and that serine biosynthesis acts 306 

as a main metabolic hub in symbiotic hosts.  307 

The strong shifts in host amino acids metabolic pathways induced by symbiont-provided glucose 308 

described here indicate the major nitrogen and carbon sources of the anemone host, and their 309 

interactions in the Aiptasia-Symbiodinium symbiosis. The catabolism of glucose through 310 

pathways such as glycolysis, pentose phosphate pathway, and citric acid cycle, not only 311 
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generates more energy (in forms of ATP, NADH, and NADPH), which is critical to ammonium 312 

assimilation, but also produces more intermediate metabolites that can serve as carbon 313 

backbones in many biosynthetic pathways such as amino acid synthesis. Our findings thus 314 

highlight nitrogen conservation, i.e. the host driven assimilation of waste ammonium using 315 

symbiont-derived carbon, as a central mechanism of the cnidarian-algal endosymbiosis16. This 316 

metabolic interaction might serve as a self-regulating mechanism for the host to control symbiont 317 

density through the regulation of nitrogen availability15 in a carbon dependent manner.  This 318 

allows for higher nitrogen availability in early stages of infection (few symbionts translocating 319 

few carbon) and gradual reduction of nitrogen availability with increasing symbiont densities 320 

(many symbionts translocating more carbon). The strict dependence of this mechanism on 321 

symbiont-derived carbon highlights the sensitivity of this relationship to changes in carbon 322 

translocation as imposed by stress-induced retention of photosynthates by symbionts31, 32.  323 

  324 
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Materials and Methods 325 

Data collection and pre-processing. Based on literature review of recently published Aiptasia 326 

genome and transcriptome studies, four datasets generated from three previous publications2, 24, 26 327 

were obtained (Table 1). All RNA-Seq experiments were performed on the clonal Aiptasia strain 328 

(CC7) and sequenced on the same platform (Illumina HiSeq 2000). Three of the datasets 329 

contained 101 bp paired-end reads, while the last one contained 36 bp single-end reads. Samples 330 

were labeled based on the initials of the first author of published papers and ongoing project. 331 

As all raw data from Lehnert et al.24 was provided as a monolithic FASTQ file, a custom Python 332 

script was written to split the reads into its constituent replicates, as inferred from the FASTQ 333 

annotation lines. 334 

 335 

Table 1 Summary of the NGS data sources used in this study 336 

Sample Source Project Symbiont Library Accession Number 

Apo-YL26  None 
101-bp, 
paired-end 

 

Sym-YL26  
Symbiodinium 
SSB01 

101-bp, 
paired-end 

 

Apo-SB2 
Aiptasia 
genome, 
PRJNA261862 

None 
101-bp, 
paired-end 

SRR1648359, 
SRR1648360, 
SRR1648361, 
SRR1648362 

Sym-SB2 
Aiptasia 
genome, 
PRJNA261862 

Symbiodinium 
SSB01 

101-bp, 
paired-end 

SRR1648369, 
SRR1648370, 
SRR1648371, 
SRR1648372 

Apo-EML24 
Aiptasia pallida 
Transcriptome, 
PRJNA159215 

None 
101-bp, 
paired-end 

SRR696732 

Sym-EML24 
Aiptasia pallida 
Transcriptome, 
PRJNA159215 

Native Symbiodinium 
strain 

101-bp, 
paired-end 

SRR612165 

Apo-EML-
3624 

Aiptasia pallida 
Transcriptome, 
PRJNA159215 

None 
36-bp, single-
end 

SRR612167 
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Sym-EML-
3624 

Aiptasia pallida 
Transcriptome, 
PRJNA159215 

Native Symbiodinium 
strain 

36-bp, single-
end 

SRR612166 

 337 

Identification of DEGs. To avoid biases stemming from the use of disparate bioinformatics 338 

tools in calling DEGs, data from the four datasets were processed with identical analytical 339 

pipelines. 340 

Gene expressions were quantified (in TPM, transcripts per million) based on the published 341 

Aiptasia gene models2 using kallisto v0.42.433. DEGs were independently identified in the four 342 

datasets using sleuth v0.28.034. Genes with corrected p values < 0.05 were considered 343 

differentially expressed. 344 

To enable direct comparisons of gene expression values between datasets, another normalization 345 

with sleuth was carried out on all samples (n = 17 aposymbiotic and n = 17 symbiotic). Principal 346 

component analysis (PCA) and ranked correlation analysis (RCA) were carried out on these 347 

normalized expression values to assess the relationship between samples and reproducibility of 348 

these studies. 349 
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Profiling sources of batch effects. Principal variance components analysis (PVCA), a technique 350 

that was developed to estimate the extent of batch effects in microarray experiments27, was used 351 

several times in our study. A PVCA was carried out on raw data to estimate the batch effects in 352 

the combined dataset and their possible source in the original experimental designs; similarly, the 353 

normalized data was also assessed for the reduction of batch effects post-normalization. We also 354 

performed PVCA on normalized expression values of the differentially expressed genes (DEG) 355 

identified in each independent analysis or the final meta-analysis to detect the robustness of DEG 356 

calling. 357 

Meta-analysis across studies. For every gene with at least two studies with significant 358 

differential expression values, a meta-analysis was performed to determine the overall effect size 359 

and associated standard error. Effect sizes from each study � (represented as ��) were calculated 360 

as the natural logarithm of its expression ratio (ln ��), i.e. geometric means of all expression 361 

values in the aposymbiotic state divided by the geometric means of all expression values in the 362 

symbiotic state. Conveniently, this value is approximately equal to the ��  value provided by 363 

sleuth. As sleuth also calculates the standard error of ��, the variance of ln �� was not calculated 364 

via the typical approximation—instead, the variance ��  was directly calculated as 365 

�� � ����

� · 
�  

where 
�  represents the number of replicates in study �. 366 

To combine the studies, a random-effects model was used. While the use of this model is 367 

somewhat discouraged for meta-analyses with few studies as it is prone to produce type I errors35, 368 

we still opted for its use over the fixed-effects model due to the substantial inter-study variation 369 

evident in the PCAs performed previously. Also, the type I error rate could be controlled by 370 

setting a more conservative p threshold, if required. 371 
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The DerSimonian and Laird 36 method was implemented as described below. Studies with 372 

individual effect sizes mi were weighted (��) by a combination of the between-study variation 373 

(��) and within-study variation (��), according to the formula 374 

��
� � 1

��  �� 

The between-study variation (��) across all k studies was calculated as 375 

�� � max �� � ��
� , 0� 

where 376 

� ������� � ���� 

� ���� �∑��
�

∑��

 

The weighted mean (��) was calculated as 377 

�� � ∑��
���

∑��
�  

while the standard error of the combined effect was 378 

������ � 1
�∑��

�
 

The two-tailed p-value was calculated using 379 

� � 2 !1 � Φ#$ ��

������$%& 

and then subsequently corrected for multiple hypothesis testing with the Benjamini-Hochberg-380 

Yekutieli procedure37, 38 using a Python script. Genes with corrected p < 0.05 were considered 381 

differentially expressed. For transparency, calculations for all equations were implemented 382 

manually in Microsoft Excel (Table S3) following established guidelines39. 383 
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Functional interpretation of DEGs. Gene ontology (GO) and KEGG pathway enrichment 384 

analyses were both conducted on five DEG lists: one each from the four independent datasets, 385 

and one from the results of the meta-analysis. 386 

Identification of enriched GO terms were conducted using topGO40 by a self-developed R script 387 

(https://github.com/lyijin/topGO_pipeline). A GO term was considered enriched only when its p 388 

value was less than 0.05. 389 

KEGG pathway enrichment analyses were performed using Fisher’s exact and subsequent 390 

multiple testing correction via false discovery rate (FDR) estimation. A KEGG pathway was 391 

deemed enriched (or depleted) only when its FDR less than 0.05. The results of enrichment 392 

analyses were visualized using GOplot41. 393 

Metabolomic profiles of symbiotic and aposymbiotic anemones. Aiptasia strain CC7 was 394 

bleached and re-infected with a compatible strain of Symbiodinium SSB01 as previously 395 

reported2. All the symbiotic and aposymbiotic anemones were maintained in the laboratory in 396 

autoclaved seawater (ASW) at 25 °C in 12-hour light/12-hour dark cycle with light intensity of 397 

~30 μmol photons m-2s-1 for over three years. Anemones were fed three times a week with 398 

freshly hatched Artemia nauplii, and water change was done on the day after feeding. 399 

Anemones were rinsed extensively to remove any external contaminations, and starved for two 400 

days in ASW and transferred into ASW with 10 mM 13C-labelled sodium bicarbonate (Sigma-401 

Aldrich, USA) for another two days before sampling. The four-day starvation period ensured all 402 

Artemia had been digested and consumed, hence there was no contamination from Artemia in the 403 

samples for NMR and GC-MS. The samples were drained completely on clean tissues to remove 404 

any water on surface, then snap frozen in liquid nitrogen to avoid any further metabolite changes 405 

in downstream processing. 406 
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To compare metabolomic profiles of anemones at different symbiotic states, four replicates of 407 

each state (n = 30 individuals per replicate), were processed for metabolite extraction using a 408 

previously reported methanol/chloroform method42. The free amino acid-containing methanol 409 

phase was dried using CentriVap Complete Vacuum Concentrators (Labconco, USA). 410 

For NMR metabolite profiling, samples were dissolved in 600 µl of deuterated water (D2O), and 411 

vortexed vigorously for at least 30 seconds. Subsequently, 550 µL of the solution was transferred 412 

to 5 mm NMR tubes. NMR spectrum was recorded using 700 MHz AVANCE III NMR 413 

spectrometer equipped with Bruker CP TCI multinuclear CryoProbe (BrukerBioSpin, Germany). 414 

To suppress any residual HDO peak, the 1H NMR spectrum were recorded using excitation 415 

sculpting pulse sequence (zgesgp) program from Bruker pulse library. To achieve a good signal-416 

to-noise ratio, each spectrum was recorded by collecting 512 scans with a recycle delay time of 5 417 

seconds digitized into 64 K complex data points over a spectral width of 16 ppm. Chemical shifts 418 

were adjusted using 3-trimethylsilylpropane-1-sulfonic acid as internal chemical shift reference. 419 

Before Fourier transformations, the FID values were multiplied by an exponential function 420 

equivalent to a 0.3 Hz line broadening factor. The data was collected and quantified using Bruker 421 

Topspin 3.0 software (Bruker BioSpin, Germany), with metabolite-peak assignment using 422 

Chenomx NMR Suite v8.3, with an up-to-date reference library (Chenomx Inc., Canada). 423 

For 13C-labelling investigation using GC-MS, dried samples were re-dissolved in 50 µl of 424 

Methoxamine (MOX) reagent (Pierce, USA) at room temperature and derivatized at 60 °C for 425 

one hour. 100 µl of N,O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA) was added and 426 

incubated at 60 °C for further 30 min. 2 µl of the internal standard solution of fatty acid methyl 427 

ester (FAME) were then spiked in each sample and centrifuged for 5 min at 10,000 rpm. 1 µl of 428 

the derivatized solution was analyzed using single quadrupole GC-MS system (Agilent 7890 429 
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GC/5975C MSD) equipped with EI source at ionization energy of 70 eV.  The temperature of the 430 

ion source and mass analyzer was set to 230 °C and 150 °C, respectively, and a solvent delay of 431 

9.0 min. The mass analyzer was automatically tuned according to manufacturer’s instructions, 432 

and the scan was set from 35 to 700 with scan speed 2 scans/s. Chromatography separation was 433 

performed using DB-5MS fused silica capillary column (30m x 0.25 mm I.D., 0.25 µm film 434 

thickness; Agilent J&W Scientific, USA), chemically bonded with 5% phenyl 95% 435 

methylpolysiloxane cross-linked stationary phase. Helium was used as the carrier gas with 436 

constant flow rate of 1.0 ml min-1. The initial oven temperature was held at 80�C for 4 min, then 437 

ramped to 300 °C at a rate of 6.0 °C min-1, and held at 300 °C for 10 min. The temperature of 438 

the GC inlet port and the transfer line to the MS source was kept at 200 °C and 320 °C, 439 

respectively. 1 µl of the derivatized solution of the sample was injected into split/splitless inlet 440 

using an auto sampler equipped with 10 µl syringe. The GC inlet was operated under splitless 441 

mode. Metabolites in all samples were identified using Automated Mass Spectral Deconvolution 442 

and Identification System software (AMDIS) with the NIST special database 14 (National 443 

Institute of Standards and Technology, USA). The mass isotopomer distributions (MIDs) of all 444 

compounds were detected and their 13C-labelling enrichment in symbiotic Aiptasia were 445 

investigated using MIA43. Pathways associated with these 13C-enriched metabolites were 446 

explored using MetaboAnalyst v3.044. 447 
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