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 2 

Abstract 23 

Background: Noises and artifacts may arise in several steps of the next-24 

generation sequencing (NGS) process. Recently, a NGS library preparation 25 

method called SMART, or Switching Mechanism At the 5’ end of the RNA 26 

Transcript, is introduced to prepare ChIP-seq (chromatin immunoprecipitation 27 

and deep sequencing) libraries from small amount of DNA material. The protocol 28 

adds Ts to the 3’ end of DNA templates, which is subsequently recognized and 29 

used by SMART poly(dA) primers for reverse transcription and then addition of 30 

PCR primers and sequencing adapters. The poly(dA) primers, however, can 31 

anneal to poly(T) sequences in a genome and amplify DNA fragments that are 32 

not enriched in the immunoprecipitated DNA templates. This off-target 33 

amplification results in false signals in the ChIP-seq data.  34 

Results: Here, we show that the off-target ChIP-seq reads derived from false 35 

amplification of poly(T/A) genomic sequences have unique and strand-specific 36 

features. Accordingly, we develop a tool (called “SMARTcleaner”) that can exploit 37 

the features to remove SMART ChIP-seq artifacts. Application of SMARTcleaner 38 

to several SMART ChIP-seq datasets demonstrates that it can remove reads 39 

from off-target amplification effectively, leading to improved ChIP-seq peaks and 40 

results. 41 

Conclusions: SMARTcleaner could identify and clean the false signals in 42 

SMART-based ChIP-seq libraries, leading to improvement in peak calling, and 43 

downstream data analysis and interpretation. 44 

 45 
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 48 

Background 49 

In the past decade, deep sequencing by next generation sequencing (NGS) has 50 

been widely applied in nearly all fields of biological research, in which information 51 

from biological processes (e.g., transcription and protein-DNA interaction) can be 52 

converted to DNAs for sequencing [1-4]. NGS is a complex procedure involving 53 

DNA/RNA isolation, library preparation, deep sequencing, data processing and 54 

interpretation. Each of these steps can introduce biases and artifacts, but the first 55 

step - preparation of NGS libraries is arguably the most critical phase as errors 56 

can be propagated to later steps, if not carefully controlled [5, 6]. Among them, 57 

PCR amplification is a major source of bias due to the fact that not all fragments 58 

are amplified with the same efficiency [5]. 59 

 60 

As powerful as NGS technology is, its application with limited amounts of 61 

biological material, for example, DNA or RNA isolated from a very small number 62 

of cells, remains a challenge. This is primarily due to the low efficiency in ligating 63 

targeted DNA/RNA fragments to the NGS sequencing adaptors, leading to a drop 64 

of sequencing reads for low copy DNA/RNA molecules present in a sample [7]. In 65 

addition, ligation requires double-stranded DNA (dsDNA) inputs and may result in 66 

cross- and self-ligation adaptor byproducts [8].  To overcome these limitations, 67 

SMART, a template switching method, was developed and used initially for 68 
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transcriptome analyses, such as CAGE, RNA-seq (including small RNA-seq), 69 

and single-cell RNA-seq [9-12]. By using single-step adapter addition, the 70 

SMART technology achieves a much-needed sensitivity to accurately amplify 71 

picogram quantities of nucleic acids. 72 

 73 

The SMART method was adapted for preparing NGS libraries from DNA 74 

templates in 2014 by tailing an adaptor to the 3’ end of a target DNA sequence 75 

and later amplifying the sequence by template switching. This modification allows 76 

quick preparation of DNA libraries from picogram quantities of DNA molecules [7]. 77 

Soon, this strategy was applied to ChIP-seq studies with human, mouse and 78 

yeast samples [13-19], and it is one of the few currently available protocols for 79 

ChIP-seq studies of small cell numbers [20, 21]. Here, a stretch of Ts is added to 80 

DNA templates in the tailing step, which is subsequently hybridized to a poly(dA) 81 

primer used to copy DNA (Fig. 1a). It is conceivable that the poly(dA) primer, 82 

however, can lead to signals amplified from non-targeted genomic regions 83 

containing consecutive Ts. Indeed, a recent study of SMART ChIP-seq reads 84 

revealed a strong bias of base constitution at the 3’ end of the sequenced reads 85 

that are enriched near long (≥12bp) poly(T/A) containing genomic loci [14]. The 86 

authors proposed a computational strategy to reduce this bias by normalizing the 87 

ChIP-seq data for the genomic abundance of different polyN tracts, but only 88 

achieved partial success [14]. Here, we revisited this problem and demonstrated 89 

that the unique features of the falsely amplified reads can be exploited to 90 

effectively remove artifact ChIP-seq reads from SMART protocols. We 91 
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implemented this idea in the software SMARTcleaner. Testing multiple published 92 

ChIP-seq data, we showed that SMARTcleaner could properly identify and 93 

remove artifact reads in both paired-end (PE) and single-end (SE) ChIP-seq data, 94 

leading to improved ChIP-seq results. 95 

 96 

Results 97 

Strand-specific false priming and amplification at the poly(T/A) sites 98 

When the SMART protocol (or kit) is applied to prepare NGS libraries from DNA 99 

fragments, such as those from chromatin immunoprecipitation (IP), there are five 100 

steps, 1) 3’ T-tailing, 2) annealing of DNA SMART poly(dA) primer to the T-tails, 101 

3) primer extension by the SMARTScribeTM reverse transcriptase (RT), 4) 102 

template switching and extension by RT using SMART oligo, and 5) PCR-103 

mediated addition of Illumina adapters and subsequent amplification (Fig. 1a).  104 

As mentioned previously [14], the SMART poly(dA) primers can anneal to poly(T) 105 

sequences that are either located within the IP-DNA fragments (Fig. 1b) or 106 

present in non-target DNA fragments (i.e., the DNA fragments pulled down 107 

during IP non-specifically) (Fig. 1c). In both cases, the Ts are from genomic 108 

sequences and are not added during the T-tailing process. After amplification, 109 

sequencing, and read mapping (note that only one strand of the dsDNA is 110 

sequenced), ChIP-seq reads from poly(T/A) genomic DNAs, due to false priming 111 

and amplification, will accumulate next to the poly(T/A) sites in a clear strand-112 

specific manner because the poly(dA) primers only anneal to the DNA strand 113 

containing poly(T). To illustrate this, we examined the reads in a human ChIP-114 
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seq sample (Additional file 1: Table S1, Dataset 1, SRR3229031) that was 115 

prepared using the Clontech DNA SMART ChIP-seq kit and by PE sequencing 116 

[14]. As this particular dataset was obtained from sequencing of control samples 117 

(i.e., input DNA), no genomic regions would be expected to show ChIP-seq read 118 

enrichment. Indeed, at non-poly(T/A) sites, we did not find accumulations of 119 

reads on either “+” or “-“ strands (Fig. 1d). However, at poly(T/A) sites, we 120 

observed that the Read2 of the PE reads were piled up either at the upstream of 121 

the poly(T) sites (with respect to the reference “+” strand) (Fig. 1e) or at the 122 

downstream of the poly(A) sites (Fig. 1f), as reported [14].  If SE sequencing had 123 

been performed, the accumulation of reads would still be observed, but the 124 

precise location information provided by Read2 would not be available (Fig. 1e,f), 125 

because only Read1 (Fig. 1a-c) would be sequenced. Genome-wide analysis of 126 

read distribution aggregated over poly(T/A) sites further illustrate these patterns 127 

(Fig. 1g-i). The width of the peaks indicates the range where the false fragments 128 

are located near the poly(T/A) sites (Fig. 1g-i). 129 

 130 

Random false priming and amplification at consecutive and intermittent 131 

poly(T/A) sites 132 

We reasoned that the SMART poly(dA) primers can anneal to and amplify poly(T) 133 

sequences, allowing some degree of mismatch. The PE sequencing data in the 134 

SRR3229031 dataset allowed us to identify exactly the ChIP-seq fragments that 135 

were artifacts from the poly(T/A) genomic sites, because the Read2 of the 136 

fragments would be piled up at the end of poly(T/A) (Fig. 1e,f; Additional file 2: 137 
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Figure S1). We should point out that the second reads of the PE sequences 138 

submitted to the SRA database have been cut by 10 bp from the 3’ end by the 139 

authors [14], resulting in a 10 bp gap between the poly(T/A) sites and the end of 140 

the Read2 (Additional file 2: Figure S1). 141 

 142 

We counted the numbers of ChIP-seq Read2 that mapped to the 9,698,838 143 

poly(A) and 9,796,521 poly(T) sequences containing a minimal of five 144 

consecutive As or Ts, respectively, in the human genome (hg38). Like a previous 145 

study [14], we found that the median counts for the regions with 5 to 11 146 

consecutive A or T were 1, while the median for regions with 12 As or Ts was 147 

doubled, indicating that the false priming event occurs primarily at sites with 12 or 148 

more consecutive poly(T/A) bases (Additional file 2: Figure S2a; Wilcoxon test, p-149 

value < 2.2e-16). Nevertheless, there were large variations at the poly(T/A) sites 150 

of the same length, a common phenomenon due to the randomness in primer 151 

annealing and sequencing (Additional file 2: Figure S2a). To consider 152 

mismatching during priming, we focused on short poly(T/A) sites (≤8bp) that by 153 

themselves cannot be efficiently used for false priming but jointly may be. We 154 

found that read numbers mapped to two such sequences disrupted by one 155 

mismatch nucleotide were significantly reduced, compared to those without 156 

disruption, indicating reduced efficiency of false priming (Additional file 2: Figure 157 

S1c,d, Figure S2b). Moreover, an insertion of two or three mismatch nucleotides 158 

basically abolished false priming (Additional file 2: Figure S2b). In short, our 159 

analysis confirmed that false priming occurs significantly at regions containing a 160 
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consecutive sequence of ≥12 As or Ts and the resultant artifact reads should be 161 

excluded from ChIP-seq data analysis. 162 

 163 

SMARTcleaner: identification and cleaning of falsely primed fragments 164 

Based on the above information of the false priming event in SMART ChIP-seq 165 

studies (Fig. 1, Additional file 2: Figure S2), we developed a computational tool, 166 

SMARTcleaner, to remove the ChIP-seq artifact signals. It has two modes (PE 167 

mode and SE mode) to accommodate the two sequencing options during ChIP-168 

seq. In PE mode, a genome (FASTA) sequence file and ChIP-seq read 169 

alignment files (in bam format) are taken as input, and “cleaned” bam files are 170 

generated with the reads predicted from false priming removed and saved in the 171 

“noise” bam files. In SE mode, it takes a list of consecutive and interrupted 172 

poly(T/A) genomic sites (Additional file 2: Figure S2), and bam files, and outputs 173 

cleaned bam files and noise bam files. The software is publicly available through 174 

github (https://github.com/dzhaobio/SMARTcleaner). 175 

 176 

In PE mode, our tool removes ChIP-seq read pairs whose second reads mapped 177 

to poly(T/A) (see Methods). Analysis of pileup reads at individual poly(A/T) sites 178 

(Fig. 2a,b) and total read counts across all poly(A/T) sites (Fig. 2c,d) 179 

demonstrated clearly that reads from false priming in the SRR3229031 dataset 180 

were effectively identified and successfully removed by SMARTcleaner. 181 

Furthermore, applying the SMARTcleaner to ChIP-seq data from libraries 182 

constructed using a ligation method [14], we found that < 0.002% of PE reads 183 
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were mistakenly removed, indicating that the PE mode is highly accurate. By 184 

comparison, artifact reads in the SMART-based data could be successfully 185 

removed, while their percentages (11-20%) varied among the different DNA 186 

shearing methods used for fragmentation (Fig. 2e). In addition, for the SMART-187 

based data, the ChIP-seq fragment sizes calculated from the noise bam files 188 

were 21-43 bp shorter on average than those in the clean bam files, as expected, 189 

since the genomic poly(T/A) sequences were within ChIP fragments while tailed 190 

Ts were added to the ends of ChIP fragments. This observation is consistent with 191 

previous finding [14]. 192 

 193 

In SE mode, the SMARTcleaner identifies and removes artifact reads by 194 

comparing read distributions in the “+” and “-“ strands near individual poly(T/A) 195 

sites, because false priming leads to reads accumulated in only one of the two 196 

strands (Fig. 1).  To demonstrate its performance, we treated the above PE 197 

ChIP-seq reads as SE reads, by analyzing the Read1 data only.  Again, analysis 198 

of pileup reads at individual poly(T/A) sites (Fig. 3a,b) and read counts 199 

aggregated over genome wide poly(T/A) sites (Fig. 3c,d) demonstrated that most 200 

artifact reads were removed effectively. However, the SE mode appeared less 201 

robust than the PE mode, because it mistakenly removed ~0.8% of reads in the 202 

ligation-based ChIP-seq data (Fig. 3e). The percentages of reads that were 203 

removed by the SE mode for the SMART-based datasets were similar to those 204 

using the PE mode (Fig. 3e). 205 

 206 
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In terms of computational efficiency, we tested both PE and SE modes on a PC 207 

(Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz, 32Gb memory, CentOS Linux 208 

release 7.3.1611). It took 30 min to clean 94 million reads in PE mode and 16 209 

min to clean 47 million reads in SE mode, benchmarking with the SRR3229031 210 

dataset. The PE mode requires more memory than the SE mode because the 211 

former reads the entire genome sequence into memory (for fast query) and 212 

keeps track of the end coordinates of Read2 at the genomic poly(T/A) sites.  213 

 214 

Evaluation of SMARTcleaner with published histone modification ChIP-seq 215 

datasets 216 

To demonstrate the value of our tool and importance of removing artifact reads 217 

from false priming in the analysis of SMART ChIP-seq data, we first applied the 218 

SMARTcleaner to a public ChIP-seq dataset (Additional file 1: Table S1, Dataset 219 

2) that studied H3K4me3 histone modification in HeLa cells using seven methods 220 

for preparing sequencing libraries from low-input IP DNAs, including SMART 221 

method [13]. The study also generated a PCR-free dataset as a gold standard 222 

reference, including three replicates using 100 ng DNA as starting material. For 223 

the other seven protocols, the starting material was either 1 ng or 0.1 ng, each 224 

with five replicates [13]. The original study was designed for comparing the 225 

performance of different ChIP-seq library preparation methods, but this dataset is 226 

ideal for evaluating our tool for three reasons. First, its gold standard data can be 227 

used for clearly evaluating artifacts introduced in PCR amplification. Second, the 228 

dataset is valuable for evaluating the effect of initial DNA inputs on false priming 229 
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and amplification. Third, the known enrichment of H3K4me3 peaks at promoter 230 

regions [22] can be used as a metric to measure the impact of falsely called 231 

peaks. 232 

 233 

In our test below, as a benchmark we chose the data from PCR-free method and 234 

Ascel2S method, which were consistently ranked at the top by multiple criteria in 235 

the original study [13]. Since the ChIP-seq libraries were sequenced by the 236 

single-end method, we applied SE mode to the alignment files, including control 237 

samples. Similar to the above finding in Fig. 3e, only a small percentage of ChIP-238 

seq reads were removed by SMARTcleaner from the ligation-based datasets, 0.3% 239 

on average. For SMART-derived dataset, the average percentage was 3.0% for 240 

1 ng and 5.3% for 0.1 ng starting DNA material (Additional file 2: Figure S3a). 241 

Next, we randomly sampled 6 millions of reads for each sample for calling 242 

H3K4me3 peaks using the software MACS2 [23], by the same criteria. We found 243 

that before read cleaning 12.1% and 17.1% of the H3K4me3 peaks, called from 244 

the 1 ng and 0.1 ng SMART protocols respectively, overlapped with poly(T/A) 245 

sites, but after cleaning the overlaps dropped to 6.2% and 8.1%, comparable to 246 

the numbers for PCR-free and Ascel2S samples (Additional file 2: Figure S3b). 247 

This result indicates that not all peaks in poly(T/A) sites are artifacts. The greater 248 

percentages of removed reads and peak overlaps with poly(T/A) sites for the 0.1 249 

ng than the 1 ng dataset are consistent with the assumption of increased false 250 

priming when the input DNA material is lower, due to a reduced number of 251 

genuine target DNA templates. In addition, the percentages of H3K4me3 peaks 252 
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mapping to promoters increased by 3.7% (1 ng) and 4.1% (0.1 ng) after cleaning 253 

reads in the SMART derived datasets, while the change (0.14%) is negligible for 254 

the PCR free and Ascel2S samples (Additional file 2: Figure S3c).  255 

 256 

We also compared the SMART ChIP-seq peaks to the H3K4me3 peaks from 257 

PCR-free samples, using the peaks (n= 20,262) present in all three PCR-free 258 

datasets as the reference. The mean sensitivity (i.e., % PCR-free peaks detected 259 

in SMART) was 89.68% and 89.61% in pre- and post-cleaning samples (1ng 260 

DNA), indicating no difference in sensitivity. Same was observed for the samples 261 

using 0.1ng starting DNA material (Additional file 2: Figure S3d). However, the 262 

specificity (% SMART peaks found in PCR-free peaks) was increased from 89.25% 263 

to 90.42% for samples with 1ng DNA and from 87.11% to 89.85% for samples 264 

with 0.1ng DNA after cleaning the noise (Additional file 2: Figure S3e), indicating 265 

that the cleaning process improved the peak quality. 266 

 267 

Next, we directly compared the pre- and post-cleaning H3K4me3 peak lists. The 268 

total number of peaks dropped for both SMART samples after cleaning (Fig. 4a), 269 

but the change for 0.1 ng SMART sample was significant larger than that for 1 ng 270 

one (Fig. 4b), clearly suggesting that with lower amounts of input DNA, more 271 

false peaks would be called from the artifact reads (Fig. 4c). In support of this, 272 

we observed that the 0.1 ng pre-cleaning SMART samples had the largest 273 

percentages (on average 64.3%) of peaks located near the poly(T/A) sites (Fig. 274 

4d). When compared to the peaks called for the PCR-free data, 51.9% (0.1 ng) 275 
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and 35.1% (1 ng) of the peaks unique to the pre-cleaning SMART samples 276 

overlapped, significantly smaller than the percentages for peaks either shared 277 

with or unique to post-cleaned data (Fig. 4e). Similarly, the percentages of 278 

H3K4me3 peaks (44.4% and 39.8%) located to promoters for the peaks unique 279 

to pre-cleaning samples were significantly lower than the numbers for the other 280 

two groups of peaks (Fig. 4f). As an orthogonal measurement, we analyzed 281 

transcription factor (TF) motifs in the H3K4me3 peak regions. The TATA box and 282 

CAAT box, two well-known general promoter TF motifs [24], and the ETS motif 283 

[25], were  the most enriched motifs in the H3K4me3 peaks. In all cases, their 284 

occurrences in the peaks detected only in the pre-cleaning samples were 285 

significantly lower (Fig. 4g-i). In contrast, the RLR1 motif, which basically 286 

consists of poly(T), was only enriched in the peaks unique to the pre-cleaning 287 

samples (Fig. 4j). Finally, we examined the ChIP-seq read densities and 288 

aggregated read profiles for the three groups of H3K4me3 peaks, unique to pre- 289 

or post-cleaning samples, or shared (Fig. 4k). The peaks unique to the post-290 

cleaning samples had about 2x stronger (both 1 ng and 0.1 ng samples) ChIP-291 

seq signals in the PCR-free and Ascel2S data than the peaks unique to the pre-292 

cleaning samples, indicating that the latter peaks were very likely derived from 293 

PCR amplification and thus enriched for artifacts (Fig. 4k). Taken together, these 294 

results indicate that the reads removed by SMARTcleaner are true artifacts and 295 

its application can improve the quality of peaks identified from ChIP-seq analysis, 296 

resulting in better biological findings. 297 

 298 
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Evaluation of SMARTcleaner with published transcription factor ChIP-seq 299 

datasets 300 

We were especially interested in how the inclusion of artifact reads may affect 301 

peaks identified from TF ChIP-seq studies. Therefore, we reanalyzed a 302 

previously published Olig2 ChIP-seq dataset (Additional file 1: Table S1, Dataset 303 

3) and compared our results to the original publication [18]. We found that 16% of 304 

the original peaks (3,251 of 20,283) overlapped with the poly(T/A) sites, with 305 

some peaks exhibiting typical features of false amplification (Fig. 5a). We also 306 

noticed that the authors applied a combination of very stringent criteria to filter 307 

peaks, perhaps in an effort to limit peaks from false priming. Thus, we tried less 308 

stringent criteria to obtain a new set of peaks (n=25,179) from the pre-cleaning 309 

alignment files and included it in our comparison (see Methods). Next, we used 310 

the SMARTcleaner SE mode to clean the alignment files and obtained a list of 311 

post-cleaning peaks (n=23,289). A comparison of the three lists of peaks is 312 

shown in Fig. 5b, from which we defined four groups of peaks (Additional file 2: 313 

Figure S4): “TP”, or true positive, called by all methods; “FP”, or false positive, 314 

called by the original study and present in the pre-cleaning sample only; “FN”, or 315 

false negative, removed by the original study only; and “TN”, or true negative, 316 

removed in the original study and by SMARTcleaner. Intersections of the four 317 

groups of peaks with poly(T/A) sites showed that 92.9% of TN peaks and 94.3% 318 

of FP peaks overlapped with poly(T/A) sites, compared to 12.7% of TP peaks 319 

and 5.3% of FN peaks (Fig. 5c), indicating that the original study not only 320 

included some artifact peaks but also filtered out some true peaks. This was 321 
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supported by a comparative analysis of the ChIP-seq read intensities, with reads 322 

from false priming present in both the ChIP sample and input control (FP and TN 323 

in Fig. 5d,e). This analysis also showed that the FN group represented true 324 

peaks filtered out by the authors by using overly strict criteria (Fig. 5d,e).  325 

 326 

To further test the cleaning effect, we included a Olig2 ChIP-seq dataset that was 327 

independently generated from neural stem cells using a non-SMART protocol 328 

[26]. We found that 86.2% and 91.8% of the pre-cleaning and post-cleaning 329 

peaks were detected by the non-SMART method, respectively. Moreover, among 330 

the four groups of peaks, 93.8% and 83% of TP and FN peaks were present in 331 

the non-SMART peaks, respectively, in contrast to 8.7% and 6.2% for the TN and 332 

FP groups, respectively, indicating that false peaks were removed by our clearing 333 

process. This result was supported by the patterns in the read density heatmaps 334 

and profiles (Fig. 5d,e).  335 

 336 

In addition, motif analysis demonstrated that the top four motifs enriched in the 337 

TP and FN peaks were the same TF motifs (Atoch1, NF1, Tcf12 and Olig2) 338 

reported in the original study [18]. However, the top motifs for the TN and FP 339 

groups were RLR1, TA repeat, GAGA repeat, CTCF and Myf5, which seem 340 

irrelevant to Olig2 function (Fig. 5f). 341 

 342 

In short, our analysis of the Olig2 ChIP-seq data further supports the value of our 343 

newly developed SMARTcleaner tool, and illustrates the need for appropriately 344 
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removing noise and artifacts from false priming in TF ChIP-seq studies that use 345 

the SMART protocol. 346 

 347 

Prevalence of artifact reads from false priming and amplification in SMART-348 

based ChIP-seq datasets 349 

To determine if false priming and amplification is a common problem in SMART-350 

based ChIP-seq libraries, we collected and analyzed all such datasets except a 351 

clinical one that is not publicly accessible [15] (Additional file 1: Table S1; see 352 

Methods). These ChIP-seq data were carried out in human [13-16], mouse [17, 353 

18], and yeast samples [19]. All but two of the datasets were analyzed by single-354 

end sequencing [14, 15]. Our analysis showed that all available datasets 355 

contained an average of 8.5% (2.7% ~19.6%) reads that were likely derived from 356 

false priming, regardless of the amount of input DNA (from 0.1 ng to 10 ng DNA) 357 

or cell numbers (from 10 to 100 millions) (Additional file 1: Table S1). 358 

 359 

Discussion 360 

The SMART ChIP-seq kit uses the template switching method to improve the 361 

efficiency of library construction, which is especially suitable for analyzing 362 

samples with very low amounts of input DNA [7]. Consistent with a recent report 363 

[14], we show that the protocol, however, can introduce significant noise to ChIP-364 

seq data, due to the annealing of DNA SMART poly(dA) primers to non-targeted 365 

genomic regions containing ≥ 12 Ts or As. The artifact reads have distinct 366 

features (Fig. 1, Additional file 2: Figure S2) that are exploited by the 367 
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SMARTcleaner tool developed in this study. Using multiple published ChIP-seq 368 

datasets, we demonstrated convincingly that our tool can successfully remove 369 

the artifact reads arising from false priming and amplification of the SMART 370 

poly(dA) primers. It works for both PE and SE ChIP-seq reads (Fig. 2, Fig. 3), 371 

and outputs both cleaned alignment files and noise, which can be loaded into a 372 

genome browser for inspecting the cleaning effects visually. SMARTcleaner also 373 

provides some running options and helper tools to prepare the files required for 374 

the cleaning process. Currently SMARTcleaner does not deal with biases 375 

introduced by other factors, such as DNA shearing method etc. [5], but users can 376 

easily adapt this tool to their ChIP-seq analytic pipelines and develop it further. 377 

 378 

We have examined all currently available public datasets that were obtained 379 

using the DNA SMART ChIP-seq kit, and found that the false priming issue is 380 

prevalent, regardless of the amount of input DNA material or cell numbers 381 

(Additional file 1: Table S1). While the artifact cannot be easily removed by data 382 

normalization, strict filtering in peak calling, or a simple exclusion of peaks 383 

located at poly(A/T) sites, our study suggests that the false priming issue 384 

becomes less severe when a large amount of DNA is used as the starting 385 

material for ChIP library preparation. Conceivably, the concern can also be 386 

alleviated if high affinity antibodies are used to significantly enrich target DNA 387 

templates in the input material. Based on our survey of all available datasets, we 388 

have the following recommendations to users of the SMART ChIP-seq kit to 389 

exploit its full potential. First, one should use a sufficient amount of DNA as the 390 
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starting templates, whenever possible. Second, the T-tailing step in the SMART 391 

ChIP-seq protocol should be optimized. Third, sequence the NGS libraries using 392 

the PE method and clean the ChIP-seq reads using the PE mode of 393 

SMARTcleaner. Forth, if the libraries have already been sequenced using the SE 394 

method, clean the ChIP-seq reads using the SE mode of SMARTcleaner. 395 

Alternatively, one can consider to use other ChIP-seq library preparation 396 

methods that can also handle low-input DNA [13, 20, 21]. 397 

 398 

Conclusions 399 

False priming and amplification occur at poly(T/A) genomic sites due to the use 400 

of poly(dA) primers in SMART-based ChIP-seq library construction. Reads from 401 

subsequent false amplification and sequencing are strand-specific and can be 402 

effectively removed by our SMARTcleaner tool, leading to improvement in peak 403 

calling, and downstream data analysis and interpretation. 404 

 405 

Methods 406 

ChIP-seq datasets and read processing 407 

The SMART ChIP-seq kit is a promising but relatively new protocol for analyzing 408 

small amount of chromatin materials. We searched for ChIP-seq datasets that 409 

used this kit in the GEO and by Google and found one publication in 2015 [18], 410 

two in 2016 [13, 19], and four in 2017 [14-17]. Among the seven publications, six 411 

have made their data publicly accessible (Additional file 1: Table S1). The 412 
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seventh is a clinical study and the corresponding data have not been released, 413 

possibly due to protection of privacy [15]. In the alignment of ChIP-seq reads 414 

derived from the SMART protocols, the first three bases were trimmed from the 415 

first read (Read1). In all datasets, replicates were analyzed independently. To 416 

facilitate comparison with the original studies, we used the same versions of 417 

software as in the original publication when applicable. 418 

Dataset 1 419 

The first dataset is actually a ChIP-seq of input DNAs from HCT116 cells and 420 

HeLa-S3 because the DNA templates were not enriched with any antibodies. It 421 

contained seven sets of paired-end sequencing data, which we downloaded from 422 

the NCBI SRA database (SRP071830) [14]. Three libraries were constructed 423 

using the DNA SMART ChIP-Seq kit (Clontech, #634865), with the others by 424 

“standard” ligation-based method. Reads were mapped to the human genome 425 

(hg38) using Bowtie2 (v2.2.3) [27], using default parameters with the maximum 426 

fragment length for valid paired-end reads set to 2000. Only uniquely mapped 427 

reads were kept for further analyses, after duplicate reads were removed using 428 

the Picard tool -- MarkDuplicates (v2.3.0, 429 

http://broadinstitute.github.io/picard/index.html). To mimic single-end sequencing, 430 

we generated SE bam files by extracting the first reads from the PE bam files 431 

(samtools view -h -f 64). 432 

Dataset 2 433 

The H3K4me3 ChIP experiments were done with 56 million HeLa cells in 56 434 

ChIP reactions [13]. The ChIP DNA was combined into a single pool and then 435 
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divided into seven aliquots for different library preparation methods and the PCR-436 

free method. Libraries starting from either 1 ng or 0.1 ng ChIP DNA were 437 

generated. Reads were aligned to the hg38 human reference genome using 438 

Bowtie (v1.2.1) [28]. Only uniquely mapped reads were used for analysis, with 439 

duplicate reads removed by samtools (v0.1.19) [29]. To call peaks, we randomly 440 

subsampled 6 million mapped reads for each sample, as done in the original 441 

study [13] and used the MACS2 (v2.1.0) [23] with q value < 0.05. Motif analysis 442 

was done using the HOMER (v4.7) [30]. 443 

Dataset 3 444 

The Olig2 ChIP-seq was carried out with 10 million neural stem cells (NSCs) 445 

derived from embryonic (E14.5) CD-1 mice. The libraries were constructed using 446 

the DNA SMART ChIP-seq kit and sequenced by the single-end method on an 447 

Illumina HiSeq2000 sequencer [18]. The dataset was downloaded from the GEO 448 

database (GEO: GSE74646). Reads were aligned to the mouse reference 449 

genome (mm10) using bowtie (v1.2.1). Only uniquely mapped reads were used 450 

for analysis, with duplicate reads removed using samtools (v0.1.19). Peaks were 451 

called using the MACS (v1.4.2) and filtered by p value < 10-5, fold enrichment > 5, 452 

and tag number > 15. When the filter was set to the same as used in the original 453 

paper (p value < 10-9, fold enrichment > 5, and tag number > 20), we obtained 454 

essentially the same peaks that were called in the original study. Peak motif 455 

analysis was done using HOMER (v4.7) [30]. 456 
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Dataset 4 457 

The H3K4me1 ChIP-seq was obtained with 10 million SUM159 cells. H3K4me1 458 

ChIP-seq libraries were constructed using the DNA SMART ChIP Seq Kit 459 

(Clontech) with 10ng ChIP DNA (NCBI GEO: GSE87424) [16].  Raw fastq 460 

sequences were downloaded from the GEO and processed with the same 461 

methods as the original study. 462 

Dataset 5 463 

The ChIP-seq experiments of H3K27ac histone modification and c-MYC were 464 

performed with FACS-sorted Eph4 cells. Libraries were constructed using the 465 

Clontech DNA Smart Chipseq kit (Clontech, #634866), and pooled for 466 

sequencing (NCBI GEO: GSE98004) [17]. Raw fastq sequences were 467 

downloaded from the GEO and processed as the original study. 468 

Dataset 6 469 

The last dataset was from a yeast study [19]. DNA–RNA immunoprecipitation 470 

and deep sequencing (DRIP-seq) was done with S9.6 monoclonal antibody in 471 

100 million yeast cells. We downloaded the alignment files from European 472 

Nucleotide Archive (ENA) website (PRJEB8021) and yeast reference genome 473 

from the UCSC genome browser [31]. 474 

 475 

SMARTcleaner 476 

The SMARTcleaner tool was developed in Perl under the MIT license after 477 

analysis of the characteristics of ChIP-seq reads derived from false priming and 478 
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amplification. Two modes, PE mode and SE mode, were implemented based on 479 

the sequencing methods used in ChIP-seq data. 480 

PE mode 481 

When sequenced in PE method, the second reads of the falsely primed 482 

fragments will pile up upstream of the poly(T) sites or the downstream of the 483 

poly(A) sites (Figure 1e,f), allowing two mismatch insertions (Additional file 2: 484 

Figure S2). SMARTcleaner will go through a sorted (by coordinates) alignment 485 

file and find read pairs with the second read at the left end of poly(T) sites or at 486 

the right end of poly(A) sites (Additional file 2: Figure S5). It will keep tracking the 487 

number of such fragments at each position of a poly(T/A) site. When this number 488 

is over a threshold (default: 1) predefined for false amplification, all read pairs 489 

ending in the same position will be considered as artifacts and placed to the new 490 

alignment file (“noise bam file”). In the meantime, the original bam file subtracting 491 

the artifact reads will be saved as a cleaned bam file. 492 

SE mode 493 

When ChIP-seq is sequenced in SE method, the false reads will be clustered 494 

upstream of poly(T) sites or downstream of poly(A) sites of the reference genome 495 

(Fig. 1), up to two mismatches (Additional file 2: Figure S2). SMARTcleaner first 496 

examines the reads in the flanking regions (by default 2kb) of all poly(T/A) sites 497 

to decide the size of the region containing falsely amplified fragments. For reads 498 

on “+” strand, the distance is calculated from the left ends of reads to the left 499 

ends of poly(T) sites (Additional file 2: Figure S6a) or the right ends of poly(A) 500 

sites (Additional file 2: Figure S6b). For reads on “-“ strand, the distance is 501 
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calculated from the right ends of reads to the left ends of poly(T) sites (Additional 502 

file 2: Figure S6a) or the right ends of poly(A) sites (Additional file 2: Figure S6b). 503 

Based on the distribution of the distances, SMARTcleaner automatically 504 

determines the window size at poly(T/A) sites for sampling, or a user can 505 

manually set it according to the read distribution at the poly(T/A) sites (Fig. 1h,i). 506 

A bed file containing the resampling regions will be generated. Next, it will go 507 

through the reads at each of those regions, check if the potentially artifact reads 508 

outnumber (default 2x) those in the unaffected opposite strand, and finally 509 

resample the artifact reads, if necessary, according to the read numbers in the 510 

opposite strand (Additional file 2: Figure S7a,b). For the genomic regions with 511 

overlapping poly(T) and poly(A) sites, the tool will process the poly(T/A) sites 512 

based on the order of their appearance in the reference genome (Additional file 2: 513 

Figure S7c). 514 

 515 

For SE mode, a list of poly(T/A) sites is needed. We included a helper command 516 

to identify such regions in a genome. To estimate the range for resampling reads, 517 

we implemented another helper command in our tool for this purpose. Users can 518 

also directly set a range for resampling based on their knowledge of their 519 

datasets or the fragment distribution around the poly(T/A) sites. 520 

 521 

List of abbreviations 522 

ChIP-seq: chromatin immunoprecipitation and deep sequencing 523 

NGS : next-generation sequencing 524 
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PE: paired-end 525 

SE: single-end 526 

SMART: switching mechanism at the 5’ end of the RNA transcript 527 
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 664 

 665 

Figure legends 666 

Fig. 1. Strand-specific amplification of non-targeted sequences at poly(T/A) 667 

sites in the SMART ChIP-seq analysis. a. Flowchart of the SMART ChIP-seq 668 

procedure at non-poly(T/A) sites, adapted from the user manual of the kit 669 

(http://www.clontech.com/xxclt_ibcGetAttachment.jsp?cItemId=99449). b,c. 670 

Modified flowcharts to show annealing of the SMART poly(dA) primers to non-671 

tailed Ts within targeted (b) or non-targeted (c) DNA templates, leading to 672 

strand-specific amplification at poly(T) sites. For poly(A) sites, false amplification 673 

occurs to the opposite strand. d-f. ChIP-seq read densities at three randomly 674 

picked non-poly(T/A) and poly(T/A) sites. The data is from SRR3229031 675 

(Additional file 1: Table S1, Dataset 1), and Integrative Genomics Viewer (IGV) 676 

[32] is used to show the ChIP-seq reads from paired-end (PE) or single-end (SE) 677 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2018. ; https://doi.org/10.1101/269365doi: bioRxiv preprint 

https://doi.org/10.1101/269365
http://creativecommons.org/licenses/by-nd/4.0/


 31 

sequencing. For PE, read1 and read2 are shown as pairs, with reads mapped to 678 

“+” and “-“ strands in red and blue, respectively. For SE, only Read1 (extracted 679 

from PE data) is shown. g-i. Aggregated read distribution at non-poly(T/A) and 680 

poly(T/A) sites. In h and i, poly(T/A) sites were defined as those with ≥ 12 681 

consecutive T or A in the human reference genome. To define non-poly(T/A) 682 

sites, we first selected genomic regions that are > 4 kb in length and > 1kb away 683 

from poly(T/A) sites, and then take the 2kb regions around the middle points. In 684 

total, we got 301,474 non-poly(T/A) sites, 338,568 poly(T) sites, and 336,703 685 

poly(A) sites. Refer to the Method section (SE mode, Additional file 2: Figure S6) 686 

for the calculation of read distribution. 687 

 688 

Fig. 2. SMARTcleaner in PE mode. a. PE reads mapped to a poly(T) and a 689 

poly(A) locus before (raw) and after cleaning. b. A genomic region showing the 690 

read densities before and after cleaning. The “called peaks” refer to pre-cleaning 691 

peaks called using MACS2. c,d. Genome-wide read distribution at poly(T/A) sites 692 

before (red and blue lines) and after (green lines) cleaning. e. Percentages of 693 

removed reads at poly(T/A) sites in each sample. The samples from left to right 694 

are SRR3229030, SRR3286889, SRR3286890, SRR3286891, SRR3229031, 695 

SRR3286910, and SRR3286911 (Additional file 1: Table S1, Dataset 1). 696 

 697 

Fig. 3. SMARTcleaner in SE mode. a. Two examples showing the cleaning 698 

results of SE mode at one poly(T) and one poly(A) locus. b. Cleaning result in a 699 

genomic region. c,d. Genome-wide reads distribution near the poly(T/A) sites 700 
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before (red and blue lines) and after (green lines) cleaning. e. Percentages of 701 

removed reads at poly(T/A) sites in samples prepared by ligation or SMART 702 

protocols. The sample order is the same as in Fig. 2e. 703 

 704 

Fig. 4. Evaluate SMARTcleaner with H3K4me3 ChIP-seq data. a. Numbers of 705 

pre- and post-cleaning H3K4me3 peaks. b. Change of peak numbers after 706 

cleaning. c. Numbers of peaks shared or unique to pre-cleaning (“uniqPre”) or 707 

post-cleaning (“uniqPost”) data d. Overlap of peaks with poly(T/A) sites. e. 708 

Overlap of peaks with gold standard peaks. f. Peaks at the promoter regions (2kb 709 

around TSS). g-j. Percentages of peaks with each of the four enriched TF motifs. 710 

k. Read densities and average profiles for peaks shared by or unique to pre- and 711 

post-cleaning data. Reads counts were extracted using seqMINER [33] from 6 712 

million reads randomly sampled from individual samples. Heatmaps were drawn 713 

using R package pheatmap, with peaks as row and sorted by read densities. In 714 

a-j, each point represents a replicate sample. 715 

 716 

Fig. 5. Evaluate SMARTcleaner with a TF ChIP-seq data. a. An example of 717 

false peaks in the original list of Olig2 ChIP-seq peaks. The track of “called peak” 718 

shows peaks provided by the authors. b. Venn diagram showing the peak 719 

overlaps from three methods: the original peaks from the authors, the peaks 720 

called before cleaning, and the peaks called after cleaning. When counting the 721 

overlapping peaks, we could get two different numbers depending on which set 722 

of peaks is used to report the number (one peak in one set may overlap more 723 
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than one peak in another set). We reported the smaller number here. c. Peaks 724 

overlapping with poly(T/A) sites. d,e. Read densities and average counts at the 725 

four selected groups of peaks, computed by sampling 5 million reads. An Olig2 726 

ChIP-seq data (right) from non-SMART method was also analyzed. f. Top 727 

enriched motifs by HOMER [30]. 728 

 729 

Description of additional data files 730 

Additional file 1: Supplementary Table S1. 731 

Additional file 2: Supplementary Figure S1–S7. 732 
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