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ABSTRACT 18 
 19 
Vitis vinifera cv. Cabernet Sauvignon is one of the world’s most widely cultivated red wine grape varieties 20 
and often used as a model for studying transcriptional networks governing berry development and 21 
metabolism. Here, we applied single-molecule sequencing technology to reconstruct the transcriptome of 22 
Cabernet Sauvignon berries during ripening. We added an error-correction step to the standard Iso-Seq 23 
pipeline that included using Illumina RNAseq reads to recover lowly-expressed transcripts. From 672,635 24 
full-length non-chimeric reads, we produced 170,860 transcripts capturing 13,402 genes of the Cabernet 25 
Sauvignon genome. Full-length transcripts refined approximately one third of the gene models predicted using 26 
several ab initio and evidence-based methods. The Iso-Seq information also helped identify 563 additional 27 
genes, 4,803 new alternative transcripts, and the 5' and 3' UTRs in the majority of predicted genes. 28 
Comparisons with the gene content of other grape cultivars identified 549 Cabernet Sauvignon-specific genes, 29 
including 65 genes differentially regulated during ripening. Some of these genes were potentially associated 30 
with the phenylpropanoid and flavonoid pathways, which may influence unique Cabernet Sauvignon berry 31 
attributes. Over 23% of the 36,687 annotated genes in Cabernet Sauvignon had two or more alternative 32 
isoforms, predominantly due to intron retention and alternative acceptor and donor sites. We profiled the 33 
expression of all isoforms using short read sequencing and identified 252 genes whose alternative transcripts 34 
showed different expression patterns during berry development.  35 

36 
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INTRODUCTION 37 
 38 
The history of Vitis vinifera (grape) is deeply intertwined with that of civilization and is closely associated 39 
with trade, literature, and culture (Campbell, 2006; McGovern et al., 2003; Unwin, 2005; Westering and 40 
Ravenscroft, 2001). Grape was probably domesticated between 6,000 and 22,000 years ago in the Near East 41 
(McGovern et al., 2003; Myles et al., 2011; Zhou et al., 2017). Once established, grape-growing (viticulture) 42 
and wine-making (enology) often became significant components of countries’ economies, with fruit being 43 
used for table grapes, raisins, wine, spirits and other products. In terms of gross production value, grape is 44 
among the ten most valuable crops globally (69,200.62 million USD; http://www.fao.org/faostat/en/#data). 45 
Grape has proven useful for the study of non-climacteric, fleshy fruit (Davies et al., 1997). Though ripening 46 
in climacteric fruit like tomato is well-studied and largely governed by ethylene, ripening in non-climacteric 47 
fruit like grape, strawberry and citrus is not entirely clear and involves several hormone families (Böttcher et 48 
al., 2011; Fortes et al., 2015; Koyama et al., 2010; Symons et al., 2012). Grape has been a useful model for 49 
examining the complex crosstalk between these hormones and may give insight into their relationships in 50 
other models and contexts (Blanco-Ulate et al., 2017; Chervin et al., 2004; Qian et al., 2016). 51 
 52 
Genome-wide expression studies using microarray and, more recently, RNA sequencing (RNAseq) revealed 53 
that ripening involves the expression and modulation of ~23,000 genes (Massonnet et al., 2017a) and that the 54 
ripening transition is associated with a major transcriptome shift (Fasoli et al., 2012). Transcriptomics has 55 
proven invaluable for characterizing a ripening program that is similar across an array of grapevine cultivars 56 
(Massonnet et al., 2017a), for assessing differences between them (Da Silva et al., 2013; Jiao et al., 2015; 57 
Venturini et al., 2013), identifying key ripening related genes (Massonnet et al., 2017a; Palumbo et al., 2014), 58 
and determining the impact of stress and viticultural practices on ripening (Amrine et al., 2015; Blanco-Ulate 59 
et al., 2015, 2017; Corso et al., 2015; Deluc et al., 2009; Hopper et al., 2016; Lecourieux et al., 2017; 60 
Massonnet et al., 2017b; Pastore et al., 2013; Savoi et al., 2017, 2016; Xi et al., 2014; Zenoni et al., 2017). 61 
This knowledge increases the possibility of exerting control over the ripening process, improving fruit 62 
composition under suboptimal or adverse conditions, and honing desirable traits in a crop with outstanding 63 
cultural and commercial significance.  64 
 65 
These genome-wide expression analyses were enabled by the first effort to sequence the grape genome and 66 
generate a contiguous assembly for the species (Jaillon et al., 2007); this first effort focused on a highly 67 
homozygous line (PN40024) that was created by several rounds of backcrossing to reduce heterozygosity and 68 
facilitate genome assembly (Jaillon et al., 2007). Though poor by current standards (contig N50 = 102.7 kb), 69 
this pioneering, chromosome-resolved assembly served as the basis for numerous publications. However, the 70 
structural diversity of grape genomes makes using a single one-size-fits-all reference genome inappropriate 71 
(Golicz et al., 2016a, 2016b). There is substantial unshared gene content between cultivars, with 8 - 10% of 72 
the genes missing when two cultivars are compared (Da Silva et al., 2013). Although many of these variable 73 
genes are not essential for the plant survival, these genes can account for 80% of the expression within their 74 
respective families and expand key gene families possibly associated with cultivar-specific traits (Da Silva et 75 
al., 2013). Assembling genome references for all interesting cultivars is impractical in part because the cost 76 
of doing so remains prohibitive. In addition, the grape genome has also features that impede the development 77 
of high-quality genome assemblies for other cultivars than PN40024. Although the V. vinifera genome is 78 
relatively small (Jaillon et al., 2007; Lodhi and Reisch, 1995) and as repetitive as other plant genomes of 79 
similar size (Jaillon et al., 2007; Michael and Jackson, 2013), it is highly heterozygous (Da Silva et al., 2013; 80 
Gambino et al., 2017; Jaillon et al., 2007; Venturini et al., 2013). Most domesticated grape cultivars are 81 
crosses between distantly related parents; this may influence the high heterozygosity observed in the species 82 
(Bowers and Meredith, 1997; Chin et al., 2016; Cipriani et al., 2010; Di Gaspero et al., 2005; Ibáñez et al., 83 
2009; Lacombe et al., 2013; Lopes et al., 1999; Minio et al., 2017; Myles et al., 2011; Ohmi et al., 1993; Sefc 84 
et al., 1998; Strefeler et al., 1992; Tapia et al., 2007). Earlier attempts using short reads struggled to resolve 85 
complex, highly heterozygous genomes (Di Genova et al., 2014; Gnerre et al., 2011; Huang et al., 2012; 86 
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Kajitani et al., 2014; Safonova et al., 2015). A limited ability to call consensus polymorphic regions yields 87 
highly fragmented assemblies where structural ambiguity occurs and alternative alleles at heterozygous sites 88 
are excluded altogether (Velasco et al., 2007). Single Molecule Real Time (SMRT) DNA sequencing (Pacific 89 
Biosciences, California, USA) has emerged as the leading technology for reconstructing highly contiguous, 90 
diploid assemblies of long, highly repetitive genomes that include phased information about heterozygous 91 
sites (Chin et al., 2013, 2016; Doi et al., 2014; Gordon et al., 2016; Huddleston et al., 2017; Pryszcz and 92 
Gabaldón, 2016; Ricker et al., 2016; Seo et al., 2016; Vij et al., 2016). Recently, we used Vitis vinifera cv. 93 
Cabernet Sauvignon to test the ability of SMRT reads to resolve both alleles at heterozygous sites in the 94 
genome (Chin et al., 2016). The assembly using the FALCON-Unzip assembly pipeline was significantly 95 
more contiguous than the original Pinot noir PN40024 assembly (contig N50 = 2.17 Mb) and provided the 96 
first phased sequences of the diploid genome of the species (Minio et al., 2017).  97 
 98 
Transcriptome sequencing is a useful alternative to whole-genome reconstruction because it captures the 99 
functional genome. The ability to reconstruct the transcriptomes of different cultivars gives insight into 100 
cultivar-specific gene content that is otherwise unavailable (Da Silva et al., 2013; Jiao et al., 2015; Venturini 101 
et al., 2013). SMRT technology has recently enabled the investigation of expressed gene isoforms (Iso-Seq) 102 
in a variety of organisms, including a handful of plant species (Filichkin et al., 2018; Liu et al., 2017; Zulkapli 103 
et al., 2017); the long reads delivered by this method are full-length transcripts sequenced from their 5’-ends 104 
to polyadenylated tails (Dong et al., 2015; Gao et al., 2016; Kuo et al., 2017; Price and Gibas, 2017; Tombácz 105 
et al., 2016; Weirather et al., 2015; Workman et al., 2017). More importantly, Iso-Seq is an ideal technology 106 
for reconstructing a transcriptome without a reference sequence and for resolving isoforms (Honaas et al., 107 
2016; Ju et al., 2016). Retrieving polyadenylated full-length molecules captures splice variants and some non-108 
coding RNAs that can vary with cell-type (Swarup et al., 2016), developmental stage (Thatcher et al., 2016), 109 
or stress (Liu et al., 2016; Yan et al., 2012). Indeed, alternative splicing contributes to the complexity of the 110 
genome (Brett et al., 2002) that could not be definitively characterized without transcript information. 111 
 112 
This study generated a comprehensive and detailed transcriptome composed of full-length transcripts using 113 
Iso-Seq. We show how error-correction with high coverage short-read data recovers an important fraction of 114 
the transcriptome otherwise lost by the standard Iso-Seq pipeline. Full-length transcripts were used to annotate 115 
the complete gene space of Cabernet Sauvignon, which led to the identification of transcripts associated with 116 
berry ripening unique to this cultivar. Full-length isoform information allowed the identification of multiple 117 
splice variants for most of the genes in the genome. We show that a transcriptome reference that includes 118 
splice variant information allows gene expression profiling at the isoform level and demonstrate the value of 119 
our approach by highlighting cases of contrasting expression patterns of isoforms at the same locus, whose 120 
differential expression during ripening would have been missed if mapping was carried out without isoform 121 
information.   122 
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MATERIALS AND METHODS 123 
 124 
Plant material and RNA isolation 125 
Grape berries from Cabernet Sauvignon FPS clone 08 were collected in Summer 2016 from vines grown in 126 
the Foundation Plant Services (FPS) Classic Foundation Vineyard (Davis, CA, USA). Supplemental Table 127 
S1 provides weather information for the sampling days. Between 10 and 15 berries were sampled at pre-128 
véraison, véraison, post-véraison, and at commercial maturity (harvest). The ripening stages were visually 129 
assessed based on color development and confirmed by measurements of soluble solids (Figure 1; 130 
Supplemental Table S2). On the day of sampling, berries were deseeded, frozen in liquid nitrogen, and 131 
ground to powder (skin and pulp). Total RNA was isolated using a Cetyltrimethyl Ammonium Bromide 132 
(CTAB)-based extraction protocol as described in Blanco-Ulate et al. (2013). RNA purity was evaluated with 133 
a Nanodrop 2000 spectrophotometer (Thermo Scientific, Hanover Park, IL, USA). RNA was quantified with 134 
a Qubit 2.0 Fluorometer using the RNA broad range kit (Life Technologies, Carlsbad, CA, USA). RNA 135 
integrity was assessed using electrophoresis and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 136 
Clara, CA, USA). Only RNA with an RNA integrity number (RIN) > 8.0 was used for SMRTbell library 137 
preparation.  138 
 139 
Library preparation and sequencing 140 
Total RNA from 4 biological replicates per developmental stage was pooled in equal amounts and 1 µg of the 141 
pooled RNA was used for cDNA synthesis and SMRTbell library construction using the SMARTer PCR 142 
cDNA synthesis kit (Clontech Laboratories, Inc. Mountain View, CA, USA). First-strand cDNA synthesis 143 
was performed using the SMRTScribe Reverse Transcriptase (Clontech Laboratories, Inc. Mountain View, 144 
CA, USA) and each developmental stage was individually barcoded (Supplemental Table S3). To minimize 145 
artifacts during large-scale amplification, a cycle optimization step was performed by collecting five 5 µl 146 
aliquots at 10, 12, 14, 16, and 18 PCR cycles. PCR reaction aliquots were loaded on an E-Gel pre-cast agarose 147 
gel 0.8 % (Invitrogen, Life Technologies, Carlsbad, CA, USA) to determine the optimal cycle number. 148 
Second-strand cDNA was synthesized and amplified using the Kapa HiFi PCR kit (Kapa Biosystems, 149 
Wilmington, MA, USA) with the 5’ PCR primer IIA (Clontech Laboratories, Inc. Mountain View, CA, USA) 150 
following the manufacturer’s instructions. Large-scale PCR was performed using the number of cycles 151 
determined during the optimization step (14 cycles). Barcoded double-stranded cDNAs were pooled at equal 152 
amounts and used for size selection. Size selection was carried out on a BluePippin (Sage Science, Beverly, 153 
MA, USA) and 1-2 kb, 2-3 kb, 3-6 kb, and 5-10 kb fractions were collected. After size selection, each fraction 154 
was PCR-enriched prior to SMRTbell template library preparation. cDNA SMRTbell libraries were prepared 155 
using 1-3 µg of PCR enriched size-selected samples, followed by DNA damage repair and SMRTbell ligation 156 
using the SMRTbell Template Prep Kit 1.0 (Pacific Biosciences, Menlo Park, CA, USA). A second size 157 
selection was performed on the 3-6 Kb and 5-10 Kb fractions to remove short contaminating SMRTbell 158 
templates. A total of 8 SMRT cells were sequenced on a PacBio Sequel system (DNA Technologies Core, 159 
University of California, Davis, USA) producing 23.6 Gbp of raw reads. Demultiplexing, filtering, quality 160 
control, clustering and polishing of the Iso-Seq sequencing data were performed using SMRT Link (ver. 4.0.0) 161 
(Supplemental Table S4). 162 
 163 
RNAseq libraries were prepared using the Illumina TruSeq RNA sample preparation kit v.2 (Illumina, San 164 
Diego, CA, USA), following the low-throughput protocol. Each biological replicate was barcoded 165 
individually. Final libraries were evaluated for quantity and quality with the High Sensitivity chip on a 166 
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). Libraries were sequenced in 100 bp paired-167 
end mode, using an Illumina HiSeq4000 (DNA Technologies Core Facility, University of California, Davis, 168 
USA) producing 8,063,142 ± 2,040,693 reads/sample (Supplemental Table S5). 169 
 170 
Iso-Seq read processing and transcriptome reconstruction 171 
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Cabernet Sauvignon primary contigs and haplotigs FALCON-unzip assembly (Chin et al., 2016) were used 172 
as genomic reference for V. vinifera cv. Cabernet Sauvignon FPS 08. Reads were aligned on the Cabernet 173 
Sauvignon genomic contigs using GMAP (ver. 2015-09-29) (Wu and Watanabe, 2005) using the following 174 
parameters “-B 4 -f 2 --split-output”. Error rates were estimated from the identity and coverage of best 175 
alignments. Coding sequences (CDS) were identified using Transdecoder (Haas et al., 2013) as implemented 176 
in the PASA (ver. 2.1.0) (Haas et al., 2003) pipeline. Error correction was performed using LSC (ver. 2.0) 177 
(Au et al., 2012) using a minimum coverage threshold of 5 read (--short_read_coverage_threshold 5). Genome 178 
independent clustering of the isoforms was performed with Evidential Gene (Gilbert). Genome based 179 
clustering genome was performed using PASA (ver. 2.1.0) (Haas et al., 2003) with alignments carried out 180 
with BLAT (ver. 36x2) (Kent, 2002) and GMAP (Wu and Watanabe, 2005) with parameters reported in 181 
Supplemental File S1 specifying that all the sequences are full-length transcripts.  182 
 183 
Cabernet Sauvignon genome annotation 184 
A repeat library was created ad hoc for Cabernet Sauvignon following the MAKER-P advanced repeat 185 
workflow (Maker-P - Repeat Library Construction -Advanced). MITEs were identified with MITEHunter 186 
(Han and Wessler, 2010); LTRs and TRIMs were identified with LTRharvest (Ellinghaus et al., 2008) and 187 
LTRdigest (Steinbiss et al., 2009). RepeatModeler (Smit and Hubley) and RepeatMasker (Smit et al.) were 188 
then used to combine and classify the information in a custom library of Cabernet Sauvignon repeats models. 189 
The custom models were finally combined with plant repeat models database to search for repetitive elements 190 
in the genome and in the transcriptome using RepeatMasker (Smit et al.). Iso-Seq reads were considered 191 
having a significant match with interspersed repeats when showing a coverage ≥ 75% and an identity ≥ 50%. 192 
 193 
To create a high quality training set for ab initio gene prediction, PN40024 gene models were aligned on the 194 
primary Cabernet Sauvignon assembly with GMAP (Wu and Watanabe, 2005) and uniquely aligning models 195 
were kept only if: 1) the alignment length was at least 98% of the original model to ensure no major loss of 196 
exons; 2) models contained a full ORF coding for a protein with both identity and coverage ≥90% compared 197 
to the protein encoded by the aligned sequence; 3) splice sites were confirmed by Cabernet Sauvignon 198 
RNAseq data. In case of redundancy due to multiple different models encoding for the same protein, only one 199 
representative was kept. 200 
 201 
Ab initio trainings and predictions were carried out with SNAP (ver. 2006-07-28) (Korf, 2004), Augustus 202 
(ver. 3.0.3) (Stanke et al., 2006), GeneMark-ES (ver. 4.32) (Lomsadze et al., 2005), GlimmerHMM (ver. 203 
3.0.4) (Majoros et al., 2004), GeneID (ver. 1.4.4) (Parra et al., 2000) and Twinscan (Brent, 2008; Korf et al., 204 
2001) (ver. 4.1.2, using TAIR10 annotation for Arabidopsis as informant species). MAKER-P (ver. 2.31.3) 205 
(Campbell et al., 2014a) was used to integrate the ab initio predictions with the experimental evidence listed 206 
in Supplemental Table S8. Only MAKER-P models showing an Annotation Edit Distance (AED) < 0.5 were 207 
kept.  208 
 209 
Gene structure refinement was carried out with PASA (ver. 2.1.0) (Haas et al., 2003) using as evidence the 210 
Iso-Seq data, Clustered isoforms, corrected reads and raw reads, along with all the available grape 211 
transcriptomic data. Parameters can be found in Supplemental Table File 2. Types of alternative splicing 212 
were classified using AStalavista (ver. 3.0) (Foissac and Sammeth, 2007). For structure refinement, all 213 
RNAseq data were de novo assembled (separately for each sample) using a reference-based approach: 214 
HISAT2 alignments were used as input for Stringtie (ver. 1.1.3)(Pertea et al., 2015) without any a priori 215 
annotation and clustered in a non-redundant dataset using CD-HIT-EST (ver. 4.6)(Li and Godzik, 2006) with 216 
an identity threshold of 99%.  217 
  218 
Functional annotation was performed with BLAST (Altschul et al., 1990) search using the RefSeq protein 219 
database (ftp://ftp.ncbi.nlm.nih.gov/refseq, retrieved January 17th, 2017). Functional domains were identified 220 
with InteProScan (ver. 5) (Jones et al., 2014). Enrichment analysis was done the BiNGO (ver. 2.4) (Maere et 221 
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al., 2005) plugin tool in Cytoscape (ver. 3.0.3) (Shannon et al., 2003) with Biological Process GO categories. 222 
Overrepresented Biological Process GO categories were identified using a hypergeometric test with a 223 
significance threshold of P-value = 0.01. Non-coding RNAs were searched for with Infernal (ver. 1.1.2) 224 
(Nawrocki et al., 2009) using the Rfam database (ver. 12.2) (Nawrocki et al., 2015). Secondary overlapping 225 
alignments and structures with an e-value ≥ 0.01 were rejected. Hits on the minus strand of the Iso-Seq reads 226 
were rejected as well as matches that were truncated or covering less than 80% of the entire read. 227 
 228 
Short-read alignment and expression profiling 229 
Reads were aligned on transcript sequences using Bowtie2 (ver. 2.26) (Langmead and Salzberg, 2012). 230 
Differential gene expression analysis was performed for the 3 pairwise comparisons of consecutive growth 231 
stages using DESeq2 (ver. 1.16.1) (Love et al., 2014). Expression of RPKM > 1 was used as minimum 232 
threshold to consider a transcript expressed. K-means clustering was performed with MeV (ver. 4.9) (Saeed 233 
et al., 2003) using the 2,526 gene loci with one or more differentially regulated transcripts (P-value < 0.05) 234 
at least at one stage of berry development. Before processing, RPKM values were log2 transformed (log2 235 
[RPKM average + 1]). K-means cluster analysis was performed with 100 iterations and a number of co-236 
expressed clusters equal to three, four and five. The number of clusters was established using figure of merit 237 
(FOM) values (1–20 clusters, 100 iterations, Supplemental Figure S8). Genomic loci whose alternative 238 
transcripts were members of more than one co-expression cluster were considered as genomic loci whose 239 
alternative transcripts showed different patterns of gene expression during berry development (Supplemental 240 
File S7 and Figure S9).   241 
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RESULTS AND DISCUSSION 242 
 243 
Full-length cDNA sequencing provides comprehensive representation of the Cabernet Sauvignon 244 
transcriptome during berry development 245 
To obtain a comprehensive representation of the transcripts expressed during berry development, we isolated 246 
RNA from Cabernet Sauvignon berries (Figure 1) before the onset of ripening (4.35 ± 0.39 ºBrix), at (10.94 247 
± 0.26 ºBrix) and after véraison (18.38 ± 0.61 ºBrix), and at commercial ripeness (20.33 ± 0.76 ºBrix). To 248 
avoid loading bias, cDNAs were fractionated based on their length to produce four libraries at each 249 
developmental stage in size ranges of 1-2 kbp, 2-3 kbp, 3-6 kbp, or 5-10 kbp. Libraries derived from different 250 
developmental stages were barcoded and libraries with similar cDNA size were pooled together. Each library 251 
pool was sequenced independently on two SMRT cells of a Pacific Biosciences Sequel system generating a 252 
total of 23.6 Gbp. In parallel, the same samples were sequenced using Illumina technology to provide high 253 
coverage sequence information for error correction and for gene expression quantification (Supplemental 254 
Table S5). Demultiplexing, filtering and quality control of SMRT sequencing data were performed using 255 
SMRT Link as described in the Methods section. A total of 672,635 full-length non-chimeric (FLNC; Figure 256 
2) reads with a maximum length of 14.6 kbp and an N50 of 3.5 kbp were generated (Supplemental Table 257 
S4). FLNC reads were further polished and clustered into 46,675 single representatives of expressed 258 
transcripts (henceforth, polished-clustered Iso-Seq reads or PCIRs) ranging from 400 bp to 8.8 kbp with an 259 
N50 of 3.6 kbp (Supplemental Table S4). The alignment of FLNC and PCIRs to the genomic DNA contigs 260 
of the same Cabernet Sauvignon clone (Chin et al., 2016; Minio et al., 2017) confirmed that sequence 261 
clustering and polishing successfully increased sequence accuracy, whose median values were 95.4% in 262 
FLNC and 99.6% in the PCIRs. The increase in sequence accuracy was also reflected by the significantly 263 
longer detectable coding sequences (CDS) in the PCIRs compared to the short and fragmented CDS found in 264 
the FLNC reads (Figure 2). The residual sequence discrepancy between PCIRs and the genomic contigs could 265 
be explained by heterozygosity and/or sequencing errors, but unexpectedly not by coverage (Supplemental 266 
Figure S1).  267 
 268 
Over 18.5% of the FLNC reads did not cluster with any other reads and were discarded by the SMRT Link 269 
pipeline. When mapped on the genomic contigs, the uncorrected reads displayed a sequence accuracy that 270 
reflected the typical error rate of 10 - 20% of the technology (Figure 1) (Giordano et al., 2017; Koren et al., 271 
2016; Zimin et al., 2017). High error rates also resulted in short and fragmented detectable CDS (Figure 1). 272 
To recover the information carried by these 124,185 uncorrected FLNC, which represented an important 273 
fraction of the transcriptome (see below), we error-corrected their sequences with LSC (Au et al., 2012) using 274 
the short reads generated using Illumina technology. As for the PCIRs, error correction resulted in greater 275 
sequence accuracy and longer CDS (Figure 2). This result confirmed the importance of integrating 276 
sequencing technologies that provide complementary benefits, long reads covering full-length transcripts of 277 
SMRT sequencing together with high coverage and accurate short Illumina reads.  278 
 279 
PCIRs and error corrected FLNC (C-FLNC) were finally combined into a single dataset of 170,860 corrected 280 
Iso-Seq isoforms (CISIs). As low as 1.7 % (2,826) of the CISIs showed significant homology with 281 
interspersed repeats. LTRs and LINEs were the most abundant orders with 778 and 729 representatives, 282 
respectively. Chloroplast and mitochondria genes represented a small fraction of the CISIs with only 89 283 
(0.05%) isoforms having a significant match (50% identity and mutual alignment coverage). Excluding these 284 
organellar transcribed isoforms, only 164 CISIs (0.1%) failed to align to the Cabernet Sauvignon genomic 285 
contigs (Supplemental Table S6), confirming the completeness of the genome reference and the negligible 286 
biological contamination of the berry samples.  287 
 288 
By aligning the CISIs to the Cabernet Sauvignon genomic contigs, we determined the number of genomic 289 
loci derived from the different full-length transcripts. The 170,860 isoforms merged into a non-redundant set 290 
of 21,680 transcripts that mapped onto 13,402 different loci in the genome with a median number of 291 
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alternative isoforms per locus of 1.6 ± 1.4. The CISIs were also clustered independently of any genome 292 
reference with EvidentialGene (Gilbert). A larger number of non-redundant transcripts (29,482) was retained 293 
by clustering, which nonetheless represented a similar number of genomic loci (13,596) when they were 294 
aligned to the genomic contigs. In combination, the two methods identified a total of 15,005 expressed loci 295 
with over 85% overlap and remarkable agreement in gene structure (~98%). Interestingly, only 25% of the 296 
loci were represented by CISIs at all ripening stages, while about one third were detected by Iso-Seq only at 297 
specific stages (Figure 3A) confirming the importance of collecting different stages of development to 298 
capture the complexity of the berry transcriptome (Reddy et al., 2013; Vitulo et al., 2014). As expected, 299 
transcripts present in the PCIRs dataset were found associated with higher expression levels than C-FLNC 300 
(Figure 3B). Importantly, the 15,005 loci identified by Iso-Seq represented about 82% of the total loci 301 
detectable by RNAseq using Illumina suggesting that only a minority of lowly expressed genes were not 302 
sequenced by Iso-Seq or were lost in the analysis (Figure 3B).  303 
 304 
Error corrected Iso-Seq isoforms improve gene model prediction  305 
Full-length cDNA sequencing has been recently shown to improve gene annotations in eukaryotic genomes 306 
(Chen et al., 2017; Clavijo et al., 2017; Hoang et al., 2017; Korlach et al., 2017; Li et al., 2017; Semler et al., 307 
2017; Wang et al., 2018; Xu et al., 2017; Zhang et al., 2017). We incorporated the Iso-Seq information in the 308 
process of protein-coding gene prediction in the Cabernet Sauvignon genome as described in Figure 4. We 309 
first masked the repetitive regions of the genome using a custom-made library prepared for Cabernet 310 
Sauvignon containing MITE, LTR and TRIM information. We identified 412,994 repetitive elements for a 311 
total of 313 Mb, which masked ~53% of the genome (Supplemental Table S7). LTRs were the most abundant 312 
class covering over 240 Mb of the genome, with Gypsy and Copia families accounting for 136 Mb and 64.6 313 
Mb, respectively. MAKER-P (Campbell et al., 2014b) was then used to identify putative protein-coding loci, 314 
combining the results of six ab initio predictors trained ad hoc with publicly available experimental evidences. 315 
Ab initio predictors were trained using a custom set of 4,000 randomly selected gene models out of the 5,636 316 
high quality, non-redundant, and highly conserved gene models of the PN40024 V1 transcriptome (4,459 317 
multiexonic and 1,177 monoexonic). Prediction processes produced over 296,000 models corresponding to 318 
3.53 ± 4.98 CDSs per transcript with an average CDS length of 810 bp. Experimental evidence from public 319 
databases (Supplemental Table S8) were incorporated and used to validate the predicted models identifying 320 
41,375 optimal distinct gene loci. Based on similarity to experimental evidence, we finally retained a total of 321 
38,227 high-quality models (AED < 0.5). 322 
 323 
To further refine the gene models, introduce alternative splicing events, and update the annotations of UTRs 324 
and CISIs, RNAseq Illumina data were introduced sequentially along with all the publicly available grapevine 325 
transcriptome assemblies. PCIRs permitted the annotation of 95 loci that were missed by MAKER-P and 326 
introduced 953 new alternative transcripts; C-FLNC reads introduced 468 new loci and 1,349 new alternative 327 
transcripts; and FLNC reads introduced 2,501 new alternative transcripts. RNAseq data and the other 328 
available grapevine transcriptomes allowed the annotation of 662 additional loci and 4,435 new alternative 329 
transcripts. At the end of the process, only 15,691 of the original MAKER-P gene models were not updated 330 
or modified by the refining procedure. The annotated models were compared to proteins in the RefSeq 331 
database and functional domains identified with InterProScan (Jones et al., 2014) in order to assign functional 332 
information to each isoform. The 2,477 predicted genes that did not show any similarity to known proteins 333 
and did not contain any known functional domain were removed. The final annotation consisted of 55,886 334 
transcripts on 36,687 loci (Table 1), up to 29 kb in length with an average of 5.84 exons per transcript. The 335 
identified models encoded for proteins comparable in length with known grape proteins, with just 7.3% 336 
diverging more than 50% from their most similar and/or co-linear PN40024 protein models (Supplemental 337 
Figure S1). Gene ontology (GO) terms were assigned to 45,271 transcripts based on homology with protein 338 
domains in RefSeq and InterPro databases (Supplemental Figure S3-S4, Supplemental file S3-S6).  339 
 340 
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We scanned both CISIs and the genome assembly for non-coding RNA (ncRNA) using the covariance models 341 
of the Rfam database. In the CISI dataset, 182 isoforms were annotated as ncRNAs, all ascribed to ribosomal 342 
RNA, 145 of them attributed to the large subunit (clan CL00112) and 37 to the small subunit (clan CL00111). 343 
In the genomic contigs, we identified 3,238 non-overlapping putative ncRNA structures belonging to 236 344 
different families covering a total of 638 kb of the assembly (Supplemental Table S9). 345 
 346 
Overall, these results demonstrate that incorporating complete isoform sequencing information while 347 
annotating the gene space not only improved the predicted gene models, but also increased the number of 348 
identified coding sequences even when extensive RNAseq data is available. Importantly, because they 349 
represent entire molecules and not de novo assembled contigs, Iso-Seq reads provided direct experimental 350 
evidence supporting the structure and expression of alternative transcripts and UTRs. UTRs are important 351 
regulatory elements with strong influence on the post-transcriptional regulation of gene expression; they are 352 
hard to predict precisely ab initio. Here we show that, by incorporating Iso-Seq and multiple transcriptional 353 
evidences, we were able to annotate both 5’ and 3’ UTRs in the majority of the transcripts.  354 
 355 
The Cabernet Sauvignon private transcriptome  356 
Previous analyses of gene content in a limited number of grape cultivars showed that up to 10% of grape 357 
genes may not be shared between genotypes. Some of these dispensable genes are associated with cultivar 358 
specific characteristics (Da Silva et al., 2013). To identify cultivar-specific genes in Cabernet Sauvignon, all 359 
55,886 annotated transcripts were compared to the predicted CDS of PN40024 (both V1 and V2; (Jaillon et 360 
al., 2007; Vitulo et al., 2014)), and the transcriptomes of Corvina (Venturini et al., 2013) and Tannat berries 361 
(Da Silva et al., 2013). Only the gene models that did not have a homologous copy in the other cultivars and 362 
did not align to PN40024 were considered putative cultivar specific genes. This additional filtering ensured 363 
that we did not overestimate the set of cultivar specific genes because of artifacts introduced by gene 364 
prediction in Cabernet Sauvignon and PN40024. Our analysis confirmed a mean unshared gene content of 365 
5.25% ± 1.95% between grape cultivars (Figure 5A). The set of Cabernet Sauvignon specific isoforms 366 
comprised 585 isoforms distributed over 549 gene loci. These genes are involved in various cellular and 367 
metabolic processes of grapevine growth and berry ripening (Figure 5B). In particular, two GO terms were 368 
significantly enriched: “cellular amine metabolic process” and “oxidation reduction process” (adj. P-value ≤ 369 
0.01). Among the genes involved in “cellular amine metabolic process” were two phenylalanine ammonia-370 
lyases (PALs; P0148F.500780.A, P0148F.500740.A). Both PALs were expressed throughout ripening 371 
(RPKM > 1) and significantly up-regulated after véraison. Among the overrepresented Cabernet Sauvignon 372 
genes belonging to the “oxidation reduction process” was a putative flavonone 3-hydroxylase (F3H; 373 
P0007F.293800.A) that was significantly up-regulated between pre-véraison and véraison and between 374 
véraison and post-véraison. PAL and F3H are both enzymes involved in the phenylpropanoid and flavonoid 375 
biosynthetic pathways that produces polyphenols in berries. During grape berry development, F3H generates 376 
intermediate compounds in tannin biosynthesis during the herbaceous phase (pre-véraison), and in flavonol 377 
and anthocyanin biosynthesis after véraison (Castellarin et al., 2012). Interestingly, unlike F3H in PN40024 378 
(VIT_04s0023g03370; (Castellarin et al., 2007)) and its homolog in Cabernet Sauvignon (P0009F.302990.A), 379 
this additional F3H paralog does not appear to be expressed before véraison (Supplemental Figure S5), 380 
suggesting that this particular F3H may contribute to berry coloration rather than astringency or bitterness. 381 
Similarly, other Cabernet Sauvignon specific genes were differentially expressed during ripening (65 382 
transcripts) and exhibited different gene expression patterns, suggesting their involvement in berry ripening 383 
(Figure 5C). We can hypothesize that the expression of additional PALs and F3H as well as of other berry 384 
ripening associated genes contribute to Cabernet Sauvignon varietal attributes, such as berry color and 385 
organoleptic properties (Heymann and Noble, 1987; Robinson et al., 2014; Roujou de Boubee et al., 2000). 386 
For example, Cabernet Sauvignon berries accumulate more anthocyanins than Pinot Noir, Merlot and 387 
Cabernet franc berries (Mattivi et al., 2006) leading to wines denser in color (Cliff et al., 2007). 388 
 389 
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RNAseq data mapping on isoform-aware reference allows genome-wide expression profiling at the 390 
isoform resolution 391 
The coding potential and complexity of eukaryotic organisms are known to be increased by the alternative 392 
splicing of precursor mRNAs from multiexon genes. Cabernet Sauvignon is no exception: over 23%  percent 393 
of the 36,687 annotated genes had two or more alternative isoforms, with an average of 1.52 ± 1.27 alternative 394 
transcripts per locus, confirming previous reports in PN40024 (Vitulo et al., 2014). The frequency of splicing 395 
variant types was similar to those observed in other plant species (Reddy et al., 2013). Intron retention was 396 
the most abundant type, counting for over 44% (Figure 6A), similarly to what has been observed for rice (45-397 
55%) (Zhang et al., 2015), Arabidopsis (30 - 64%) (Marquez et al., 2012; Reddy et al., 2013; Zhang et al., 398 
2015) and maize (40 - 58%) (Wang et al., 2016; Zhang et al., 2015). Alternative acceptor sites (13%) and 399 
donor site (10%), and exon skipping (8%) were the other types of alternative splicing found in the Cabernet 400 
Sauvignon genome. 401 
 402 
Illumina RNAseq reads were aligned to our new reference transcriptome that included all annotated isoforms 403 
to profile the transcriptional levels of all transcripts potentially expressed in the Cabernet Sauvignon genome. 404 
Comparison of the four stage transcriptomes showed an obvious distinction of the berry transcriptome before 405 
and after véraison (Supplemental Figure S7), confirming the well-known transcriptional reprogramming 406 
associated with the onset of ripening (Fasoli et al., 2012; Massonnet et al., 2017a). Gene expression analysis 407 
showed that 19,717 transcripts belonging to 11,902 loci were differentially expressed (adj. P-value < 0.05) at 408 
least once during berry development (Supplemental File S7). Transcriptional modulation was more intense 409 
between pre-véraison and véraison than post-véraison as observed in other studies (Supplemental Figure 8) 410 
(Massonnet et al., 2017a; Palumbo et al., 2014). Over 76% of the transcripts (82% of the genes) considered 411 
expressed following short-read sequencing (RPKM > 1) were detected using Iso-Seq. The transcripts not 412 
detected by Iso-Seq were expressed at extremely low levels, with just 1,997 loci (3.6 %) detected over the 413 
retention threshold of RPKM > 1. Expression levels measured by mapping on the predicted loci correlated 414 
well with the RNAseq results when reads were mapped directly on the CISIs (Figure 3C), further supporting 415 
the effectiveness of Iso-Seq to generate a reference transcriptome without relying on a genome assembly.  416 
 417 
The inclusion of transcript variants in the RNAseq analysis allowed the profiling of each gene at the isoform 418 
resolution during berry ripening. We identified 252 loci whose alternative transcripts showed different 419 
expression patterns during berry development. Figure 6 shows two such loci, encoding a N-420 
carbamoylputrescine amidase (Figure 6B) and a putative hexokinase (Figure 6C), that produce alternative 421 
transcripts with different patterns of expression during ripening. N-carbamoylputrescine amidase is an 422 
enzyme involved in the biosynthesis of polyamines, which are associated with numerous developmental and 423 
stress-related processes in plants, including grapevines (Panagiotis et al., 2012). Hexokinases play an 424 
important role in sugar sensing and signaling in grape berries (Lecourieux et al., 2014). Two transcripts 425 
associated with the same locus encoding a putative N-carbamoylputrescine amidase show contrasting patterns 426 
of expression; one was significantly up-regulated at véraison and one was significantly down-regulated post-427 
véraison (Figure 6B). For the putative hexokinase (Figure 6C), one of its three transcripts was significantly 428 
up-regulated at véraison and two were significantly down-regulated at and post-véraison. For both genes, 429 
considering only a single transcript would have masked the complexity of this locus’ usage during ripening.  430 
 431 
Conclusions 432 
This study demonstrates that Iso-Seq data can be used to compile a comprehensive reference transcriptome 433 
that represents most genes expressed in a tissue undergoing extensive transcriptional reprogramming. The 434 
integration of full-length cDNA sequencing with high coverage short read technology allowed to error correct 435 
and recover a large number of lowly expressed genes. As established in whole genome reconstruction, our 436 
results confirm that the utilization of different technologies with complementary characteristics can have 437 
synergistic benefits for the completeness and quality of the final genomic product. Although in this study 438 
genomic contigs were available, our results show that Iso-Seq can be used to generate a transcriptome 439 
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reference without the need of a genome reference. In grapes, this approach can be particularly helpful by 440 
giving rapid access to cultivar specific transcripts. Nonetheless, the pipeline described here can be of even 441 
greater value for projects aiming to reconstruct the gene space in plant species with complex and large 442 
genomes that have not been resolved yet.  443 
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 464 
Supplemental Figure S1: Heatmap representing the distribution of PCIRs in function of base accuracy 465 
and maximum measured expression level (RPKM). Accuracy level shows no correlation with isoform 466 
expression. 467 
 468 
Supplemental Figure S2: Distribution of protein length deviation (percentage) between the annotated 469 
transcript and, on the x-axis, the co-linear PN40024 V1 gene model, and, on the y-axis, the most similar 470 
PN40024 V1 gene model.  471 
 472 
Supplemental Figure S3: Distribution of hits for functional annotation. (A) Venn diagram of transcripts 473 
for which InterPro, Refseq Blast hit and GOslim information was available. (B) Number of transcripts for 474 
which a GO information was available using InterPro and BLAST against RefSeq databases 475 
 476 
Supplemental Figure S4: Distribution of major metabolic process GO annotation available for Cabernet 477 
Sauvignon. 478 
 479 
Supplemental Figure S5: Flavanone 3-hydroxylase alternative transcripts expression. (A) Schematic 480 
representation of flavanone 3-hydroxylase pathway. (B) Expression pattern of flavanone 3-hydroxylase 481 
alternative transcripts during berry ripening. 482 
 483 
Supplemental Figure S6: Distribution of encoded protein length for expressed transcripts present in 484 
PCRIs dataset, C-FLNC isoforms dataset, or missing from any of the corrected Iso-Seq dataset. 485 
 486 
Supplemental Figure S7: Heatmap of RNAseq expression distance across the different samples and 487 
replicates.  488 
 489 
Supplemental Figure S8: Number of differentially expressed genes between consecutive developmental 490 
stages. In red are showed the up-regulated genes, in green the down-regulated. 491 
 492 
Supplemental Figure S9: Line graph showing Figure of merit value (FOM) values for increasing 493 
number of clusters in the k-means clustering algorithm (1-20 clusters, 100 iterations; MeV v.4.9; Saeed et 494 
al., 2003). 495 
 496 
Supplemental Figure S10: Overlap of gene loci whose alternative transcripts belong to more two or 497 
more different clusters when preforming k-means gene expression clustering analysis with 3, 4, or 5 as 498 
number of clusters. 499 
 500 
Supplemental File S1: Alignment and annotation parameters used in PASA. 501 
 502 
Supplemental File S2: Control files with parameters used for MAKER-P annotation. 503 
 504 
Supplemental File S3: Results of K-means clustering. (A) List of the 2,526 gene with significant 505 
difference in expression (P-value < 0.05) in at least one comparison of ripening stages. (B) List of the 292 506 
genes whose alternative transcripts showed different patterns of gene expression during berry 507 
development. K-means gene expression clustering analysis outputs when processing the analysis with 508 
three (C), four (D) and five (E) clusters. 509 
 510 
Supplemental File S4: Cellular component GO annotation tree for Cabernet Sauvignon. 511 
 512 
Supplemental File S5: Molecular function GO annotation tree for Cabernet Sauvignon. 513 
 514 
Supplemental File S6: Biological process GO annotation tree for Cabernet Sauvignon. 515 
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Supplemental File S7: Expression profiling of Cabernet Sauvignon in berry ripening using RNAseq.  517 
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TABLES AND FIGURE LEGENDS 911 
 912 
Table 1. Summary statistics of the Cabernet Sauvignon genome annotation after refinement with 913 
experimental evidence. 914 
 915 
Figure 1. Biological material sampled for transcriptome sequencing. (A) Boxplots showing the 916 
concentration of soluble solids in the berries at different stages of development. Representative pictures 917 
of Cabernet Sauvignon berry clusters are shown. (B) Size distribution of the Iso-Seq libraries obtained by 918 
size fractionation of cDNA.  919 
 920 
Figure 2. Diagram depicting the main steps of analysis of the Iso-Seq reads. Raw Iso-Seq reads were 921 
processed following the standard SMRT Link pipeline for Iso-Seq data to obtain Full-Length Non-922 
Chimeric (FLNC) reads, and clustered and corrected isoform reads (PCIRs). FLNC reads that did not 923 
cluster were error corrected using RNAseq data (C-FLNC). The final dataset described in this study 924 
comprised both PCIRs and C-FLNC reads. For each step, sequencing accuracy and CDS length 925 
distributions are reported. 926 
 927 
Figure 3. Expression profiling of the grape transcriptome using Iso-Seq and RNAseq data. (A) Overlap 928 
of loci detected by Iso-Seq in the different stages of berry development. (B) Distribution of the expression 929 
level of PCIR, FLNC and C-FLNC datasets measured by RNAseq. (C) Correlation of expression levels 930 
between RNAseq conducted by mapping on genomic loci and directly on CIRIs. 931 
 932 
Figure 4. Genome annotation workflow with integration of Iso-Seq data. 933 
 934 
Figure 5. Characterization of unshared gene content with other cultivars. (A) Transcript overlap between 935 
Cabernet Sauvignon, PN40024 V1 and V2, Corvina and Tannat. (B) Overrepresented GO terms among 936 
the Cabernet Sauvignon cultivar-specific isoforms. Size of the nodes is related to the cardinality of the 937 
genes associated with the functional category, while color is proportional to the P-value of the enrichment 938 
for the category (Benjamini and Hochberg corrected P-value < 0.01). (C) Transcriptional modulation of 939 
the Cabernet Sauvignon-specific isoforms expressed during berry development. Isoforms were clustered 940 
by gene modulation pattern based on a hierarchical cluster analysis using the Ward agglomeration method 941 
and Pearson’s correlation distance as the metric. Heat maps represent the gene expression level (RPKM) 942 
of Cabernet Sauvignon cultivar-specific isoforms at the four growth stages. 943 
 944 
Figure 6. Alternative splicing variants in Cabernet Sauvignon. (A) Relative abundance of the different 945 
types of splicing variants. (B, C) Expression profiles of two genes whose annotated alternative ranscripts 946 
present a differential transcription modulation during berry development. Expression is calculated over 947 
the transcriptome comprising all alternative transcripts per locus and over a reduced representation of the 948 
annotation comprising only one transcript per locus. P0029F.365630.A and P0009F.303060.A encode a 949 
N-carbamoylputrescine amidase and a hexokinase, respectively.   950 
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 951 
Table 1. Summary statistics of the Cabernet Sauvignon genome annotation after refinement with 952 
experimental evidence.  953 

 
Number of genes 36,687 
Number of monoexonic genes 9,045 
Number of multiexonic genes 27,642 
   
   Total   Average per Gene  
Number of Transcripts 55,886 1.52 
Number of monoexonic transcripts 9,476 1.05 
Number of multiexonic transcripts 46,410 1.68 
   
   Total   Average per transcript  
Number of exons 326,425 5.84 
CDS exon number 296,839 5.31 
5'UTR exon number 54,659 0.98 
3'UTR exon number 53,433 0.96 
   
   Average Length (bp)  Max (bp) 
CDS lengths 1,228 29,022 
Exon lengths 313 17,750 
Intron lengths 809 106,147 
5'UTR length 225 13,363 
3'UTR length 372 12,798 
Intergenic distances 10,349 742,164 
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