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Abstract 18 

Seed plants vary tremendously in size and morphology. However, variation and covariation 19 

between plant traits may at least in part be governed by universal biophysical laws and biological 20 

constants. Metabolic Scaling Theory (MST) posits that whole-organismal metabolism and 21 

growth rate are under stabilizing selection that minimizes the scaling of hydrodynamic resistance 22 

and maximizes the scaling of resource uptake. This constrains variation in physiological traits 23 

and in the rate of biomass accumulation, so that they can be expressed as mathematical functions 24 

of plant size with near constant allometric scaling exponents across species. However, observed 25 

variation in scaling exponents questions the evolutionary drivers and the universality of 26 

allometric equations. We have measured growth scaling and fitness traits of 451 Arabidopsis 27 

thaliana accessions with sequenced genomes. Variation among accessions around the scaling 28 

exponent predicted by MST correlated with relative growth rate, seed production and stress 29 

resistance. Genomic analyses indicate that growth allometry is affected by many genes 30 

associated with local climate and abiotic stress response. The gene with the strongest effect, 31 

PUB4, has molecular signatures of balancing selection, suggesting that intraspecific variation in 32 

growth scaling is maintained by opposing selection on the trade-off between seed production and 33 

abiotic stress resistance. Our findings support a core MST prediction and suggest that variation 34 

in allometry contributes to local adaptation to contrasting environments. Our results help 35 

reconcile past debates on the origin of allometric scaling in biology, and begin to link adaptive 36 

variation in allometric scaling to specific genes. 37 

Keywords: Fitness trade-off, GWAS, metabolic theory of ecology, polygenic adaptation, scaling 38 

exponent 39 

Significance statement 40 

Are there biological constants unifying phenotypic diversity across scales? Metabolic Scaling 41 

Theory (MST) predicts mathematical regularity and constancy in the allometric scaling of 42 

growth rate with body size across species. Here, we show that adaptation to climate in 43 

Arabidopsis thaliana is associated with local strains that substantially deviate from the values 44 

predicted by MST. This deviation can be linked to increased stress tolerance at the expense of 45 
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seed production, and it occurs through selection on genes that are involved in abiotic stress 46 

response and that are geographically correlated with climatic conditions. This highlights the 47 

evolutionary role of allometric diversification and helps establish the physiological bases of plant 48 

adaptation to contrasting environments. 49 

/body 50 

Introduction 51 

At the core of the quest for understanding and predicting biological diversity is the apparent 52 

paradox that, despite the phenotypic changes that underlie divergent ecological strategies, there 53 

seem to be constant or near-constant parameters across life forms (1). The latter is assumed to 54 

result in part from biophysical constraints limiting the range of possible trait values (2), as well 55 

as from strong stabilizing selection for optimal phenotypes (3, 4). Consistently, body size 56 

variation in multicellular organisms is associated with many scaling regularities. Max Kleiber (5) 57 

first reported that the consumption of energy (metabolic rate G) varies to the ¾-power of 58 

organism mass M, such that G = G0M
3/4, implying that a 10-fold increase in M produces in 59 

virtually all organisms a 5.6-fold increase in G. Several physiological models have been 60 

proposed to explain this constancy. The most prominent is Metabolic Scaling Theory (MST) (6), 61 

which predicts that scaling exponents of several traits tend to take on ‘‘quarter-power’’ values 62 

(e.g., ¾, ¼) as the outcome of an optimal balance between the scaling of hydraulic transport costs 63 

and the scaling of exchange surface areas (e.g., leaf area in plants) (7). According to MST, the 64 

scaling of physiological rates matches the ability of exchange surfaces to obtain resources from 65 

the environment and then distribute them to metabolizing cells through the vascular network. 66 

Because the branching geometry of this network is highly constrained in space, it is predicted 67 

that selection that minimizes the costs of resource transport and at the same time maximizes the 68 

uptake of resources will lead to ‘‘allometrically ideal’’ organisms characterized by a common set 69 

of quarter-power scaling relationships with body mass.  70 

Empirical observations support MST predictions across land plants, where several traits, 71 

including organismal growth rate, scale as body mass raised to the power of ¾ (8, 9). On the 72 

other hand, the scaling exponent can vary across plants (10–12), or scaling can be constant but 73 

deviate from ¾ (13). These seemingly contradictory observations have been proposed to reflect 74 
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(i) phenotypic, like life history, differences between species or populations (9, 10), (ii) 75 

physiological changes along environmental gradients (14, 15), or (iii) non-linearity in 76 

hydrodynamic resistance and metabolic scaling (16). Thus, important questions about the 77 

evolution of allometry remain (4). For example, is the prevalence of ubiquitous scaling 78 

relationships the result of stabilizing selection acting to remove unfit genetic allometric variants? 79 

And does variation in the scaling exponent reflect adaptation and genetic diversification, or 80 

developmental plasticity? 81 

To address these and related questions, we examined how growth rate scales with body 82 

size in a genetically diverse population of Arabidopsis thaliana accessions (Dataset S1), a 83 

species that exhibits three orders of magnitude in plant dry mass (10) and occurs in a wide range 84 

of contrasting environments (17). We provide evidences that scaling variation is maintained by 85 

an adaptive trade-off between alternative environments. We show that this variation has a 86 

polygenic basis, and that there is genetic correlation between allometry and local climate.  87 

Results 88 

Variation of A. thaliana Growth Scaling with Climate. The scaling exponent of growth is 89 

conventionally quantified as the slope θ of the allometric function y = α + θx, where x and y are 90 

the logarithms of plant biomass and absolute growth rate, respectively. Fitting the allometry of 91 

the mean absolute growth rate (GR, mg d-1), estimated as the ratio of final plant dry mass (mg) 92 

over total duration of the life cycle (days), across A. thaliana accessions returned a scaling 93 

exponent θ that is not significantly different from the MST predicted value of ¾ (y = -1.07 + 94 

0.74x; r2 = 0.97; slope CI95% = [0.725, 0.750]; Fig. 1A). This value is the same as observed 95 

across vascular plant species (box in Fig. 1A). However, the relationship is not a pure power 96 

function, and instead was better explained by a non-linear quadratic function (y = -1.93 + 1.43x – 97 

0.14x2, ΔAIC = -192.4; Fig. 1A). Our analyses indicate that this curvilinear scaling relationship 98 

was due to differences in θ between accessions, which can be estimated as the first derivative of 99 

the quadratic function (θ = 1.43 - 0.27x), and which varied between accessions from 0.47 to 1.10 100 

(Fig. 1B, Fig. S1C). The broad-sense heritability, H2, of θ was 0.95, which is higher than any 101 

other trait measured in this study (Table S1), indicative of a high amount of variance explained 102 

by genetic effects in our highly controlled growth conditions.  103 
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Modelling the dynamics of plant dry mass accumulation from imaging data (18) revealed 104 

that the estimated relative growth rate (RGR) explains 18% of the variation in the scaling 105 

exponent (P < 0.001), with both being negatively correlated with plant lifespan (P < 0.001, Fig. 106 

1C; Dataset S2). Previous studies have shown that variation in A. thaliana growth allometry is 107 

positively correlated with carbon assimilation rate and nutrient concentration, but negatively with 108 

lifespan (10). Thus, variation of growth allometry in A. thaliana connects life-history variation to 109 

the strategies for leaf resource-use. At the one end of the distribution are high scaling exponents, 110 

representative of ‘live fast/die young’ strategies that maximize resource capture (high RGR and 111 

carbon assimilation rate) at the expense of plant lifespan and final size. At the other end are low 112 

scaling exponents, representative of ‘live slow/die old’ strategies that maximize the retention 113 

(thick leaves with low nutrient concentration and long lifespan) rather than acquisition of 114 

resources.  115 

We then examined the correlations between the scaling exponent and 21 climatic 116 

variables, which include 19 ‘Bioclim’ variables (http://www.worldclim.org/bioclim), as well as 117 

the estimated mean annual Potential Evapo-Transpiration (PET, mm) and Aridity Index (19) at 118 

the geographic origin of the accessions. Consistent with the idea that resource-acquisitive plants, 119 

i.e. early-flowering/fast-growing ecotypes, are more adapted to hotter and drier regions, the 120 

scaling exponent was positively correlated with the mean annual temperature measured at the 121 

collection point of the accessions (Fig. 2A; Dataset S2). The strongest correlations were with 122 

maximum temperature of the warmest month and mean temperature of the warmest quarter (r = 123 

0.30 and 0.28, respectively, Fig. 2B; Dataset S2). Inversely, the scaling exponent was negatively 124 

correlated with precipitation, specifically with precipitation during the driest quarter (Fig. 2C), 125 

precipitation seasonality and the aridity index (Dataset S2). In contrast, it was not correlated with 126 

the altitude at the collection point.  127 

Using stepwise regression, we found that 13 climatic variables explain >27% of the 128 

allometric variation. Four of these are related to summer and two to winter climate. The strongest 129 

effects were estimated for annual mean temperature, isothermality and mean summer 130 

temperature. Modeling the geographic distribution of scaling exponent with the 13 top-correlated 131 

climatic variables as predictors showed that intermediate exponents are more common in 132 

temperate regions (Fig. 2D), while extreme exponents are favored under more stressful 133 
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conditions (e.g. high altitude, high latitude).  134 

Fitness Costs and Benefits of Allometric Variation. The scaling exponent was correlated with 135 

resource-use traits including RGR and lifespan, as well as performance-related traits such as fruit 136 

number, a proxy for lifetime fitness in annual species (fruit number varied from 18 to 336 per 137 

plant, Table S1; SI Appendix). However, the relationship between fitness and the scaling 138 

exponent under the non-limiting RAPA conditions was not linear (Fig. 3A). Instead, fruit number 139 

was a bell-shaped function of the scaling exponent: it peaked for plants with an exponent around 140 

¾ and declined towards higher or lower exponents. Thus, genetic deviations from the ¾ scaling 141 

exponent are associated in A. thaliana with extreme resource-use strategies, and a general 142 

decline in fruit number (r = -0.62, P < 0.001; Dataset S2). A polynomial regression of relative 143 

fitness - using fruit number standardized by the population mean - over the scaling exponent 144 

returned a significant, negative second-order coefficient (y = 1.00 +4.23x - 4.06x2, P < 0.001 for 145 

all coefficients), i.e. an estimate of quadratic selection gradient |γ| that might be indicative of 146 

stabilizing selection for the allometric exponent under benign conditions (20).  147 

Conversely, deviation from ¾ scaling was positively correlated with survival under 148 

severe drought (r = 0.16, P < 0.05; measured in (21) across 210 common accessions; Dataset 149 

S2), and negatively correlated with growth reduction under moderate drought (r = -0.26, P < 150 

0.05; measured in (22) across 60 common accessions, Dataset S2). However, neither stress-151 

resistance trait was correlated with the scaling exponent itself. This suggests that deviation of 152 

allometric exponents from ¾ in either direction is associated with increased resistance to 153 

stressful conditions at the expense of reduced reproductive fitness under benign conditions. 154 

Consistently, a re-analysis of an experimental population phenotyped for tolerance to combined 155 

high temperature and water deficit (23) pointed to higher stress sensitivity of accessions with 156 

scaling exponents close to ¾ (Fig. 3B). In contrast, allometric exponents at both the low and high 157 

end of the distribution were correlated with improved stress tolerance, specifically under high 158 

temperature (Fig. 3B). A possible explanation of this result could be that a ‘fast’ strategy with 159 

high scaling exponents allows stress escape by maximizing resource acquisition and completion 160 

of the life cycle before a short window of non-stressful conditions closes (23). Alternatively, the 161 

‘slow’ strategy might support stress tolerance by reducing metabolic activities and thus, the 162 

resource demand associated with a fast growth (10). 163 
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The Genetic and Evolutionary Bases of Allometric Variation. Because we suspected that 164 

allometric variation might result from adaptation to the diverse environments at the places of 165 

origin of accessions, we looked for genetic evidence of local adaptation and of genetic 166 

diversification with climate. Principal component analysis (PCA) performed after eigen 167 

decomposition of the relatedness matrix revealed that the scaling exponent was correlated with 168 

population structure, notably with the second PCA axis (r = 0.37, P < 0.001), which explains 169 

28% of total genetic variation and mainly differentiates accessions from Relicts, N. Sweden and 170 

Spain groups (17) (Fig. S2). By contrast, flowering time was correlated with the first PCA axis, 171 

which explains 42% of genetic variation and is associated with longitudinal divergence among 172 

accessions (Fig. S2). Compared to the ancestral (‘Relict’) genetic group (17), scaling exponent 173 

differed significantly (P < 0.001) for two groups: N. Sweden and S. Sweden, while the eight 174 

other groups were not different (P > 0.3). Qst of scaling exponent - measured as the ratio of 175 

between-group phenotypic variance over total variance - was above 0.9 quantile of genome-wide 176 

Fst (Qst/Fst ratio = 2.14, P < 0.001; Table S1, Fig. S3), which is potentially indicative of 177 

polygenic selection acting on the scaling of plant growth (24). 178 

We ran GWA models on the scaling exponent θ and the 21 climatic variables using the 179 

EMMAX procedure to correct for population structure (25). In total, 8,250 single nucleotide 180 

polymorphisms (SNPs) out of 1,793,606 tested were significantly associated with at least one 181 

phenotypic trait or climatic variable (Dataset S3) after multiple-testing correction (26). Only six 182 

SNPs were significantly associated with the scaling exponent (FDR < 0.05). Five of these six 183 

SNPs were located in the same region on chromosome 2 (Fig. 4A), and were associated with 184 

maximum temperature of the warmest month (Fig. 4B). Three SNPs were also significantly 185 

associated with the mean annual temperature and the mean temperature of the coldest month 186 

(Dataset S4). The same genomic region showed strong association with precipitation during the 187 

driest month (Fig. 4C), although the six SNPs that were associated with scaling variation did not 188 

reach the significance threshold for this climatic variable (FDR > 0.05). In contrast, no 189 

significant SNPs were shared between RGR, lifespan, fruit number or rosette dry mass and the 190 

climatic variables (Dataset S4), suggesting that genetic association between traits and climate is 191 

relatively rare. 192 

One SNP among the five associated with both the scaling exponent and the maximum 193 
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temperature of the warmest month was located in the U-box protein gene PUB4 (At2g23140; 194 

MAF = 6.1%; Fig. 4A). As E3 ubiquitin ligases, U-box proteins are involved in protein turnover, 195 

a key regulatory component of plant responses to abiotic stresses (27). PUB4 plays notably a role 196 

in a quality-control pathway that removes damaged chloroplasts (28). Two other SNPs were 197 

located in the nearby cytochrome P450 gene CYP81D6 (At2g23220), 40 kb from PUB4 (r2 = 198 

0.63). CYP450s catalyze the production of diverse secondary metabolites that are involved in 199 

biotic and abiotic stress response (29). The remaining two SNPs were also linked to PUB4 and 200 

CYP81D6, but affected non-coding sequences. We note that the PUB4 polymorphisms only 201 

account for about 1% of the genetic variance in the scaling exponent. Because broad-sense 202 

heritability was H2 > 95%, many other loci are expected to contribute to allometric variation, 203 

potentially reducing the power of classical GWA to detect SNPs significantly associated with the 204 

scaling exponent. For instance, we expected that, given the strong correlation between the 205 

scaling exponent and plant lifespan (Dataset S2), many flowering time genes would be 206 

significantly associated with allometry. However, no SNP reached the significance threshold for 207 

lifespan in our analysis (FDR > 0.05), and we therefore do not have evidence for flowering time 208 

genes being predictors of allometric variation. This might be due to over-correcting for 209 

population structure, or to the high number of SNPs involved in phenotypic variation between 210 

accessions. Indeed, a strong correction for population structure might be inappropriate if many 211 

genes across the entire genome contribute to the phenotype in question. 212 

To account for the potentially complex genetic architecture of traits, we ran Bayesian 213 

Sparse Linear Mixed Models (BSLMM) implemented in GEMMA (30). BSLMM models two 214 

hyperparameters, a basal effect αi that captures the fact that many SNPs contribute to the 215 

phenotype, and an extra effect βi that captures the fact that not all SNPs contribute equally. SNP 216 

effects, which can be estimated as the sum of αi and βi (30), were strongly correlated between the 217 

scaling exponent and all climatic variables except temperature annual range (Dataset S5). As 218 

expected, correlations between SNP effects on scaling exponent and climate were strongest for 219 

mean annual temperature, and temperature and precipitation during summer (Dataset S5). 220 

Consistent with the measurement of broad-sense heritability (H2), ‘chip’ heritability - a proxy for 221 

narrow-sense heritability (h2) measured with GWA - was very high for the scaling exponent (h2 222 

= 0.87 versus H2 = 0.95; Table S1), suggesting that most of the phenotypic variance can be 223 

explained by the additive effects of SNPs controlling allometric variation. 224 
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Gene ontology (GO) analysis (31) of the 1% top-genes affecting the scaling exponent 225 

revealed enrichment in genes with catalytic activity and ones related to carbohydrate 226 

metabolism, post-embryonic development, post-translational protein modification, and response 227 

to abiotic stimulus (Fig. S4A, B). A large fraction of the proteins encoded by these genes are 228 

predicted to localize to plasma membranes or the chloroplast (Fig. S4C). Fst values across the 229 

100 top-genes were significantly higher than genome-wide Fst values (Fst [100 top-genes] = 0.23 230 

versus Fst [Genome-wide] = 0.17, P < 0.001; Fig. S3), which is consistent with Qst analysis and 231 

indicative of polygenic selection on the genes controlling growth allometry. As expected, PUB4 232 

is among the 100 top-genes associated with plant allometry, showing strong effects on both the 233 

scaling exponent and climatic variables (Fig. 4D, E). We estimated that PUB4 alone favors plant 234 

adaptation to warmer and drier summers by up to +1.4 °C and -3mm (Fig. 4D, E) through an 235 

increase of the scaling exponent by up to +0.03.  236 

A scan for genomic signatures of selection in the 50 kb region around PUB4 revealed 237 

increased Tajima’s D (Fig. 5A) and SNP-level Fst (Fig. 5B), but we did not observe signatures of 238 

recent selection sweeps. As an index of allelic diversity that quantifies departures from the 239 

standard neutral model (32), high Tajima’s D values indicate an excess of intermediate-240 

frequency alleles, a potential sign for balancing selection, specifically in A. thaliana where 241 

Tajima’s D is commonly negative due to recent population expansion and selfing (33, 34). This 242 

is consistent with molecular signatures of climate selection previously observed in A. thaliana 243 

(35, 36). Moreover, climate-envelope modelling of PUB4 allelic distribution revealed strong 244 

geographic structure associated with summer conditions; the major PUB4 allele is mostly found 245 

in temperate and cold northern parts of Europe (Fig. 5C), while the minor allele is mostly 246 

Mediterranean (Fig. 5D). This supports the role of PUB4 in evolutionary adaptation to warmer 247 

and drier regions around the Mediterranean through variation in growth scaling. 248 

Discussion 249 

Metabolic allometry links physiology, ecology and evolution at different levels of organization 250 

(4, 6, 37, 38). The study of scaling relationships in both plants and animals is grounded on the 251 

importance of universal metabolic properties that allow the measurement and prediction of 252 

critical rates of energy flow from individuals to the biosphere (6, 39). However, explanations for 253 
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the origin of allometric variation between species remain elusive, despite a recognized role of 254 

evolutionary processes in animals (40). Changes in scaling intercept in response to selection are 255 

well documented (41), but evidence for the evolution of allometric slopes is scarce (but see (42)), 256 

in particular in plants where the focus has been on the specific value that the allometric slope 257 

should take (e.g. ⅔ versus ¾ versus 1) (9, 13, 43). 258 

Our results reconcile recent debates on the origin of biological allometry. On the one 259 

hand, our results support the idea that growth allometry varies significantly and that genetic 260 

variation in allometry is maintained within species. On the other hand, the canonical ¾ scaling 261 

exponent reported within and across plant and animal species was found to be associated with a 262 

phenotypic optimum that maximizes fitness under benign conditions, consistent with a role of 263 

stabilizing selection (4). Nonetheless, depending on the local environment, deviations in both 264 

directions from the ¾ scaling exponent might be advantageous for stress resistance despite their 265 

cost on seed production. Thus, stabilizing selection on metabolic allometry could be disruptive 266 

under unfavorable environments, as we have found for A. thaliana. Allometric adaptation may be 267 

due to, for instance, selection for fast growth and short lifespan to escape drought, or selection 268 

for resistance to hydraulic cavitation associated with reduced stomatal conductance and carbon 269 

assimilation in late flowering ecotypes (23, 44). 270 

Specifically, these findings shed light on the important role of allometry for local 271 

adaptation to various climates in A. thaliana. Moreover, our results inform our understanding of 272 

the evolutionary basis of the tenets of MST. The maintenance of high intermediate-frequency 273 

nucleotide diversity in genes affecting allometry could result from long-term, geographically 274 

heterogeneous selection to optimize growth and survival in contrasting environments. This 275 

appears to have resulted in the genetic diversification of the scaling exponent around the intra- 276 

and interspecific mean of ¾, potentially reconciling the original MST prediction of an optimal 277 

scaling ¾ value with observed departures from it that have generated past debates (45). An 278 

intriguing question is whether the observed variation in scaling exponents across species (46) is 279 

associated with a similar climate adaptation as we observed for A. thaliana. Inter- and 280 

intraspecific variation in the vascular network and its impact on hydrodynamic resistance, 281 

resource distribution and plant allometry is already being explored (47, 48). If genetic variability 282 

in growth allometry is confirmed in other species and associated with climate, this would have 283 
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important implications for our understanding of the physiological bases of plant adaptation. 284 

Moreover, it would connect macroevolutionary patterns of trait covariation observed across 285 

species to microevolutionary processes occurring within species.  286 

 287 

Materials and Methods 288 

Published data. For stress resistance analysis, we used published data from two studies on the 289 

response of A. thaliana natural accessions to drought: one where 210 accessions shared with our 290 

study were subjected to severe, lethal drought and survival was estimated for all accessions (21), 291 

and one where 60 shared accessions were subjected to 7 d non-lethal drought and fresh weight 292 

measured (22). We also re-analyzed phenotypic data previously published (10, 23) from a 293 

population of 120 Ler-2 x Cvi recombinant inbred lines (49), and grown under water deficit and 294 

high temperature (10, 23).  295 

Climatic data consisted of 19 bioclimatic variables (http://www.worldclim.org/bioclim) 296 

with a 2.5 arc-minutes resolution for the 1950 to 2000 CE period, plus mean annual Potential 297 

Evapo-Transpiration (PET, mm) and annual Aridity Index downloaded from http://www.cgiar-298 

csi.org/data/global-aridity-and-pet-database (19). Monthly averages were calculated with 30 arc-299 

seconds (ca. 1 km). Additional details in SI. 300 

Plant Material and Growth. We selected 451 natural accessions of Arabidopsis thaliana from 301 

the 1001 Genomes project (17) (http://1001genomes.org/; Dataset S1). Seeds were from parents 302 

propagated under similar conditions in the greenhouse. Four replicates of each accession were 303 

grown, with one replicate each sown on four consecutive days. Two replicates per accession 304 

were harvested as 16 day-old seedlings for dissection, imaging and weighing, and two were 305 

cultivated until the end of the life cycle (until fruit ripening) for trait measurement. Plants were 306 

cultivated in hydroponics culture on rockwool. Seedlings were vernalized for 4°C (8 h light) for 307 

41 days. Plants were then transferred to 16 °C (12 h light). Additional details in SI. 308 

Plant Measurements. The Raspberry Pi Automated Plant Analysis (RAPA) system was used for 309 

continuous imaging using 192 micro-cameras (OmniVision OV5647), which simultaneously 310 

acquired 6 daily top-view 5 Megapixel images for each tray of 30 plants during the first 25 days 311 
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after vernalization. Recording and storage of images were managed through embedded 312 

computers (Raspberry Pi rev. 1.2, Raspberry Pi Foundation, UK). Inflorescences and rosettes of 313 

mature plants were separated and photographed (Canon EOS-1, Canon Inc., Japan). The rosette 314 

was dried for at least three days at 65 °C, and weighed with a microbalance (XA52/2X, A. Rauch 315 

GmbH, Graz, Austria).  316 

Fruits (siliques) were counted by eye on inflorescence images of 352 plants harvested at 317 

maturity. We analyzed the inflorescence pictures of all harvested plants with ImageJ (50) to 318 

estimate the number of fruits through image 2D skeletonization (18). The inferred variables were 319 

used to predict fruit number with linear regression (glm) performed on the 352 plants for which 320 

we had both measurements (18).  321 

Drought survival index were from published data, measured as the quadratic coefficient 322 

of the polynomial regression between green leaves and time after the end of watering; more 323 

negative values mean lower survival (21). Measurements of growth reduction under moderate 324 

drought were also from published data, measured as the percentage of rosette fresh weight after 325 

seven days of water deficit compared to control (22). In the re-analysis of the population of 120 326 

RILs previously phenotyped for growth scaling exponent (10), and trait plasticity in response to 327 

water deficit and high temperature (23), we measured resistance to combined stresses through the 328 

log ratio of dry mass under stress or no stress. Additional details in SI. 329 

Modeling Growth and RGR. Absolute growth rate (mg d-1) was estimated as the ratio of final 330 

rosette dry mass and plant lifespan. Using rosette dry mass estimated from image analysis (18), 331 

we fitted a sigmoid curve as a three-parameter logistic equation (51) with the function nls in R. 332 

From the parameters of the fitted function of each individual, we measured RGR (rosette growth 333 

rate divided by rosette dry mass, mg d-1 g-1) at the inflection point of the growth trajectory (18).  334 

Statistical Analyses. Statistical analyses except genomic analyses were performed in R (52). 335 

The coefficients of correlation (and their associated P-values) reported between phenotypic traits 336 

and climatic variables were the Pearson’s product moment coefficients obtained with the 337 

function cor.test in R. Effect of population structure on the scaling exponent was tested with 338 

ANOVA, using the nine genetic groups identified in the 1001 genomes dataset 339 

(http://1001genomes.github.io/admixture-map/) after removing admixed accessions (17). Broad-340 

sense heritability (H2) was measured as the proportion of variance explained by genotype (Vg) 341 
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over total variance (Vg + Ve) in a linear mixed model fitted with the ‘lme4’ R package, such as: 342 

H2 = Vg/(Vg + Ve). Similarly, Qst was measured as the amount of variance in phenotypes 343 

explained by genetic group membership. As for H2, we used linear mixed model in the package 344 

‘lme4’ in R to fit traits against genetic groups (nine genetic groups after removing ‘admixed’ 345 

accessions).  346 

Genetic Analyses. Conventional genome-wide association (GWA) studies were performed with 347 

easyGWAS (25) (https://easygwas.ethz.ch/). We used 1,793,606 SNPs with a minor allele 348 

frequency (MAF) above 0.05 to compute the realized relationship kernel from the full sequence 349 

of the accessions (http://1001genomes.org/). Association analyses were performed with 350 

EMMAX (53). For polygenic GWA, we used the Bayesian Sparse Linear Mixed model 351 

(BSLMM) implemented in GEMMA (30). Gene Ontology (GO) analysis was performed online 352 

using AgriGO (http://bioinfo.cau.edu.cn/agriGO/) (31) and REVIGO (http://revigo.irb.hr/) (54). 353 

Prior to Fst calculation, genetic groups in the 1001 Genomes collection had been defined 354 

by ADMIXTURE clustering (55) (http://1001genomes.github.io/admixture-map/) (17). Genome-355 

wide estimates of Weir and Cockerham Fst (56) were obtained with PLINK v1.9 (57). Local 356 

selection scans (Tajima’s D and Fst) were obtained in 1 kb sliding windows in the 50 kb region 357 

around PUB4 using PLINK. Selection sweep scans were carried out using SweeD software (58). 358 

Additional details in SI. 359 

Modeling Geographic Distribution. We performed stepwise regression to identify the set of 360 

climatic variables that best explain the variation of the scaling exponent between 36°N and 64°N, 361 

and 10.5°W and 27.5°E. We then used linear regression of the scaling exponent with the 13 best 362 

climatic variables to predict the exponent at every location across Europe. Geographic 363 

representation was obtained with the package ‘raster’ in R. We performed climate-envelope 364 

modelling of allelic frequency at PUB4 with maxent modelling (59), using the package ‘dismo’ 365 

and ‘raster’ in R. We used the 19 Bioclim variables downloaded from Worldclim database at the 366 

origin of accessions with a 2.5 arc-minutes resolution. Additional details in SI. 367 
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Figure Legends 

Figure 1. Variation of growth scaling in A. thaliana. (A) Linear (dashed line) and quadratic 

(solid line) fits of mean growth rate versus final dry mass in 451 A. thaliana accessions. Box: 

linear fit (black line) of growth rate versus plant dry mass in 333 vascular plant species from 

Niklas and Enquist (8). (B) Distribution of the scaling exponent derived from the quadratic fit in 

the 451 A. thaliana accessions. (C) Relationship between relative growth rate (RGR) at growth 

maximum, plant lifespan and scaling exponent in the 451 accessions. Black curve is Loess fit ± 

95% CI (grey area). In all panels, dots and triangles represent genotypic and species means, 

respectively, colored by the value of the scaling exponent reported in panel (B). 

Figure 2. Relationships between scaling exponent and climate. (A-C) Correlations between 

the scaling exponent measured across the 451 accessions and local mean annual temperature (A), 

maximum temperature of the warmest month (B), and precipitation of the driest month (C). Dots 

represent genotypic mean. Fitted lines are SMA regressions. r is the Pearson’s coefficient of 

correlation with associated P-value. (D) Geographic distribution of the scaling exponent across 

Europe in A. thaliana, modelled as a function of 13 Bioclim variables. Colors indicate the 

predicted value of the scaling exponent. Black dots represent geographic origins of the 

accessions phenotyped. 

Figure 3. Relationships between scaling exponent, fitness and resistance to abiotic stress. 

(A) Relationship between fruit production and scaling exponent in the 451 accessions. Black 

curve is Loess fit ± 95% CI (dashed lines). (B) Stress resistance expressed as the log10 of the 

ratio of final rosette dry mass under water deficit, high temperature, and both compared to 

control conditions, across 120 A. thaliana recombinant inbred lines. Data have been published 

(10, 23). Dots indicate genotypic means (n = 4). Colored curves are Loess fit ± 95% CI (dashed 

lines).  

Figure 4. GWA mapping of allometric variation in A. thaliana. (A-C) Test statistics for SNP 

associations (EMMAX) with (A) scaling exponent, (B) maximum temperature during the 

warmest month, and (C) precipitation during the driest month. Dots are 1% top-associated SNPs 

along the five chromosomes (alternate grey and black dots represent chromosomes). Orange 

lines represent genome-wide significance threshold with Bonferroni correction at α = 0.05 (solid 

line) and α = 0.1 (dashed line). Red triangle is PUB4 (FDR < 0.05) (D, E) Correlation between 
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SNP effects (BSLMM) for scaling exponent and maximum temperature of the warmest month 

(D), and precipitation of the driest month (E). Black dots represent similar SNP effect for x and y 

variables (both positive or both negative). r is Pearson’s coefficient of correlation (***: P < 

0.001). 

Figure 5. Genomic signatures of adaptation to climatic conditions at genes controlling the 

scaling exponent. (A, B) Tajima’s D (A) and Fst (B) in a 50 kb region around PUB4 and 

CYP81D6. Grey dots are mean values in 1 kb-bins, red lines indicate positions of significant 

SNPs. (C, D) Predicted geographic frequency of the major (C) and minor (D) alleles at PUB4 

following climate-envelope modelling with 19 Bioclim variables. Color gradient indicates 

predicted allele frequency. 
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