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1. Abstract 
 
EEG/MEG neuroimaging consists of estimating the cortical distribution of time varying signals of 

electric neuronal activity, for the study of functional localization and connectivity. Currently, many 
different imaging methods are being used, with very different capabilities of correct localization of 
activity and of correct localization of connectivity. The aim here is to provide a guideline for choosing 
the best (i.e. least bad) imaging method. This first study is limited to the comparison of the following 
methods for EEG signals: sLORETA and eLORETA (standardized and exact low resolution 
electromagnetic tomography), MNE (minimum norm estimate), dSPM (dynamic statistical 
parametric mapping), and LCMVBs (linearly constrained minimum variance beamformers). These 
methods are linear, except for the LCMVBs that make use of the quadratic EEG covariances. To 
achieve a fair comparison, it is assumed here that the generators are independent and widely 
distributed (i.e. not few in number), giving a well-defined theoretical population EEG covariance 
matrix for use with the LCMVBs. Measures of localization error, false positive activity, and false 
positive connectivity are defined and computed under ideal no-noise conditions. It is empirically 
shown with extensive simulations that: (1) MNE, dSPM, and all LCMVBs are in general incapable of 
correct localization, while sLORETA and eLORETA have exact (zero-error) localization; (2) the brain 
volume with false positive activity is significantly larger for MN, dSPM, and all LCMVBs, as compared 
to sLORETA and eLORETA; and (3) the number of false positive connections is significantly larger for 
MN, dSPM, all LCMVBs, and sLORETA, as compared to eLORETA. Non-vague and fully detailed 
equations are given. PASCAL program codes and data files are available. It is noted that the results 
reported here do not apply to the LCMVBs based on EEG covariance matrices generated from 
extremely few generators, such as only one or two independent point sources. 

 
 

2. Introduction 
 
This paper deals with the EEG neuroimaging problem: given non-invasive measurements of scalp 

electric potential differences, find the generators, in the form of time varying cortical distribution of 
electric neuronal activity. Focused reviews can be found in (Valdes-Sosa et al 2009; Pascual-Marqui 
2009; Pascual-Marqui et al 2009). 

 
There are available many different solutions, and the aim here is to provide a guideline for 

choosing the best (i.e. least bad) imaging method. 
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This first study is limited to the comparison of the following methods for EEG signals: 

- sLORETA and eLORETA (standardized and exact low resolution electromagnetic tomography) 
(Pascual-Marqui 2002; Pascual-Marqui 2007; Pascual-Marqui et al 2011). 
- MNE (minimum norm estimate) (Hamalainen and Ilmoniemi 1994), 
- dSPM (dynamic statistical parametric mapping) (Dale et al 2000), 
- LCMVBs (linearly constrained minimum variance beamformers), consisting of three main variants, 
denoted as unit gain (UG), unit array gain (UAG), and unit noise gain (UNG); see e.g. (Van Veen et al 
1997; Sekihara and Nagarajan 2008). 

 
All these methods are linear, except for the LCMVBs, which make use of the EEG covariance, thus 

depending quadratically on the measurements. To achieve a fair comparison, it is assumed here that 
the generators are independent and distributed (i.e. not few in number), giving a well-defined 
theoretical population covariance matrix for the measurements to be used in the LCMVBs. 

 
Measures of localization error, false positive activity, and false positive connectivity are defined 

and computed under ideal no-noise conditions. 
 
Non-vague and fully detailed equations are given. PASCAL program codes and data files are 

available, allowing the interested researcher to check, test, validate, and replicate all the 
comparisons. 

 
 

3. The forward EEG equation for the current density vector field 
 
The general theory and formulation of the EEG/MEG forward problem can be found in e.g. (Sarvas 

1987). 
 
The discrete forward EEG equation, for the average reference, can be expressed as: 

Eq. 1  KJ  

where 1EN 
  is the average reference scalp electric potential at EN  electrodes,  3 1VN 

J  is the 

discrete current density vector field at VN  voxels in cortical grey matter, and  3E VN N
K  is the 

average reference lead field. The justification for using the average reference is explained in detail in 
e.g. (Pascual-Marqui et al 2011). 

 
Note that at the i-th voxel, the current density vector is denoted as: 

Eq. 2 
3 1

i
J  

with: 

Eq. 3 
 
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Note that at the i-th voxel, the lead field is denoted as: 

Eq. 4 
3EN

i


K  

with: 

Eq. 5    3

1 2 ... E V

V

N N

N


 K K K K  
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Note that average reference implies that: 

Eq. 6 0T 1  

and: 

Eq. 7 
T T1 K 0  

where 1EN 
1  is a vector of ones,  3 1VN 

0  is a vector of zeros, and where the superscript “T” 
denotes vector-matrix transposed. 

 
 

4. MNE (minimum norm estimate) 
 
The minimum norm estimate (see e.g. Hamalainen and Ilmoniemi 1994) for the full current 

density distribution is: 

Eq. 8  T T


 J K KK  

where the superscript "+" denotes the Moore-Penrose pseudoinverse. From here, the minimum norm 
inverse solution at the i-th voxel is given as: 

Eq. 9  T T
i i



 J K KK  

 
 

5. sLORETA (standardized low resolution electromagnetic tomography) 
 

It will be assumed that the current densities are all independent and with equal variances 2
JJs , 

i.e.: 

Eq. 10 
2
JJsJJS I  

where    3 3V VN N
JJS  is the full current density covariance matrix, and I is the identity matrix. 

 
From the forward equation Eq. 1, it follows that the EEG covariance is: 

Eq. 11 
2 T
JJs


S KK  

 
From the MNE (Eq. 8), it follows that its covariance is: 

Eq. 12    T T T
 


JJ

S K KK S KK K  

and plugging Eq. 11 into Eq. 12 gives: 

Eq. 13  2 T T
JJs




JJ

S K KK K  

 

Thus, from Eq. 13, the variance 3 3

i i


J J

S  of the MNE at the i-th voxel is: 

Eq. 14  2

i i

T T
JJ i is




J J

S K KK K  

 
sLORETA at the i-th voxel is defined as the standardized MNE: 

Eq. 15    
1 2

T T T T
i i i i


    

      
J K KK K K KK  

where the superscript " 1 2 " denotes the symmetric square root inverse matrix, and where the 

theoretical variance at each voxel is set to one, i.e.: 

Eq. 16 
2 1JJs   
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6. eLORETA (exact low resolution electromagnetic tomography) 
 
eLORETA is a particular form of weighted minimum norm solution that, unlike all other weighted 

tomographies, uniquely achieves exact (zero-error) localization (Pascual-Marqui 2007; Pascual-
Marqui et al 2011). 

 
The full current density is: 

Eq. 17  1 1T T


  J W K KW K  

where the weight matrix    3 3V VN N
W  has all elements equal to zero, except for the diagonal sub-

blocks denoted as 3 3
i

w  for each voxel 1... Vi N . 

 
eLORETA at the i-th voxel is: 

Eq. 18  1 1T T
i i i


  J w K KW K  

 
The eLORETA weights satisfy the following system of equations: 

Eq. 19  
1 2

1T T
i i i


 

  
w K KW K K  

where the superscript "1 2 " denotes the symmetric square root matrix. 

 
 

7. dSPM (dynamic statistical parametric mapping) 
 
The dSPM estimate at the i-th voxel is: 

Eq. 20 

 
 

2

1 T T
i i

T T
i itr





 
    

    

J K KK

K KK K

 

where the operator “tr” returns the trace of a matrix. Its detailed definition and derivation can be 
found in Dale et al (2000), and in Sekihara and Nagarajan (2008, see Equation 3.24 therein). 

 
 

8. LCMVBs (linearly constrained minimum variance beamformers) 
 
There are three popular beamformers, depending on the constraint type. For details, see e.g. (Van 

Veen et al 1997; Sekihara and Nagarajan 2008). 
 
Note that in all cases below it will be assumed that that EEG covariance matrix is not estimated. 

In its place, a population EEG covariance will be used, under the assumption that the current densities 
are all independent and with equal variances, as used above for sLORETA, expressed in Eq. 10 and 
Eq. 11. 

 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 22, 2018. ; https://doi.org/10.1101/269753doi: bioRxiv preprint 

https://doi.org/10.1101/269753
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pascual-Marqui, Faber, Kinoshita, Kochi, Milz, Nishida, Yoshimura: Comparing EEG/MEG neuroimaging methods based on localization 
error, false positive activity, and false positive connectivity. 2018-02-22 

Page 5 of 18 

 

 

UG-LCMVB (unit gain linearly constrained minimum variance beamformer) 
 
The UG-LCMVB at the i-th voxel is: 

Eq. 21    
1

T T T T
i i i i


    

      
J K KK K K KK  

Its detailed definition and derivation can be found in (Van Veen et al 1997). 
 
 

UAG-LCMVB (unit array gain linearly constrained minimum variance beamformer) 
 
The UAG-LCMVB at the i-th voxel is: 

Eq. 22      
11 2

T T T T T
i i i i i idiag


     

        
J K K K KK K K KK  

where the  diag •  operator sets all off-diagonal elements of a matrix to zero. The detailed definition 

and derivation of this particular version can be found in e.g. (Sekihara and Nagarajan 2008, see 
Equation 4.67 therein). 

 
 

UNG-LCMVB (unit noise gain linearly constrained minimum variance beamformer) 
 
The UNG-LCMVB at the i-th voxel is: 

Eq. 23      
1

1 2 T T T T
i i i idiag


               

 J K KK K K KK  

with: 

Eq. 24      
1 12

T T T T T T
i i i i i i

  
                    

 K KK K K KK K K KK K  

Its detailed definition and derivation can be found in e.g. (Sekihara and Nagarajan 2008, see Equation 
4.85 therein). 

 
 

9. Definition for “localization error” 
 
Informally, the localization error is defined as the distance between the location of an actual 

localized source, and the location of the maximum of the estimated squared amplitude current 
density. The formal definition follows. 

 

Let the actual point source be located at the -th voxel, and let  
2

ˆ
i J  denote the estimated 

activity (i.e. current density squared amplitude) at the i-th voxel, due to the actual source at the -th 
voxel. 

 

Let     denote the voxel index at which the squared amplitude of the estimated current density 

attains its maximum value, i.e.: 

Eq. 25     
2

ˆarg max i
i

   J  

Note that     will have an integer value in the range 1... VN . 
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Then the localization error in units of distance is defined as: 

Eq. 26    
Error

  
  r r  

where in general 3 1
j

r  denotes the position vector of the j-th voxel. 

 
 

10. Definition for “false positive activity” 
 
Informally, false positive activity consists of the set of voxels with estimated activity higher than 

a certain fraction of the estimated activity at the location of the actual point source. The formal 
definition follows. 

 

As before, let the actual point source be located at the -th voxel, and let  
2

ˆ
i J  denote the 

estimated activity at the i-th voxel, due to the actual source at the -th voxel. 
 
Given an actual generator at the -th voxel, the number of voxels with false positive activity is 

defined as: 

Eq. 27      
2 2

1

ˆ ˆ;
VN

FPA i
i

N f f




      
  

 J J  

for a given fraction "f", with 0 1f  , and where "" is the indicator function, defined as: 

Eq. 28  
1 ,

0 ,

if b true
b

if b false


  


 

 
Finally, false positive activity is defined as the percent relative to the total number of voxels: 

Eq. 29        
2 2

1

100 100 ˆ ˆ; ;
VN

FPA i
iV V

FPA f N f f
N N





        
  

 J J  

 
Note that false positive activity, as defined here, is also a measure of the spatial dispersion of the 

imaging method: a high value for the false positive activity indicates high spatial spreading of the 
imaging method. 

 
Indeed, when for instance 0.5f  , the measure of false positive activity in Eq. 29 can be described 

as the “false active volume at half true source activity”. 
 
 

11. Definition for “false positive connectivity” 
 
In brain functional connectivity analysis, "connectivity" is commonly quantified by the simple 

"correlation" coefficient between a pair of signals measured at two cortical locations (see e.g. Worsley 
et al 2005). 

 
Consider that ideal case where all cortical generators are truly independent. Then the estimated 

squared correlation coefficient between a pair of signals obtained with an EEG neuroimaging method 
should be small, below a certain threshold. A high value for the estimated squared correlation 
coefficient corresponds to a false positive connection. The formal definition for “false positive 
connectivity” follows. 
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It will be assumed that the current densities are all independent and with equal variances, as 
used above for sLORETA, and as expressed in Eq. 10 and Eq. 11. 

 

Let the -th voxel be defined as the target voxel, and let  2ˆ ,r i  denote the estimated squared 

correlation coefficient (based on a specific neuroimaging method) between the target voxel and all 

others, for 1... Vi N  and i   . Note that  2ˆ ,r i  satisfies:  2ˆ0 , 1r i   . 

 
Given a threshold 0 1 , a connection between the -th target voxel and the i-th voxel is 

defined as a “false positive connection” if: 

Eq. 30  2ˆ ,r i    

 
For the target voxel “”, and for the threshold value , the number of false positive connections 

is: 

Eq. 31    2

1

ˆ; , 1
VN

FPC
i

N r i


          

where "" is the indicator function defined in Eq. 28. 
 
Finally, false positive connectivity is defined as the percent relative to the total number of 

connections with the -th voxel: 

Eq. 32  
 

 
 

 2

1

100 100
ˆ; ; , 1

1 1

VN

FPC
iV V

FPC N r i
N N 

 
               

  

 
It now remains to define the estimator for the squared correlation between voxels, under the 

assumption of true total independence. 
 
Note that all the neuroimaging methods studied here (Eq. 9, Eq. 15, Eq. 18, Eq. 20, Eq. 21, Eq. 22, 

Eq. 23) can be expressed as: 

Eq. 33 ˆ
 
 J M  

where ˆ


J  denotes the estimated current density at the -th voxel, and where 3 EN


M  is the linear 

inverse operator specific to each neuroimaging method. 
 
Under the assumption that the current densities are all independent and with equal variances, as 

used above for sLORETA, expressed in Eq. 10 and Eq. 11, the matrix of correlation coefficients 
3 3ˆ

i



R  between the -th and i-th voxels is: 

Eq. 34    
1 2 1 2ˆ

i i iidiag diag
 

  
       R S S S  

with covariance matrices: 

Eq. 35 
T T

  
S M KK M  

Eq. 36 
T T

ii i iS M KK M  

Eq. 37 
T T

i i 
S M KK M  

 

From the nine correlation coefficients in 3 3ˆ
i




R  (Eq. 34), compute the corresponding nine 

squared correlations, and define  2ˆ ,r i  (used in Eq. 30, Eq. 31, Eq. 32) as the maximum of the nine 

values. 
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12. The toy data: head model, voxels, electrodes 
 
A unit radius three-shell spherical head model was used, as described in (Ary et al 1981). The 

number of voxels was 818VN  , corresponding to a regular 3D grid at 0.133 units resolution, with 

maximum radius=0.8, and with vertical coordinate values 0.4Z   . The number of scalp electrodes 
was 148EN  , uniformly distributed over the outer sphere surface for 0.5Z   . The lead field 

 3E VN N
K  was computed for this simple head model using the approximations by (Ary et al 1981). 

 
 

13. Results 
 

Localization error 
 
For each imaging method, the localization errors in Eq. 26 were computed, for all possible 2454 

actual generators, corresponding to 1...818   voxels, and three dipole moments. The localization 
errors as a function of the actual source radius are shown in Figure 1a. 

 
 

 
Figure 1a: For each of seven neuroimaging methods, the localization errors in Eq. 26 were computed, 
for all possible 2454 actual generators, corresponding to 1...818   voxels, and three dipole 
moments. Vertical axis: localization error in mm. Horizontal axis: radius of the actual source in cm, 
assuming a 10 cm radius head. mn: minimum norm; ug: unit gain beamformer; ag: array gain 
beamformer; un: unit noise gain beamformer; dspm: dynamic SPM; slor: sLORETA; elor: eLORETA. 

 
 
Figure 1b displays a box-and-whiskers plot for the mean localization error, its standard error, 

and 1.96 times its standard error. 
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Figure 1b: For each of seven neuroimaging methods, a box-and-whiskers plot for the mean 
localization error, its standard error, and 1.96 times its standard error. These statistics are computed 
for all possible 2454 actual generators, corresponding to 1...818   voxels, and three dipole 
moments. Vertical axis: localization error in mm. mn: minimum norm; ug: unit gain beamformer; ag: 
array gain beamformer; un: unit noise gain beamformer; dspm: dynamic SPM; slor: sLORETA; elor: 
eLORETA. 

 
 
Table 1 shows the t-tests comparing all pairs of neuroimaging methods based on localization 

error. 
 
 
Table 1: Comparison of imaging methods based on localization error 

 mnLE ugLE agLE unLE dspmLE slorLE elorLE 

mnLE 0.0 4.1 10.5 13.5 16.4 72.7 72.7 

ugLE -4.1 0.0 18.7 17.0 30.8 167.1 167.1 

agLE -10.5 -18.7 0.0 4.2 14.5 155.4 155.4 

unLE -13.5 -17.0 -4.2 0.0 10.6 134.2 134.2 

dspmLE -16.4 -30.8 -14.5 -10.6 0.0 115.9 115.9 

slorLE -72.7 -167.1 -155.4 -134.2 -115.9 0.0 0.0 

elorLE -72.7 -167.1 -155.4 -134.2 -115.9 0.0 0.0 

T-tests (row variable minus column variable) comparing all pairs of neuroimaging methods based 
on localization error. Red and green highlight indicate significant t-values at p<10-6. For instance, the 
last two rows corresponding to sLORETA and eLORETA with extreme negative t-values demonstrate 
that all other imaging methods have significantly larger localization errors. In fact, sLORETA and 
eLORETA have exactly zero error localization. mn: minimum norm; ug: unit gain beamformer; ag: 
array gain beamformer; un: unit noise gain beamformer; dspm: dynamic SPM; slor: sLORETA; elor: 
eLORETA. 
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False positive activity 
 
For each imaging method, false positive activity in Eq. 29 was computed, for all possible 2454 

actual generators, corresponding to 1...818   voxels, and three dipole moments. The fraction value 
(f=0.5) of the actual generator amplitude was used. Figure 2a and Figure 2b display false positive 
activity as a function of the actual source radius. 

 
 

 
Figure 2a: For each of seven neuroimaging methods, the false positive activity in Eq. 29 was 
computed, for all possible 2454 actual generators, corresponding to 1...818   voxels, and three 
dipole moments. Vertical axis: false positive activity, at the fraction (f=0.5) of the actual generator 
amplitude, as percent of the total number of actual sources. Horizontal axis: radius of the actual 
source in cm, assuming a 10 cm radius head. mn: minimum norm; ug: unit gain beamformer; ag: array 
gain beamformer; un: unit noise gain beamformer; dspm: dynamic SPM; slor: sLORETA; elor: 
eLORETA. 

 
 
In Figure 2a, the MNE shows extremely high false positive activation for actual deep sources. The 

detailed behavior of all other imaging methods cannot be appreciated. Figure 2b excludes the MNE. 
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Figure 2b: For each of six neuroimaging methods, the false positive activity in Eq. 29 was computed, 
for all possible 2454 actual generators, corresponding to 1...818   voxels, and three dipole 
moments. Vertical axis: false positive activity, at the fraction (f=0.5) of the actual generator 
amplitude, as percent of the total number of actual sources. Horizontal axis: radius of the actual 
source in cm, assuming a 10 cm radius head. ug: unit gain beamformer; ag: array gain beamformer; 
un: unit noise gain beamformer; dspm: dynamic SPM; slor: sLORETA; elor: eLORETA. 

 
 
Figure 2c displays a box-and-whiskers plot for the mean false positive activity at the fraction 

(f=0.5), its standard error, and 1.96 times its standard error. 
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Figure 2c: For each of seven neuroimaging methods, a box-and-whiskers plot for the mean false 
positive activity at the fraction (f=0.5), its standard error, and 1.96 times its standard error. These 
statistics are computed for all possible 2454 actual generators, corresponding to 1...818   voxels, 
and three dipole moments. Vertical axis: false positive activity, at the fraction (f=0.5) of the actual 
generator amplitude, as percent of the total number of actual sources. mn: minimum norm; ug: unit 
gain beamformer; ag: array gain beamformer; un: unit noise gain beamformer; dspm: dynamic SPM; 
slor: sLORETA; elor: eLORETA. 

 
 
Table 2 shows the t-tests comparing all pairs of neuroimaging methods based on false positive 

activity. 
 
 

Table 2: Comparison of imaging methods based on false positive activity 

 mn50 ug50 ag50 un50 dspm50 slor50 elor50 

mn50 0.0 -0.7 2.5 6.1 7.5 26.2 28.3 

ug50 0.7 0.0 25.0 21.2 28.8 64.2 113.4 

ag50 -2.5 -25.0 0.0 10.6 16.2 58.6 99.0 

un50 -6.1 -21.2 -10.6 0.0 5.5 43.7 65.0 

dspm50 -7.5 -28.8 -16.2 -5.5 0.0 41.0 66.0 

slor50 -26.2 -64.2 -58.6 -43.7 -41.0 0.0 39.8 

elor50 -28.3 -113.4 -99.0 -65.0 -66.0 -39.8 0.0 

T-tests (row variable minus column variable) comparing all pairs of neuroimaging methods based 
on false positive activity. Red and green highlight indicate significant t-values at p<10-6. For instance, 
the last two rows corresponding to sLORETA and eLORETA with extreme negative t-values 
demonstrate that all other imaging methods have significantly larger rates of false positive activity, 
with eLORETA better than sLORETA. mn: minimum norm; ug: unit gain beamformer; ag: array gain 
beamformer; un: unit noise gain beamformer; dspm: dynamic SPM; slor: sLORETA; elor: eLORETA. 
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False positive connectivity 
 
For each imaging method, false positive connectivity in Eq. 32, for each target voxel "" (for 
1...818  ), was computed. A relatively high threshold value of (=0.5) was used for declaring a 

connection as false. Figure 3a shows false positive connectivity as a function of the target voxel 
radius. 

 
 

 
Figure 3a: For each of seven neuroimaging methods, the false positive connectivity in Eq. 32 was 
computed at each target voxel (818 voxels). Vertical axis: false positive connectivity at threshold 
(=0.5), as percent of the total number of connections with the target voxel. Horizontal axis: radius 
of the actual source in cm, assuming a 10 cm radius head. mn: minimum norm; ug: unit gain 
beamformer; ag: array gain beamformer; un: unit noise gain beamformer; dspm: dynamic SPM; slor: 
sLORETA; elor: eLORETA. 

 
 
Figure 3b displays a box-and-whiskers plot for the mean false positive connectivity at threshold 

(=0.5), its standard error, and 1.96 times its standard error. 
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Figure 3b: For each of seven neuroimaging methods, a box-and-whiskers plot for the mean false 
positive connectivity at threshold (=0.5), its standard error, and 1.96 times its standard error. These 
statistics are computed for all possible 818 target voxels. Vertical axis: false positive connectivity at 
threshold (=0.5), as percent of the total number of connections with the target voxel. mn: minimum 
norm; ug: unit gain beamformer; ag: array gain beamformer; un: unit noise gain beamformer; dspm: 
dynamic SPM; slor: sLORETA; elor: eLORETA. 

 
 
Table 3 shows the t-tests comparing all pairs of neuroimaging methods based on false positive 

connectivity. 
 
 
Table 3: Comparison of imaging methods based on false positive connectivity 

 mn50 ug50 ag50 un50 dspm50 slor50 elor50 

mn50 0.0 -13.4 -13.4 -13.4 0.0 -7.4 21.6 

ug50 13.4 0.0 0.0 0.0 13.4 14.4 22.0 

ag50 13.4 0.0 0.0 0.0 13.4 14.4 22.0 

un50 13.4 0.0 0.0 0.0 13.4 14.4 22.0 

dspm50 0.0 -13.4 -13.4 -13.4 0.0 -7.4 21.6 

slor50 7.4 -14.4 -14.4 -14.4 7.4 0.0 21.6 

elor50 -21.6 -22.0 -22.0 -22.0 -21.6 -21.6 0.0 

T-tests (row variable minus column variable) comparing all pairs of neuroimaging methods based 
on false positive connectivity. Red and green highlight indicate significant t-values at p<10-6. For 
instance, the last row corresponding to eLORETA with extreme negative t-values demonstrates that 
all other imaging methods have significantly larger rates of false positive connections. mn: minimum 
norm; ug: unit gain beamformer; ag: array gain beamformer; un: unit noise gain beamformer; dspm: 
dynamic SPM; slor: sLORETA; elor: eLORETA. 
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14. Discussion 
 
 

Localization error 
 
From a strict point of view, localization error is unacceptable in functional imaging, where one of 

the main goals is to correctly localize brain function. In other words: if a method with localization 
error is selected for neuroimaging studies, then it is almost certain that reported locations of brain 
function are incorrect. 

 
Under the ideal testing conditions presented here, only sLORETA and eLORETA are capable of 

exact localization, with all other methods suffering from incapability of correct localization. 
 
From best to worst, the ranking of neuroimaging methods based on localization error is: 

1: eLORETA, sLORETA 
2: dSPM, all LCMVBs 
3: MNE 

 
 

False positive activity 
 
By far, the MNE method has extremely high values of false positive activity, especially when the 

actual generator is deep. The reason for this is because the MNE has maximum activity at the 
outermost voxels, even when the actual generator is deep. False positive activity, as defined here, is 
dependent on the estimated activity value at the actual generator location, and not at the very 
incorrect location of the MNE maximum activity. 

 
Another interpretation follows: Note that false positive activity as defined here is very closely 

related to spatial spreading, or blurring. And note that spatial spreading is defined by computing the 
"spread", not centered at the maximum location (which can be completely wrong), but centered at 
the actual generator location. This explains why the MNE has such high "spatial spreading". 

 
Under the ideal testing conditions presented here, eLORETA has an average false positive activity 

rate (at half maximum activity) of only 2%, with sLORETA at 3.5%, and all other methods ranging 
from 8% to 10.5%. 

 
From best to worst, the ranking of neuroimaging methods based on localization error is: 

1: eLORETA 
2: sLORETA 
3: dSPM, all LCMVBs 
4: MNE 

 
 

False positive connectivity 
 
It is a well-known fact that all linear inverse solutions have low resolution, as can be confirmed 

by the results of "false positive activity" previously discussed. This means that in the best of cases, 
the neuroimaging-based estimated signal at any cortical location corresponds to an instantaneous 
linear mixture of all true cortical signals. Therefore, truly independent cortical generators will appear 
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to be correlated based on estimated signals from neuroimaging methods. These are "false positive 
connections". 

 
False positive connectivity, as defined here, provides a measure of the number of false 

connections that are due to the properties of the neuroimaging method. 
 
Under the ideal testing conditions presented here, eLORETA is by far the best neuroimaging 

method with the lowest rate of false positive connectivity. At the relatively high threshold of (=0.5), 
eLORETA has an average of 1% of false positive connections, while all other methods have an average 
of 3.2% of false positive connections. 

 
From best to worst, the ranking of neuroimaging methods based on false positive connectivity is: 

1: eLORETA 
2: MNE, dSPM, sLORETA, all LCMVBs 

 
It should be noted that there have been attempts in the literature aimed at "decorrelating" the 

estimated signals. One such recent attempt was developed by Colclough et al (2015). However, it was 
demonstrated in (Pascual-Marqui et al 2017) that the Colclough et al (2015) method actually 
produces false connectivity results. A new method, denoted "innovations orthogonalization" 
(Pascual-Marqui et al 2017), was proposed and validated, that properly decorrelates the estimated 
signals. 

 
 

15. Conclusions 
 
Of all tested methods, eLORETA excels in the three indices, having: 

1. Exact (zero-error) localization, 
2. Minimum rate of false positive activity, which at the same time means it has the highest resolution 
(i.e. lowest spatial spreading), and, 
3. Minimum rate of false positive connectivity. 

 
The next best EEG neuroimaging method, based on these three indices, is sLORETA. 
 
This is followed by the remaining methods (dSPM and all three LCMVBs), which perform poorly. 
 
The worst method is the MNE. 
 
Near future extended tests must (and will) include MEG, and noise, and connectivity measures of 

the Granger (causality) type, such as the isolated effective coherence "iCoh" (Pascual-Marqui et al 
2014). 

 
Meanwhile, it is worth emphasizing that the results presented here are in disagreement with 

those of Anzolin et al (2018), where they compare eLORETA with a LCMVB, and claim improved 
performance of the LCMVB. 

 
Some other few recent papers have made some comparisons of beamformers and LORETA 

(Pascual-Marqui et al 1994) or sLORETA (Pascual-Marqui 2002), claiming superiority of the LCMVBs, 
see e.g. (Little et al 2018; Bonaiuto et al 2018). In those papers, it is not even clear which method was 
used (if LORETA of sLORETA). In any case, the results presented here challenge the superiority of the 
LCMVBs in the case of an EEG/MEG covariance matrix generated by distributed sources, and not only 
one or two independent sources. 
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