bioRxiv preprint doi: https://doi.org/10.1101/269639; this version posted February 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

## **Reaction of Hydrogen sulfide homeostasis genes under**

# **biotic and abiotic stress condition in rice – computational**

### 3 approach

| 4  |                                                                                                               |
|----|---------------------------------------------------------------------------------------------------------------|
| 5  | Ganesh Alagarasan <sup>1*</sup> and Jegadeesan Ramalingam <sup>1*</sup>                                       |
| 6  | <sup>1</sup> Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and |
| 7  | Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India                                          |
| 8  | *Corresponding author: <u>Alagarasan.ganesh@hotmail.com</u> , ramalingam.j@tnau.ac.in                         |
| 9  |                                                                                                               |
| 10 |                                                                                                               |
| 11 | Abstract                                                                                                      |
| 12 | Gaseous molecules are widespread signaling compounds, regulating the cell                                     |
| 13 | development process in all major plant parts. For many decades, hydrogen sulfide                              |
| 14 | molecule is considered mainly for its deleterious effects on plant system. The increasing                     |
| 15 | recent experimental evidence and phenomenal concepts on $\mathrm{H}_2\mathrm{S}$ molecule further             |
| 16 | advance our understanding of $\mathrm{H}_2S$ interaction with plant tissues. In addition, the $\mathrm{H}_2S$ |
| 17 | messenger molecule is found to have positive effects on plant growth, in limited                              |
| 18 | condition, to maintain the balanced homeostasis. To meet the increasing demand, and                           |
| 19 | to sustain the crop yield, various crop improvement programs have been followed.                              |
| 20 | However, there is a concern that traditional plant improvement method and increasing                          |
| 21 | climate change has a negative impact on crop production. A major approach to                                  |
| 22 | combating plant stress is to evaluate and explore the alternate source mechanism(s).                          |

bioRxiv preprint doi: https://doi.org/10.1101/269639; this version posted February 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

| 23 | Towards this aim, it will be valuable to characterize the genes involved in $\mathrm{H}_2\mathrm{S}$ |
|----|------------------------------------------------------------------------------------------------------|
| 24 | homeostasis in the staple food crop rice pan-genome. In this research, we identified 15              |
| 25 | $H_2S$ homeostasis genes in rice and used it for the ~3k rice pan-genome analysis to find            |
| 26 | out the genetic relatedness based on single nucleotide polymorphism data.                            |
| 27 | Multidimensional scale plot of 15 $H_2S$ homeostasis genes among the rice cultivars, and             |
| 28 | RNA-seq experimental data analysis under various biotic and abiotic stress shows the                 |
| 29 | functional genes involved in biotic and abiotic stress. This study provides new insights             |
| 30 | into plant stress management in crop breeding and suggests how $H_2S$ gene(s) can be                 |
| 31 | utilized to improve the agronomic traits in rice and other food crops.                               |
| 32 |                                                                                                      |
| 33 | Keywords                                                                                             |
| 34 | Hydrogen sulfide, gaseous homeostasis, plant stress, crop improvement, toxicity.                     |
| 35 |                                                                                                      |
| 36 | Introduction                                                                                         |
| 37 | Rice, maize, wheat and tapioca are important staple food crop across the world and these             |
| 38 | crops faces many challenges to attain its full genetic potential. Further, the combinatorial         |
| 39 | stress and standalone plant stress like salinity and drought are reducing the production and         |
| 40 | productivity potential of almost every food crop (Suzuki et al., 2014). Research projects with       |
| 41 | a focus on genetic and molecular analysis of unexplored functional genes will be very useful         |
| 42 | in crop breeding to combat the plant stress. Hence, the plant stress research has witnessed an       |
| 43 | increased attention, due to climate change, and continuous evolution of more virulent biotic         |
|    | -                                                                                                    |

| 45 | H <sub>2</sub> S homeostasis is an important source of mechanisms to tolerate the plant stress (Romero et |
|----|-----------------------------------------------------------------------------------------------------------|
| 46 | al., 2014; Mostofa et al., 2015b; Dai et al., 2017; Tain et al., 2017). Recently, Mostofa et al.          |
| 47 | (2015b) reported the physiological implications of hydrogen sulfide in rice tissues under                 |
| 48 | salinity stress. They have analyzed and discussed the effect of exogenous application of $H_2S$           |
| 49 | and its effect on plant growth, particularly by maintaining a $Na^+/K^+$ ratio. The physiological         |
| 50 | functions of H <sub>2</sub> S in plants are mediated by sulfur-oxidation pathways (Mishanina et al.,      |
| 51 | 2015), and different molecular targets, such as different ion channels, sulfate transporters and          |
| 52 | signaling proteins (Wang, 2012). In plants, the exogenous/endogenous hydrogen sulfide is                  |
| 53 | responsible for conferring tolerance to both the biotic and abiotic stress (Bloem et al., 2004;           |
| 54 | Shi et al., 2015; Mostofa et al., 2015b). In every growth stage, plants do produce $H_2S$ in the          |
| 55 | cytosol through enzymatic mechanisms, particularly desulfhydrases. However, the $H_2S$                    |
| 56 | molecule also has the lethal effect on plant tissues at higher concentrations. Therefore, it is           |
| 57 | important to evaluate the potential of $H_2S$ gene in applied aspects before using it in crop             |
| 58 | breeding program. To explore the characteristic features and behavioral pattern of $H_2S$                 |
| 59 | homeostasis genes in biotic and abiotic stress, we have performed this study in rice $H_2S$               |
| 60 | genes.                                                                                                    |

61

In this study, we focused to elucidate the role of H<sub>2</sub>S homeostasis genes under biotic and abiotic stress through combined computational genomics approach. Based on previous physiological experimental evidence (Mostofa et al., 2015a; Chen et al., 2017; Duan et al., 2015; Mostofa et al., 2015b), we have determined our gene identification and analysis criteria to charecterize the H<sub>2</sub>S homeostasis genes in rice. The reason for selecting the genes from a different category of hydrogen sulfide activity is mainly to maintain the balanced H<sub>2</sub>S

| 68 | content in plants. Since the higher H <sub>2</sub> S content will lead to tissue toxicity in rice, it is better |
|----|-----------------------------------------------------------------------------------------------------------------|
| 69 | to introgress, and/or clone the $H_2S$ homeostasis genes.                                                       |
| 70 | Despite the availability of multiple completely sequenced rice genomes, little is known                         |
| 71 | on the occurrence of $H_2S$ in rice. Cultivated rice does not have all agriculturally desirable                 |
| 72 | traits, which they might have lost during segmental, and/or tandem duplication events. As the                   |
| 73 | wild rice contains many desirable traits, it is important to mine alleles from wild rice. ~3k                   |
| 74 | rice genome project sequencing project made it possible to use the potential genes(s) from                      |
| 75 | wide range of rice germplasm. Here we present the pan-genome analysis of the $H_2S$                             |
| 76 | homeostasis genes extended across the largest part of Oryza phylogeny using sequencing                          |
| 77 | data from the 3k rice genome project.                                                                           |
| 78 |                                                                                                                 |
| 79 | Materials and methods                                                                                           |
| 80 | Comparative analysis of H <sub>2</sub> S homeostasis genes in rice                                              |
| 81 | The keywords viz., sulfite reductase, cysteine synthase, cyanoalanine synthase and cysteine                     |
| 82 | desulfyhdrase were searched in the Gramene and multiple rice database to retrieve the full-                     |
| 83 | length gene sequences. Redundant results were filtered out for further downstream analyses.                     |
| 84 | The retrieved gene sequences were manually annotated with FGENESH                                               |
| 85 | (http://www.softberry.com/). The annotated sequences were cross-checked in the public                           |
| 86 | databases. The identified genes were positioned on their respective chromosome using the                        |
| 87 | Oryzabase database. Number of intron and exons in the H <sub>2</sub> S genes were predicted in GSDS             |
| 88 | (http://gsds.cbi.pku.edu.cn/). The FGENESH derived protein sequences were subjected to                          |
| 89 | conserved domain analysis in NCBI-CDD, Pfam identifiers, HMMER to confirm the                                   |
| 90 | presence H <sub>2</sub> S homeostasis domains. These protein sequences were used for Phylogenetic               |

91 classification of H<sub>2</sub>S homeostasis genes through W-IO-TREE

| 92  | (http://iqtree.cibiv.univie.ac.at/) server with default parameters. Protein topology and signal             |
|-----|-------------------------------------------------------------------------------------------------------------|
| 93  | peptides were predicted through Protter. To find the potential miRNA targets, the gene                      |
| 94  | sequences were scanned in psRNATarget (http://plantgrn.noble.org/psRNATarget/) server.                      |
| 95  | The association between the potential miRNA expression with agronomic traits was done in                    |
| 96  | RiceATM (http://syslab3.nchu.edu.tw/rice/). Rice pan-genome analysis was performed in the                   |
| 97  | rice SNP seek database (http://snp-seek.irri.org/) to determine the genetic distance of ~3k rice            |
| 98  | genotypes based on $H_2S$ genes. For promoter analysis, 2 kb upstream of all gene sequences                 |
| 99  | was subjected to transcription factor analysis in PlantPAN database. Whole genome RNA-                      |
| 100 | seq data were used to determine the expression of fifteen $H_2S$ in various abiotic stress                  |
| 101 | phosphorus stress (PRJEB11899); drought stress and salinity stress (GSE60287). To compare                   |
| 102 | the H <sub>2</sub> S gene expression level in biotic stress, bacterial blight (GSE57670) transcriptome data |
| 103 | were used to generate the FPKM value. The obtained FPKM value was used to generate the                      |
| 104 | heat map to quantify the transcript abundance.                                                              |
| 105 |                                                                                                             |
| 106 | Results                                                                                                     |
| 107 | Insilico functional characterization of H <sub>2</sub> S gene family                                        |
| 108 | To comprehensively investigate and characterize the $H_2S$ gene family in rice, a genome-wide               |
| 109 | survey covering the entire length of all the 12 rice chromosomes were performed. The hidden                 |
| 110 | Markov model and keyword-based and search in Gramene and rice genome annotation                             |
| 111 | database resulted in the identification of 15 potential full-length $H_2S$ homeostasis related              |

112 genes. The  $H_2S$  homeostasis genes identified in the rice genome database and their features

113 are mentioned in (Table). The chromosomal localization analysis of rice  $H_2S$  genes revealed

| 114 | variable distribution of the genes in all chromosomes except for chromosome 7, 8, 9, 10 and                                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| 115 | 11. While a maximum number of four genes were located on chromosome 1 and 6. In                                                  |
| 116 | contrast, only one gene was identified in both the chromosome number 4 and 12. Of fifteen                                        |
| 117 | $H_2S$ genes, three (OsH <sub>2</sub> S12, OsH <sub>2</sub> S13 and OsH <sub>2</sub> S14) were defined as sulfite reductase, ten |
| 118 | $(OsH_2S2, OsH_2S3, OsH_2S4, OsH_2S5, OsH_2S6, OsH_2S7, OsH_2S8, OsH_2S9, OsH_2S10$ and                                          |
| 119 | $OsH_2S15$ ) were defined as cysteine synthase and one as ( $OsH_2S1$ ) cyanoalanine synthase and                                |
| 120 | another one as (OsH <sub>2</sub> S11) L-cysteine desulfydrase. The $H_2S$ homeostasis family genes posses                        |
| 121 | a small number of introns in their sequences (Figure 2).                                                                         |
| 122 | Based on the results of Pfam, HMMER, CDD and Phylogenetic classification of conserved                                            |
| 123 | domain analysis, the H <sub>2</sub> S homeostasis genes were independently grouped as sulfite reductase,                         |
| 124 | cysteine synthase, cyanoalanine synthase and cysteine desulfyhdrase (Figure 1). Bzip, NAC,                                       |
| 125 | WRKY, MYB and AP2/EREBP are the predominant stress related transcription factor                                                  |
| 126 | present in all the $H_2S$ genes promoter sequence. Of 15 $H_2S$ genes, only two genes (OsH <sub>2</sub> S2                       |
| 127 | and OsH <sub>2</sub> S14) had a potential miRNA binding site (Figure 1). In total, seven miRNA (osa-                             |
| 128 | miR818a, osa-miR818b, osa-miR818c, osa-miR818d, osa-miR818e, osa-miR1436 and osa-                                                |
| 129 | miR2879) targeting two genes have been identified. The miRNA (osa-miR818a, osa-                                                  |
| 130 | miR818b, osa-miR818c and osa-miR818e) are found to strongly associated with the plant                                            |
| 131 | height and 1000 seed grain weight (osa-miR818b and osa-miR818b). In the surveyed $\sim$ 3k                                       |
| 132 | rice accessions, 2757 accessions have all the 15 $H_2S$ homeostasis genes. The genes OsH <sub>2</sub> S3,                        |
| 133 | $OsH_2S12$ and $OsH_2S15$ had a number of allelic variations across the surveyed rice pan-                                       |
| 134 | genome. The pan-genome analysis revealed a good genetic diversity analysis based on H2S                                          |
| 135 | sequences. This may help in selecting the donor plants with potential H2S alleles in plant                                       |

To check the expression level of all 15 genes under P stress, salinity & drought stress and

| 136 | breeding programs. More number of indica type rice possess all the 15 genes, while the |
|-----|----------------------------------------------------------------------------------------|
| 137 | japonica rice has the second most number $H_2S$ genes.                                 |

| 200 |                                                                                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 139 | bacterial blight stress, the RNA-seq were analyzed (Figure 2). The differential expression                                                                    |
| 140 | pattern of $H_2S$ genes strongly supports the potential role of $H_2S$ homeostasis genes under                                                                |
| 141 | various biotic and abiotic stress. For example, in IR 64 variety the cysteine synthase genes                                                                  |
| 142 | $(OsH_2S8 and OsH_2S9)$ were up-regulated under drought stress. In Pokkali OsH_2S1, OsH_2S6,                                                                  |
| 143 | OsH <sub>2</sub> S10, OsH <sub>2</sub> S13 were up-regulated and OsH <sub>2</sub> S4, OsH <sub>2</sub> S5, OsH <sub>2</sub> S12 and OsH <sub>2</sub> S15 were |
| 144 | highly down-regulated under salinity stress. Under biotic stress condition (bacterial blight),                                                                |
| 145 | the genes $OsH_2S1$ , $OsH_2S3$ , $OsH_2S5$ and $OsH_2S12$ had a maximum level of expression.                                                                 |
| 146 | While in P stress, the genes OsH <sub>2</sub> S1, OsH <sub>2</sub> S3, OsH <sub>2</sub> S5, OsH <sub>2</sub> S12 and OsH <sub>2</sub> S15 had a               |
| 147 | maximum expression and OsH <sub>2</sub> S7 had a negligible/or low expression level. Among biotic                                                             |
| 148 | and abiotic stress condition, the $H_2S$ genes expression is comparatively higher in P stress                                                                 |
| 149 | condition. Hence the research should be focused more on characterizing the $H_2S$ homeostasis                                                                 |
| 150 | genes under various P treatments in rice.                                                                                                                     |

151

138

#### 152 Conclusion

153 In this paper, an in-depth *insilico* gene characterization of the  $H_2S$  family of rice was

154 performed. We identified and characterized  $15 \text{ H}_2\text{S}$  homeostasis genes in rice. The

155 phylogenetic grouping of protein sequences confirmed the presence of conserved domains in

the  $H_2S$  related gene family. In addition, the presence of  $H_2S$  gene family in seven

157 chromosomes reflects the unequal distribution in the rice genome. Analysis of the promoter

sequence, transcription factors and quantification of transcript abundance enabled the

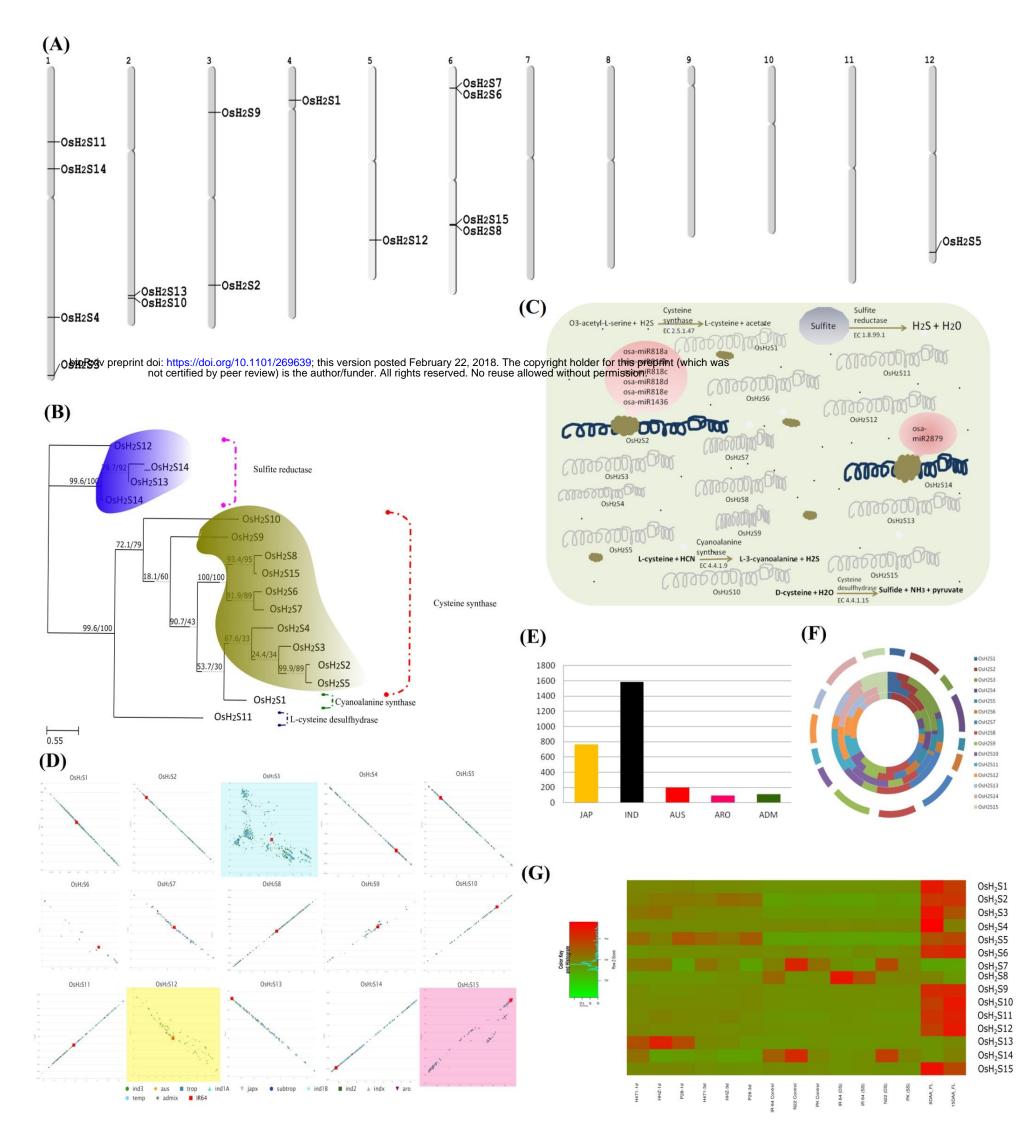
| 159 | retrieval of valuable information related to the functional response, diversity in the stress                  |
|-----|----------------------------------------------------------------------------------------------------------------|
| 160 | responsive elements and biotic/abiotic stress responsiveness of these genes. Finally, a                        |
| 161 | comparative analysis between rice accessions revealed a high degree of sequence                                |
| 162 | conservation/variation within the $H_2S$ domain as well as in the domain organization of these                 |
| 163 | genes. Furthermore, analysis of the expression profiles of the $H_2S$ genes confirmed that they                |
| 164 | are differentially regulated in response to several types of stress. These data suggest a                      |
| 165 | potential role for the H <sub>2</sub> Ss in plant signaling and defense mechanisms.                            |
| 166 |                                                                                                                |
| 167 | Future direction of research                                                                                   |
| 168 | Interestingly, Neale et al., $(2017)$ reported that H <sub>2</sub> S signals produced from the plants have the |
| 169 | ability to alter pathogenecity of microbes. The interaction between $H_2S$ genes and microbes,                 |
| 170 | whether the triggered plant $H_2S$ genes are race-specific or race non-specific, and the genes                 |
| 171 | and/or QTL controlling the specificity are needs to be clearly addressed. Research describing                  |
| 172 | the reaction of plant $H_2S$ genes with specific microbial receptor protein will reflect the                   |
| 173 | outcome of the interactions between alleles at all avirulence loci in the phyto-pathogen                       |
| 174 | and alleles at all $H_2S$ loci of the plant gene. In addition, delineating the role of $H_2S$ directed         |
| 175 | regulation of abiotic stress responsive genes/QTLs/transcription factors will provide clues to                 |
| 176 | the mechanisms controlling $H_2S$ homeostasis in plants. Further, the application of next-                     |
| 177 | generation sequencing techniques will explore the presence of genotype specific novel                          |
| 178 | INDEL region/SNPs in the $H_2S$ genes in plants. Some of the $H_2S$ genes have the signal                      |
| 179 | peptide and are predicted to be involved in the secretory pathway. It would be interesting to                  |
| 180 | see whether these signal peptides have any role in protein targeting and what happens if we                    |
| 181 | truncate the signal peptide. It will also be motivating to observe the localization pattern of                 |

| 182 | $H_2S$ proteins. The current evidences on the role of signal peptides suggests that these proteins |
|-----|----------------------------------------------------------------------------------------------------|
| 183 | are secreted in some other cellular components, and being transported to inter-cellular            |
| 184 | spaces. Meanwhile, $H_2S$ genes have the potential to interact with other stress related genes     |
| 185 | (Wang, 2012). In addition, hydrogen sulfide has a positive effect on plant growth at various       |
| 186 | stress condition (Chen et al., 2013; Christou et al., 2013; Li et al., 2012; Suzuki et al., 2014;  |
| 187 | Wang et al., 2010; Wang et al., 2012; Zhang et al., 2010a; Zhang et al., 2010b; Zhang et al.,      |
| 188 | 2010c). Hence, the similarities of these longer genes should be better studied in order to         |
| 189 | analyze their significance in altering plant tolerance to stress and/or other important            |
| 190 | agronomic traits that may bring interesting insights about $H_2S$ evolution or that may be of      |
| 191 | interest of plant breeders.                                                                        |
| 192 |                                                                                                    |
| 193 | Author Contributions                                                                               |
| 194 | GA and JR initiated the project. All the authors have made a substantial, direct, intellectual     |
| 195 | contribution to the work, and reviewed the final version of the manuscript.                        |
| 196 |                                                                                                    |
| 197 | Conflict of Interest Statement                                                                     |
| 198 | The authors declare that the research was conducted in the absence of any commercial or            |
| 199 | financial relationships that could be construed as a potential conflict of interest.               |
| 200 |                                                                                                    |
| 201 | Acknowledgments                                                                                    |
| 202 | The authors acknowledge the assistance from Dr. Abdul Baten from Southern Cross Plant              |
| 203 | Science, Southern Cross University, Lismore, NSW, Australia in analyzing RNA-seq derived           |
| 204 | expression patterns.                                                                               |

#### 205 **References**

### 206

- 207 Bloem E., Riemenschneider A., Volker J., Papenbrock J., Schmidt A., Salac I., Haneklaus S.
- 208 & Schnug E. 2004. Sulphur supply and infection with *Pyrenopeziza brassica* influence L-209 cysteine desulfhydrase activity in *Brassica napus* L. *Journal of Experimental Botany* **55**,
- 210 2305–2312. doi:10.1093/jxb/erh236
- 211 Chen, J., Wang, W.H., Wu, F.H., You, C.Y., Liu, T.W., Dong, X.J., He, J.X. and Zheng,
- H.L., 2013. Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. *Plant and*
- 213 *soil*, *362*(1-2), pp.301-318. doi:10.1111/j.1744-7909.2010.00946.x.
- Chen, Z., Chen, M. and Jiang, M., 2017. Hydrogen sulfide alleviates mercury toxicity by
   sequestering it in roots or regulating reactive oxygen species productions in rice
- seedlings. *Plant Physiology and Biochemistry*, *111*, pp.179-192.
- 217 doi:10.1016/j.plaphy.2016.11.027.
- 218 Christou, A., Manganaris, G.A., Papadopoulos, I. and Fotopoulos, V., 2013. Hydrogen
- sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry
- plants through modification of reactive species biosynthesis and transcriptional regulation of
  multiple defence pathways. *Journal of experimental botany*, 64(7), pp.1953-1966.
  doi:10.1093/jxb/ert055.
- Dai, C., Cui, W., Pan, J., Xie, Y., Wang, J., and Shen, W. 2017. Proteomic analysis provides
   insights into the molecular bases of hydrogen gas-induced cadmium resistance in Medicago
   sativa. *Journal of Proteomics* 152, 109–120. doi:10.1016/j.jprot.2016.10.013.
- 226 Duan, B., Ma, Y., Jiang, M., Yang, F., Ni, L. and Lu, W., 2015. Improvement of
- photosynthesis in rice (Oryza sativa L.) as a result of an increase in stomatal aperture and
   density by exogenous hydrogen sulfide treatment. *Plant growth regulation*, 75(1), pp.33-44.
   doi:10.1007/s10725-014-9929-5.
- Li, L., Wang, Y. and Shen, W., 2012. Roles of hydrogen sulfide and nitric oxide in the
- alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. *Biometals*, 25(3),
   pp.617-631. doi:10.1007/s10534-012-9551-9.
- Mishanina, T. V, Libiad, M., and Banerjee, R. 2015. by hydrogen sulfide oxidation pathways. *Nat. Chem. Biol.* 11, 1–8. doi:10.1038/nchembio.1834.
- 235 Mostofa, M.G., Rahman, A., Ansary, M.M.U., Watanabe, A., Fujita, M. and Tran, L.S.P.,
- 236 2015a. Hydrogen sulfide modulates cadmium-induced physiological and biochemical
- responses to alleviate cadmium toxicity in rice. *Scientific reports*, *5*. doi:10.1038/srep14078.
- 238 Mostofa, M.G., Saegusa, D., Fujita, M. and Tran, L.S.P., 2015b. Hydrogen sulfide regulates
- salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative
- 240 metabolism under excessive salt stress. *Frontiers in plant science*, 6.
- doi:10.3389/fpls.2015.01055.
- 242 Neale, H, N Deshappriya, D Arnold, and M E Wood. 2017. Hydrogen Sulfide causes
- excision of a genomic island in Pseudomonas syringae Pv . Phaseolicola. *European Journal* of Plant Pathology. https://doi.org/10.1007/s10658-017-1240-7
- 245 Romero, L. C., Aroca, M. Á., Laureano-Marín, A. M., Moreno, I., García, I., and Gotor, C.
- 246 2014. Cysteine and Cysteine-Related Signaling Pathways in Arabidopsis thaliana. *Molecular* 247 *Plant* 7, 264–276. doi:10.1093/mp/sst168.
- 248 Shi, H., Ye, T., Han, N., Bian, H., Liu, X. and Chan, Z., 2015. Hydrogen sulfide regulates
- abiotic stress tolerance and biotic stress resistance in Arabidopsis. *Journal of integrative*
- 250 *plant biology*, *57*(7), pp.628-640. doi:10.1111/jipb.12302.


- Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E. and Mittler, R., 2014. Abiotic and
- biotic stress combinations. *New Phytologist*, 203(1), pp.32-43. doi: 10.1111/nph.12797
- Tian, B., Zhang, Y., Jin, Z., Liu, Z., Pei, Y. 2017. Role of hydrogen sulfide in the methyl
- jasmonate response to cadmium stress in foxtail millet. *Frontiers in Bioscience* 22, 530–538.
  doi:10.2741/4500.
- Wang, B.L., Shi, L., Li, Y.X. and Zhang, W.H., 2010. Boron toxicity is alleviated by
- hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings. *Planta*, 231(6), pp.1301-1309.
  doi:10.1007/s00425-010-1134-9.
- Wang, R., 2012. Physiological implications of hydrogen sulfide: a whiff exploration that
- blossomed. *Physiological reviews*, 92(2), pp.791-896. doi:10.1152/physrev.00017.2011.
- Wang, Y., Li, L., Cui, W., Xu, S., Shen, W. and Wang, R., 2012. Hydrogen sulfide enhances
  alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide
- 263 pathway. *Plant and soil*, *351*(1-2), pp.107-119. doi:10.1007/s11104-011-0936-2.
- Zhang, H., Hu, L.Y., Li, P., Hu, K.D., Jiang, C.X. and Luo, J.P., 2010a. Hydrogen sulfide
- alleviated chromium toxicity in wheat. *Biologia Plantarum*, 54(4), pp.743-747.
  doi:10.1007/s10535-010-0133-9.
- Zhang, H., Jiao, H., Jiang, C.X., Wang, S.H., Wei, Z.J., Luo, J.P. and Jones, R.L., 2010b.
- Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. *Acta physiologiae plantarum*, *32*(5), pp.849-857. doi:10.1007/s11738-010-0469-y.
- 270 Zhang, H., Tan, Z.Q., Hu, L.Y., Wang, S.H., Luo, J.P. and Jones, R.L., 2010c. Hydrogen
- sulfide alleviates aluminum toxicity in germinating wheat seedlings. *Journal of Integrative*
- 272 *Plant Biology*, *52*(6), pp.556-567. doi:10.1111/j.1744-7909.2010.00946.x.
- 273
- 274
- 275
- 276 277
- 278
- 279
- 280

281

- 282 283
- 284

285

- 286
- 287 288
- 289 290



**Figure 1:** Genome-wide characterization of  $H_2S$  homeostasis genes in rice. (A) Chromosomal positioning and distribution of genes.  $H_2S$  genes were identified using a combined computational approaches in rice, i.e., key word search, conserved domain identification, Pfam identifier and HMMER search. Chromosomal positioning was based on the physical position (Mb) in 12 rice chromosome. The chromosome number is indicated at the top of each chromosome. (B) The evolutionary history was inferred by using the Maximum Likelihood method based on W-IQ-TREE. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed (Felsenstein, 1985). The resulting four major clusters were shown in the figure. The analysis involved 15 amino acid sequences. All amino acid sequences in this study have been manually annotated in FGENESH to avoid the redundancy. (C) miRNA scanning and target prediction. The full-length nucleotide sequences were subjected to verify the presence of miRNA targets, Of 15  $H_2S$  gene, only two gene sequence had a potential miRNA binding site. Interestingly, the gene  $OsH_2S2$  has a single binding site for six marinas. (D) Pan-genome analysis in ~3k rice genome sequence data. The pan-genome analysis revealed the possible and potential  $H_2S$  gene. IR-64 variety is highlighted in gene based genetic diversity analysis (E) The distribution of all 15  $H_2S$  homeostasis genes. (F) The distribution of stress related transcription factors. The five rings in the figure indicate the five transcription factor. From outer side, ring 1- Bzip, ring 2- NAC, ring 3- WRKY, ring 4- MYB and ring 5- AP2/EREBP. (G) Functional characterization of  $H_2S$  homeostasis genes. The FPKM value is calculated from the RNA-seq data derived from the whole genome transcriptome study under salinity and drought stress. The colored bar at the left indicates the relative expression value, wherein, -20, 0.0 and 2.0 indicates low, medium and high expression respectively.

bioRxiv preprint doi: https://doi.org/10.1101/269639; this version posted February 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

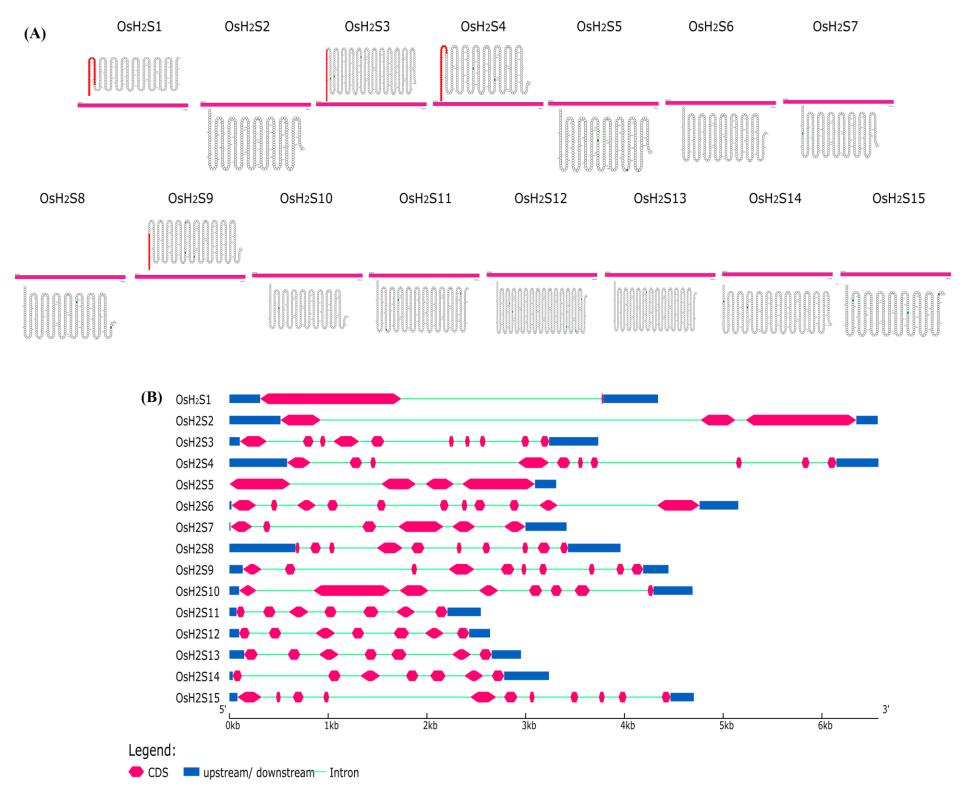



Figure 2:  $H_2S$  protein membrane topology and gene structure. (A) Signal peptide prediction and orientations of membrane-spanning segments with respect to the inner and outer sides of the plant cell plasma membrane. The pink colored peptide chain at the end of N-terminus indicates the presence of signal-peptide in the  $H_2S$  homeostasis gene (B) representation of the presence and arrangements of number of introns/exons in the genes.