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Randomness is an unavoidable feature of inner cellular environment and its effects propagate to
higher levels of living matter organization such as cells, tissues, and organisms. Approaching those
systems experimentally to understand their dynamics is a complex task because of the plethora of
compounds interacting in a web that combines intra and inter level elements such that a coordinate
behavior come up. Such a characteristic points to the necessity of establishing principles that help
on the description, categorization, classification, and the prediction of the behavior of biological
systems. The theoretical machinery already available, or the ones to be discovered motivated by
biological problems, can play an important role on that quest. Here we exemplify the applicability
of theoretical tools by discussing some biological problems that we have approached mathematically:
fluctuations in gene expression and cell proliferation in the context of loss of contact inhibition. We
discuss the methods that we have employed aiming to provide the reader with a phenomenological,
biologically motivated, perspective of the use of theoretical methods. Furthermore, we discuss some
of our conclusions after employing our approach and some research perspectives that they motivate.
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I. INTRODUCTION

Description of Physical phenomena by means of the-
oretical methods has motivated building a rich machin-
ery spreading from general relativity (description of mat-
ter behavior at macroscopic scale) to quantum mechan-
ics (description of matter behavior at microscopic scale),
from electromagnetism (description of electric charges,
magnetic dipoles and light related phenomena) to con-
densed matter theory (microscopic description of solid
state systems). Those tools have enabled the capability
of controlling and designing specific experiments which
outcomes are, in general, predicted within specific error
ranges or to develop new technologies derived from that
knowledge. Fortunately, theories have a scope of appli-
cability which means they do not explain all observed
data related to a given phenomenon. In general, that
motivates elaborating new theories that may raise addi-
tional predictions, i.e., additional verifiable hypothesis.
For example, differently of Newtoniang gravity, general
relativity succesfully predicts precession of the perihelion
of Mercury or light bending by Sun. Furthermore, exper-
iments aiming to investigate different manifestations of a
phenomenon would require the development of specific
theoretical or technological tools. For instance, one may
consider the use of tensor calculus in general relativity in-
stead of vector calculus of Newtonian gravitation, or the
high precision instruments required for detection of grav-
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itational waves. Biology, on the other hand, has followed
a different historical trajectory with a predominant use
of experimental methods. Biologists also rely on qualita-
tive models to aid on the construction of a static picture
of biological phenomena. Such an approach has relevant
scientific and technologic implications. For example, one
may consider the establishment of evolution theory – a
key paradigm of modern science – or the capability of
controlling biological phenomena at molecular level – as
it is the case of human insulin production. However that
strategy has a clear limit if one is interested on the dy-
namics resulting of the interaction of a plethora of com-
pounds at different levels of living matter organization,
such as organisms, tissues, cells and molecules. Addition-
ally, interactions among elements of different levels give
birth to a highly complex picture which description will
demand the use of all machinery available in the scientific
toolbox. That includes the use of mathematical methods
not only as a crunching number technique but also as
a strategy for formulating new principles that might be
useful on description of biological phenomena, on test-
ing hypothesis not accessible experimentally, and, for the
case of successful theories, predicting the outcomes of dif-
ferent experimental designs, or guide the development of
new technologies.

In this mini review we approach the biological useful-
ness of quantitative techniques in investigation of biologi-
cal phenomena. We consider the application of stochastic
methods to describe phenomena happening at molecu-
lar and cellular levels. The first topic will be reviewed
within the scope of a stochastic model for binary regula-
tion of expression of a gene that is either self-repressed
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or externally regulated. The second topic is approached
in terms of a stochastic model aiming to quantify the
role of contact inhibition in a co-culture in vitro experi-
ment combining keratinocytes and melanoma cells. Our
molecular level investigations have enabled us to under-
stand the characteristics of chemical kinetics of ON and
OFF switch of a gene that leads self-repression to be
the mechanisms of noise reduction on amounts of ex-
pressed proteins of a given gene [1]. Furthermore, we
used this model to approach noise in development of D.
melanogaster embryos. That helped us to understand
how the externally regulating gene enables mRNA pro-
duction and spatio-temporal patterning with proper pre-
cision during development [2]. At cellular level, it was
shown that cell proliferation mechanism denoted as con-
tact inhibition can be quantified as an exclusion diame-
ter between cells. That mechanism enables the formation
of clusters of melanoma in co-culture with keratinocytes
[3]. Furhtermore, that model predicts that melanoma
cells will prevail in a given spatial domain if one watches
the cell population dynamics for a sufficiently long inter-
val because of its lower degree of contact inhibition (or
smaller exclusion diameters).

The intrinsic randomness of biological phenomena jus-
tifies the use of a stochastic approach for their investi-
gation. At intracellular level randomness is caused by
chemical reactants being present in low copy numbers
and their heterogeneous distribution inside the cell [4].
For example, random fluctuations have been widely ob-
served in gene expression of either prokaryotic and eu-
karyotic cells by means of fluorescence techniques [5–20].
Despite randomness inevitability different gene regula-
tory strategies may give raise to different noise behaviors.
For example, a self-repressing gene will present a higher
precision on controlling the amounts of its products
[1, 21–24]. Alternatively, external regulation has been
noticed as a gene regulatory strategy resulting in higher
noise [5, 25, 26]. Those results suggest self-repression as
the unique mechanism controlling gene expression when
high precision is necessary, as it is the case during de-
velopment. However, recent results show that external
regulation may be sufficient to generate the required spa-
tial precision for gene products stripes formation along
the anterior-posterior axis of a D. melanogaster embryo
[2, 27, 28].

Indeed, developmental processes require a high preci-
sion on the control of the amounts of specific gene prod-
ucts such that they are present at proper positions and
times during the life of an organism. That fact may in-
duce a perception that noise is always detrimental to the
cell. Such a premise is not always true. For instance, in-
dividual cells increase their survival chances under stress
conditions by means of noise in gene expression with
the consequential generation of phenotype diversification
[29–32]. Normally behaving tissues are characterized by
well organized cellular structures along space and time.
That achieved by means of homeostatic mechanisms con-
trolling cell densities in tissues. However, molecular fluc-

tuations may affect cell genetics, induce uncontrolled ex-
pression of cell proliferation related genes, and induce the
appearance of carcinoma in situ. The latter generates
spatially less organized cell structures in tissues, breaks
homeostatic behavior, and provides conditions for inva-
sive cell phenotype to appear. That is a manifestation of
stochasticity being a beneficial trait for cancer cells (at
individual level) even though at an organismic level the
noise has lethal effects after a while.
Therefore, an important challenge for cancer biologists

is to determine mechanisms underpinning the progres-
sion of a carcinoma in situ, and how those cells become
prevalent within a region for a sufficiently long interval
such that invasive phenotype start appearing. One im-
portant mechanism necessary for the prevalence of the
tumor cells is loss of contact inhibition [33, 34]. Con-
tact inhibition of proliferation in culture experiments is
associated with the ability of cells to maintain their den-
sity in a given tissue at optimal values [35, 36]. That
causes cancer cells to keep proliferating in culture exper-
iments even when confluence is reached [33]. In contrast,
it has been shown that hypersensitivity to contact inhibi-
tion in fibroblasts of naked mole-rats is a mechanism that
stops proliferation at lower cell densities in culture exper-
iments. That is caused by the interplay between p16 and
p27 cyclin-dependent kinase inhibitors which stops pro-
liferation at lower densities than when p16 gene is not
expressing such that cell densities reach that level ob-
served in mouse [37]. Those experimental results suggest
the necessity of finding a quantitative description of the
intensity of contact inhibition in normal or cancer cells
to enhance our capability of predicting or describing car-
cinoma in situ growth.
The next sections are devoted to give an overview of

the three applications discussed above and to present
some research perspectives. We start discussing the
stochastic model for regulation of gene expression.
We discuss the chemical kinetics that enable the self-
repressing gene to be expressed at lower noise regimes.
Furthermore, we present our results in the context of de-
velopment of D. melanogaster embryos which indicates
the possibility of using of this model to approach com-
plex organisms. Then we discuss our cell level approach
to quantify the degree of contact inhibition between two
cells as an exclusion diameter. Lower degrees of contact
inhibition are quantified by smaller exclusion diameters
and that is applied on the description of a co-culture ex-
periment with interacting melanoma and keratinocytes.
We present some possibilities for future investigations at
last section.

II. RANDOM FLUCTUATIONS IN GENE

EXPRESSION

Randomness in gene expression has been measured in
terms of the Fano factor, denoted by F , which is defined
as the ratio of the variance to the average. We denote the
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number of gene products by n (the number of proteins
or mRNA’s) and the Fano factor is written as:

F =
〈n2〉 − 〈n〉2

〈n〉
. (1)

The Fano factor provides a measure to compare a proba-
bility distribution with the Poissonian distribution. The
Poissonian distribution has F = 1 while F < 1 char-
acterizes a sub-Poissonian distribution (a distribution
that is thinner than the Poissonian). The a super-
Poissonian distribution has F > 1 and is more spreaded
than the Poissonian. Determining the probability dis-
tribution governing a the gene products number is im-
portant because it provides some hints on the regulatory
strategy of the gene. For example, a constitutive gene
will have n being a random variable governed by a Pois-
son distribution, a sub-Poisson distribution governs the
self-repressing gene [1], while super-Poissonian distribu-
tions might indicate a positive feedback (governed by a
bimodal distribution) or bursty expression (governed by
gamma or negative binomial distribution).

The above analysis is completed in the scope of regu-
lation of gene expression modeled by means of a binary
promoter that is ON or OFF. When the promoter is ON
there is synthesis of gene products at rate k while no syn-
thesis happens in the OFF state. The gene products de-
cay at a rate ρ. The rate of promoter switching from OFF
to ON state is denoted by f while the opposite transition
happens at rate h1 (for the self-repressing gene) or rate
h2 (for the externally regulating gene). Fig. 1 presents
a cartoon of our simplified model for regulation of gene
expression.

ON

OFF

h
ρ

k

f

n

Negative self−regulating gene

ON

OFF

h
ρ

k

f

n

Externally regulating gene

FIG. 1: The left cartoon is a representation of a
self-repressing gene while the right cartoon represents

an externally regulated gene.

The scheme presented in Fig. (1) correspond to the
set of effective chemical reactions presented below. The
left hand side equations correspond to the self-repressing
gene while externally regulated gene effective reactions
are presented on the right. For the SRG we denote a pro-
tein by P. The regulatory region of the gene is denoted
by R and the gene state is determined by the binding of
P to the regulatory region. The regulatory protein of the
externally regulated gene is denoted by Pe. The symbols
for reaction rates appear on top of arrows indicating the
reactants and products of the effective reactions.

Self-repressing gene

⊘
k
⇀ P, (2)

P
ρ
⇀ ⊘, (3)

R+ P
h1⇀ RP , (4)

RP
f
⇀ R+ P, (5)

Externally regulating gene

⊘
k
⇀ P, (6)

P
ρ
⇀ ⊘, (7)

R+ Pe
h2⇀ RPe, (8)

RPe
f
⇀ R+ Pe, (9)

The Eqs. (2) and (6) are indicating protein synthesis
while protein degradation is indicated by Eqs. (3) and
(7). The gene switching from ON to OFF state is indi-
cated by Eqs. (4) and (8) while the opposite transition
is presented at Eqs. (5) and (9). The system of effec-
tive reactions presented here is very simplified in com-
parison with the complexity of gene regulation and gene
expression in mammals. However, such a simplification is
highly necessary for establishing a quantitative descrip-
tion based on exactly solvable models.
A stochastic model for the binary gene with the proba-

bilities of finding the gene at the ON (or OFF) state when
n gene products are found inside the cell being denoted
by αn (or βn) have been presented elsewhere [38, 40].
Hence, the state of the system is determined by two ran-
dom variables (m,n), with m =(ON,OFF) and n being
a non-negative integer. Those probabilities can be com-
puted for a specific stochastic process determining their
evolution which can be done by means of continuous time
Markov processes also known as master equations. The
master equations are characterized by a combination of
the individual transformations that change the state of
the system. The left-hand side of a master equation has
the rate of change of the probability for the system be-
ing in a given state while the right-hand side has the
processes that are causing the probabilities to change.
At the left-hand side of the master equation, a positive
contribution means that the transformation brings the
system to current state while transformations taking the
system from the current state towards a different one give
negative contributions.
The master equations governing the dynamics of the

probabilities (αn, βn) are written below. We provide an
interpretation for the first term on the right-hand side
and the remaining can be interpreted in the same frame-
work. The term proportional to k has a positive compo-
nent αn−1 and αn as a negative component. The former
means that if the state of the system is (ON,n − 1) and
there is a synthesis of a gene product the system reaches
state (ON,n) while the second means that a synthesis
takes the system from current state (ON,n) towards state
(ON,n+ 1). The master equation is written as

dαn

dt
= k(αn−1 − αn) + ρ[(n+ 1)αn+1 − nαn]

− (h1n+ h2)αn + fβn, (10)

dβn

dt
= ρ[(n+ 1)βn+1 − nβn]

+ (h1n+ h2)αn − fβn, (11)

where the self-repressing gene is modeled considering
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h1 6= 0 and h2 = 0, such that the switching rate from
ON to OFF state depends on n. Note that in the self-
repressing gene the ON to OFF switching rate has linear
dependence on n. The contrary condition, h1 = 0 and
h2 6= 0, results in a model for the externally regulated
gene. The solution to the Eqs. 10 and 11 have been ob-
tained exactly for the self-repressing gene [38, 39] and the
externally regulated gene [40, 41]. For the two rates h1

and h2 being non-null one has a model for a gene that is
both self-repressing and externally regulated. That will
not be approached here because it is a subject for addi-
tional research.
A striking feature of biological organisms is their capa-

bility of regulation that ensures that a given gene will be
expressed in proper quantities with spatial and temporal
precision. Hence, though variation in gene amounts is ob-
served these fluctuations are within specific ranges in nor-
mally behaving biological systems. An important ques-
tion is to find regulatory strategies underpinning such a
precision such that a classification of regulatory strategies
and their biological function would emerge. For example,
there are experiments demonstrating that self-repressing
genes are responsible for reducing random fluctuations in
gene expression [21, 22, 24]. Indeed, it has been shown
that self-repression induces noise reduction such that one
may obtain sub-Fano probability distributions [23]. How-
ever, the mechanisms enabling such a reduction in noise
were not clear. That has appeared later by writing the
Fano factor as

F = 1 +
ξ

〈n〉
, (12)

where ξ is the covariance between the variables (m,n)
with the values of m (ON,OFF) being represented by
corresponding synthesis rates (k/ρ, 0) such that ξ can be
computed. The self-repressing gene has the possibility
of ξ < 0 and sub-Fano probability distributions will oc-
cur [1]. Those regimes will happen when the prevailing
process of the system is the gene switching between the
ON and OFF states while few synthesis or degradation
of gene products happen during a given time interval.
The left graph of Fig. 2 shows the Fano factor for a

self-repressing gene in the sub-Fano regime. Note the ex-
istence of the possibility of finding arbitrarily low values
for F when 〈n〉 = 1. That corresponds to a kinetics with
the regulatory protein having a high affinity the regu-
latory region controling the expression of the gene. At
that regime, once a regulatory protein is released from
the DNA and the gene becomes ON, an available protein
rapidly binds to the DNA and the gene switches back to
the OFF state.
The cartoon that we are considering for gene regulation

may seem a strong simplification of the the whole pic-
ture in metazoans. However we may use that approach
for description of eukaryotes under specific assumptions.
For example, during its early developmental stages D.
melanogaster embryos are characterized by a syncytium
such that the cells only have their nuclei. That enables us
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FIG. 2: Left graph. Fano factor versus average protein
number for the self-repressing gene. The value of a is
fixed as 500. The values of bs are indicated within the
graph while we have varied the value of z0.Right graph.
Spatial profile of mRNA’s average amounts along AP
axis of a D. melanogaster embryo. We also include the
fluctuation on the position of the borders of the peak of
expression accordingly with the standard deviation of n

at each nucleus along AP axis. The position of the
borders are computed at the point where 〈n〉 is half of
its maximal value at position 41.5 % of the embryo

length.

to apply the gene transcription model for an externally
regulating gene and use it as a first step to understand
how spatial noise appears because of noise on amounts
of gene products.

Indeed, we carried out that approach to model the
even-skipped (eve) gene which is important for the for-
mation of spatial protein concentration patterns that in
the adult organism will determine specific segments with
different functions [2]. eve mRNA’s spatial pattern is
characterized by a Gaussian profile at the onset of gastru-
lation (see right graph of Fig. 2). To apply our model we
assumed a one-dimensional lattice where each node has
a single copy of eve. The lattice represents the AP axis
of the embryo and theoretical values for 〈n〉 at each node
of the lattice were compared with observed values for the
fluorescence of mRNA of eve as obtained experimentally
[42]. At this stage the challenge was to propose a method
for converting the detected intensity of immunofluores-
cence into mRNA numbers. Then we compared the two
spatial patterns at the onset of gastrulation (theoretical
and experimental) and obtained a good agreement. The
second stage was to compute the values of 〈n〉 ± σ along
the whole lattice, where σ indicates the standard devia-
tion on n. Then we compared the position of the borders
of the domains and their fluctuations with experimental
data [27]. That showed that the theoretical fluctuations
were of the same order as of the experimental ones. That
is an unexpected result since it indicates that the spa-
tial precision required during mRNA numbers pattern
formation in developing embryos can be achieved with
a gene transcription regulatory strategy that is not the
most precise on controlling transcripts numbers.
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III. CELL LEVEL MODELS

There are strong experimental evidence that loss of
contact inhibition is a key element underlying the capa-
bility of tumors to grow and prevail within a given tis-
sue (forming the carcinoma in situ) [33–36] or that hy-
persensivity to contact inhibition prevents such a preva-
lence [37]. Those roles indicate the necessity of under-
standing quantitatively (and geometrically) how contact
inhibition affects the dynamics of cell proliferation and
the spatial patterns that they form in a given tissue.
Such an approach is going to be useful for the under-
standing of early cancer development and future design
of techniques for early cancer diagnosis and treatment.
To approach that problem we have recently proposed a
co-culture experiment combining keratinocytes (HaCaT
or normal) and melanoma (SK-MEL-147 or cancer) cells
[3]. We considered an initial configuration of 10:1 (ker-
atinocytes:melanoma cells) and evaluated the cell den-
sity daily until confluence was reached. The initial con-
figuration was composed by well-mixed populations of
keratinocytes and melanoma cells. At confluence we ob-
served spatial patterns with spreaded normal cells sur-
rounding melanoma cells clusters (see Fig. 3.G). In that
experiment the growth of the two sub-populations of cells
was tracked and their individual curves are easily ad-
justed by Gompertz logistic-like curves [43] (see fig. 3.B).
Gompertz curves are characterized by a sigmoidal shape
such that the population density has a slow growth rate
at early phase. That growth rate increases until it reaches
a maximal value and starts diminishing while cell popu-
lation density reaches its maximal value asymptotically.
The density growth rate is proportional to a constant
which is interpreted as the inverse of the cell division
time during the early phase of culture experiments when
the growth is still approximately exponential. The fit-
ting has shown that the growth rate of both cell types
had same value while the final proportions of the two
populations has diminished from 10:1 to ≈ 4 : 1 (Fig.
3.C shows the temporal evolution of this ratio). That re-
sult shows a limitation for using Gompertz-like curves to
describe experimental results when distinct cell types in-
teract in the same environment. Particularly, those mod-
els have been developed in the context of predator-prey
interacting in an environment with finite resources avail-
ability [44]. We did not found in literature any instance
of co-culture of melanoma and normal cells interacting
similarly to a predator-prey system. Hence, a different
approach to describe our system quantitatively was re-
quired.

To obtain a quantitative description of our model we
consider the a variation of the Widom-Rowlinson model
[45–47]. A cartoon of our model is presented in Fig. 4.A
where the tissue is represented as a two-dimensional grid
of size L×L. Melanoma (or normal) cells, indicated in red
(or blue), can occupy the grid’s vertices with the distance
between two cells being the smallest amount of edges con-
necting their vertices. The latter enable us to define con-

FIG. 3: Graph G. shows a representative configuration
of the co-culture experiment at the confluence regime.

Graph B. gives the evolution of the individual
populations along until confluence is reached and their
fitting by a sigmoidal curve. Graph C. the experimental
ratio of melanoma to normal cells along time is shown.
Graph D. the simulation of the ratio of melanoma to

normal cells along time is shown.

tact inhibition by means of an exclusion diameter around
the cell as it is represented by the shadowed areas around
the red circles of Fig. 4.A. The vertices within the pur-
ple regions cannot be occupied by the melanomas while
the normal cells cannot occupy the vertices within the
red shadowed areas. The exclusion diameters are recip-
rocal and notice that the melanoma cells occupy their
immediate neighbors. In our model the cell type i (i = 1
or i = 2, respectively, for melanoma or normal) undergo
division (with rate αi), quiescence (with rate σi), death
(with rate ρi) and migration (with rate δi) with specific
rates.
In Ref. [3] the dynamics of the model is established by

means of a Monte Carlo Markov Chain which is briefly
described below. A vertex x of the grid is selected with
probability L−2 and its state is verified. (1.) For the
vertex being occupied by the i-th cell type: the cell
is quiescent, i.e. x remains occupied, with probability

αi/Q; there is a probability (n
(i)
e (x)δi + ρi)/Q for vertex

x turn empty, where Q = Q(x) = αi + n
(i)
e δi + ρi. The

vertex x turns empty because of cell death – with proba-

bility ρi/Q – or migration – with probability n
(i)
e (x)δi/Q.

In case of migration the cell arrive at any vertex at dis-
tance D(i, i) that satisfies the admissibility rule. The
number of vertices around x that can receive the cell is
indicated by n

(i)
e (x) and 1/n

(i)
e (x) is the probability for

one of these vertices receive the migrating cell. (2.) For
the vertex x being empty: it remains empty with proba-
bility (ρ1+ρ2)/R

1; the vertex x may become occupied by

1 Although that probability might be defined by means of a differ-
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FIG. 4: Graph A. gives a cartoon of our model for
proliferation under different allelophylic degrees. Graph
B. is a spatial configuration achieved in our simulations
at the co-culture confluence regime. Graph F. gives the
experimental cell-to-cell distance distribution (the blue
(red) curve indicates cancer (normal) cells histogram).
Graph H. shows how normal-to-normal cell distance as

they are further away from the interface with the
melanoma clusters.

the i-th cell type with probability ni(x)(αi + δi)I(i)/R.
The occupation of x may happen because of a cell divi-
sion – having probability ni(x)αiI(i)/R – or migration
– having probability ni(x)δiI(i)/R, where R = R(x) =
∑2

i=1[ρi + ni(x)(αi + δi)I(i)]. The amount of allowed
nearest vertices occupied by the i-th cell type around x
is denoted by ni(x). A migrating cell has a probabil-
ity 1/ni(x) to be chosen and, after migration, the vertex
from which the cell comes from is turned empty. The
symbol I(i) is equal to 1 or 0 when the vertex x, respec-
tively, can or cannot receive the i-th cell type accordingly
with admissibility rule. Note that x remains empty with
probability one for R = ρ1 + ρ2.
Fig. 3.D shows the results of our simulations for the

ratio between the densities of normal to tumor cells. We
show that that ratio follows the same pattern as observed
in our experiments. Furthermore, the densities of the two
sub-populations also follow the same pattern (as it may
be verified in Fig. [3]) such that the kinematics obtained
with our model adjusts to that observed experimentally.
Hence, it is fair to conclude that our model is a strong
candidate to quantify how different degrees of contact
inhibittion affects the dynamics of cell proliferation in
co-culture experiments, and, maybe, in tissues.
Indeed, fig. 4.B shows a spatial configuration that we

obtain after simulating our model. The blue circles form

ent rate our choice avoided introducing more parameters to our

simulations.

clusters that are surrounded by the red ones. This pat-
tern is similar to the ones we have observed in our co-
culture experiments, fig. 3.G. Furthermore, we also eval-
uated the typical cell to cell distances observed in our
experimental images. Fig. 4.F shows that at confluence
regime normal to normal cells typical distance is twice
that between cancer cells. That reinforces of our geomet-
rical interpretation of contact inhibition by means of an
exclusion diameter and shows the cancer cells as allelo-
phylic (allelo, the other; phylia affinity). In our study we
also found the correspondence between the spatial scales
of the simulation and the experimental ones. That has
enabled us to compare the melanoma clusters character-
istics observed experimentally with those of the simula-
tions [3].

IV. PERSPECTIVES

Our results raises perspectives for further research, and
a non-exhaustive set of possibilities is discussed below.
The use of a stochastic binary model for gene expres-
sion on the description of the formation of stripe two
of eve along the AP axis of the fruitfly embryo indi-
cates the necessity of understanding the effects of fluctu-
ations on molecular numbers on the spatial organization
of cells. On the other hand, the use of model for a self-
repressing gene can be used in cancer context to investi-
gate the behavior of BACH1 production under influence
of a biometallic compound such as heme [48]. BACH1
is a transcription factor with negative self-regulation [48]
found overexpressed in triple-negative breast cancer cells.
Since it has been demonstrated its role as a metastasis
promoter, to model how metastic breast cencer cells keep
it at higher levels is relevant to the development of new
therapuetic approaches to this condition. Heme accel-
erates BACH1 decay and the model may help on the
design of treatement strategies that also reduce both the
expected amounts of BACH1 within the cell and their
fluctuations such that phonotype heterogeneity of tumor
cells is reduced. That reduction has the potential of in-
creasing the cancer treatments effectiveness and may es-
tablish guidelines to reduce the invasive and metastatic
capabilities in cancer cells. Under a more theoretical per-
spective, we may also consider the investigation of the
meaning of the symmetries of the stochastic binary mod-
els [23, 26] aiming to model two interacting genes.
Another possibility of cell levels models is to pro-

pose Markov chains to approach tumor heterogeneity at
the phenotype level. The tumor progression can yield
changes in its architecture that lead tumor cells to die
or to develop invasive phenotypes because of scarcity of
space and resources [49–52]. Additionally, environmental
cues may regulate expression of transcription factors that
regulate the internal cell dynamics [53–56] from prolifer-
ative towards invasive. Those facts suggest the proposi-
tion of a cell level model for tumor progression having
two cell phenotypes, with the invasive being originated
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from the proliferative, and population dependent tran-
sition rates as an effective homeostatic mechanism. On
more specific possibilities, the use of the stochastic model
for contact inhibition may also be extended to the condi-
tion when there are three or more interacting cell types.
In that case, we may start with a three cell states, ac-
counting for keratinocytes, melanocytes, and melanomas.
Here, the melanomas would result from a modification
of melanocytes and we may use those results to inves-
tigate the conditions for the progression of a melanoma
in situ from a normal configuration. The cell level ap-
proaches have investigated the two dimensional grids for
a description of culture experiments. Our next step is
to construct three dimensional grids to enable us to de-
scribe in vivo experiments and, hence, obtain a richer
picture about carcinogenesis. One natural challenge of
such an approach is to establish the grid’s topology such
that different first neighbors rules would come up. Those
new simulations would enable us to develop new imaging
analysis tools that will be useful for a quantitative char-
acterization of the spatial patterns that are generated at
different stages of carcinogenesis. Those characterization
may motivate the development of automated tools for
tissue characterization by patologists.

Fig. 3.G shows four yellow squares, one within a
melanoma cluster and the remaining three sequentially
located from the interface of normal and melanoma cells
domains. Inspection is sufficient to verify that normal
cells nearby melanomas are closer to each other than
those at a longer distance from the cluster. That pattern
repeats in our experiments and a graph of the densities
of keratinocytes at different distances is shown in Fig.
4.H. Box-plots for melanoma-to-melanoma (or normal-
to-normal) cell densities at different distances are pre-
sented. We show that the cell-to-cell separation falls ex-
ponentially which suggests the existence of a molecular
mechanisms determining that separation which concen-
tration is dependent of the presence of the melanoma
cells. That points out towards the necessity of combining
our two approaches for cancer biology at both molecular
and cellular levels. That would be useful to determine
how molecular level fluctuations give raise to cancer het-
erogeneity.

Our investigations on molecular mechanisms of car-
cinogenesis may also have implications for the analysis of
low dose and low dose rates rates random effects [57, 58].
It is estimated that radiation therapy accounts for 50% of
cancer treatment cases and that application may be play-
ing a role on late appearence of tumors. Hence, under-

standing how low dose and low dose rates of ionizing ra-
diation are affecting cells may be an important scientific
problem with clinic implications. At those regimes one
expects the effects of ionizing radiation to be stochastic
such that the it is natural to employ an approach based
on probabilistic theory. Initial attempts for stochastic
modeling of biological effects are based on target the-
ory [59] while more detailed deterministic models have
been proposed recently to account for DNA repair mech-
anisms of mammal cells [60]. For the latter, we will
employ the Langevin technique to evaluate randomness
in deterministic models. On a different research direc-
tion, one may notice that 90% of radiation treatments
use radiofrequency-driven linear accelerators of electrons
(RF-Linac). These RF sources are not very precise and
may lead radiation to hit both the tumor and neighbor-
ing cells. Hence, there are continuous efforts for finding
new radiation sources including laser accelerated elec-
trons for the generation of tunable and quasi-energetic
x-ray sources [61, 62]. The development of that tech-
nology relies hardly on computational simulations of the
interaction of laser plasma interactions devoted to the
optimization of the generation of x-rays through electron
acceleration by lasers. Those simulations may guide ex-
perimental designes which would result on the proper
generation of x-rays for clinical purposes.
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fin résolue? Une synthése pour les non-
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FIG. 1: The left cartoon is a representation of a
self-repressing gene while the right cartoon represents
an externally regulated gene. (repeated from page 3)

FIG. 2: Left graph. Fano factor versus average protein
number for the self-repressing gene. The value of a is
fixed as 500. The values of bs are indicated within the
graph while we have varied the value of z0.Right graph.
Spatial profile of mRNA’s average amounts along AP
axis of a D. melanogaster embryo. We also include the
fluctuation on the position of the borders of the peak of
expression accordingly with the standard deviation of n

at each nucleus along AP axis. The position of the
borders are computed at the point where 〈n〉 is half of
its maximal value at position 41.5 % of the embryo

length. (repeated from page 4)

FIG. 3: Graph G. shows a representative configuration
of the co-culture experiment at the confluence regime.

Graph B. gives the evolution of the individual
populations along until confluence is reached and their
fitting by a sigmoidal curve. Graph C. the experimental
ratio of melanoma to normal cells along time is shown.
Graph D. the simulation of the ratio of melanoma to

normal cells along time is shown. (repeated from page
5)

FIG. 4: Graph A. gives a cartoon of our model for
proliferation under different allelophylic degrees. Graph
B. is a spatial configuration achieved in our simulations
at the co-culture confluence regime. Graph F. gives the
experimental cell-to-cell distance distribution (the blue
(red) curve indicates cancer (normal) cells histogram).
Graph H. shows how normal-to-normal cell distance as

they are further away from the interface with the
melanoma clusters. (repeated from page 6)
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