
 

 1 

Network hubs in root-associated fungal 1 

metacommunities 2 

 3 

Hirokazu Toju1,2*, Akifumi S. Tanabe3, Hirotoshi Sato4 4 

 5 

*Correspondence: toju.hirokazu.4c@kyoto-u.ac.jp 6 

1Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan 7 

2Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and 8 

Technology Agency, Kawaguchi, Saitama 332-0012, Japan 9 

3Faculty of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, 10 

Shiga 520-2194, Japan 11 

4Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 12 

606-8501, Japan 13 

 14 

bioRxiv accession: https://doi.org/10.1101/270371 15 

 16 

This article includes 5 Figures, 1 Table, and 11 additional files. 17 

  18 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 26, 2018. ; https://doi.org/10.1101/270371doi: bioRxiv preprint 

https://doi.org/10.1101/270371


 

 2 

Abstract 19 

Background: Although a number of recent studies have uncovered remarkable diversity of 20 

microbes associated with plants, understanding and managing dynamics of plant microbiomes 21 

remain major scientific challenges. In this respect, network analytical methods have provided 22 

a basis for exploring “hub” microbial species, which potentially organize community-scale 23 

processes of plant–microbe interactions.  24 

Methods: By compiling Illumina sequencing data of root-associated fungi in eight forest 25 

ecosystems across the Japanese Archipelago, we explored hubs within “metacommunity-scale” 26 

networks of plant–fungus associations. In total, the metadata included 8,080 fungal 27 

operational taxonomic units (OTUs) detected from 227 local populations of 150 plant 28 

species/taxa.  29 

Results: Few fungal OTUs were common across all the eight forests. However, in each 30 

metacommunity-scale network representing northern four localities or southern four localities, 31 

diverse mycorrhizal, endophytic, and pathogenic fungi were classified as “metacommunity 32 

hubs”, which were detected from diverse host plant taxa throughout a climatic region. 33 

Specifically, Mortierella (Mortierellales), Cladophialophora (Chaetothyriales), Ilyonectria 34 

(Hypocreales), Pezicula (Helotiales), and Cadophora (incertae sedis) had broad geographic 35 

and host ranges across the northern (cool-temperate) region, while Saitozyma/Cryptococcus 36 

(Tremellales/Trichosporonales) and Mortierella as well as some arbuscular mycorrhizal fungi 37 

were placed at the central positions of the metacommunity-scale network representing 38 

warm-temperate and subtropical forests in southern Japan.  39 

Conclusions: The network theoretical framework presented in this study will help us explore 40 

prospective fungi and bacteria, which have high potentials for agricultural application to 41 

diverse plant species within each climatic region. As some of those fungal taxa with broad 42 

geographic and host ranges have been known to increase the growth and pathogen resistance 43 

of host plants, further studies elucidating their functional roles are awaited.  44 

Keywords: agriculture; biodiversity; ecosystem restoration; host specificity or preference; 45 

latitudinal gradients; metacommunities; microbial inoculation; network hubs; plant–fungus 46 
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interactions; mycorrhizal and endophytic symbiosis. 47 
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Background 49 

Below-ground fungi in the endosphere and rhizosphere are key drivers of terrestrial 50 

ecosystem processes [1-4]. Mycorrhizal fungi, for example, are important partners of most 51 

land plant species, enhancing nutritional conditions and pathogen resistance of host plants 52 

[5-7]. In reward for the essential physiological services, they receive ca. 20% of net 53 

photosynthetic products from plants [8, 9]. Recent studies have also indicated that diverse 54 

taxonomic groups of endophytic fungi (e.g., endophytic fungi in the ascomycete orders 55 

Helotiales and Chaetothyriales) commonly interact with plant roots, providing soil 56 

nitrogen/phosphorous to their hosts [10-14], converting organic nitrogen into inorganic forms 57 

in the rhizosphere [15], and increasing plants’ resistance to environmental stresses [16-18]. 58 

Because of their fundamental roles, below-ground fungi have been considered as prospective 59 

sources of ecosystem-level functioning in forest management, agriculture, and ecosystem 60 

restoration [17-20]. However, due to the exceptional diversity of below-ground fungi [21-23] 61 

and the extraordinary complexity of below-ground plant–fungus interactions [24-26], we are 62 

still at an early stage of managing and manipulating plant-associated microbiomes [27-29].  63 

In disentangling complex webs of below-ground plant–fungus associations, network 64 

analyses, which have been originally applied to human relations and the World-Wide Web 65 

[30, 31], provide crucial insights. By using network analytical tools, we can infer how plant 66 

species in a forest, grassland, or farmland are associated with diverse taxonomic and 67 

functional groups of fungi [24, 32-34]. Such information of network structure (topology) can 68 

be used to identify “hub” species, which are placed at the center of a network depicting 69 

multispecies host–symbiont associations [35] (cf. [34, 36, 37]). Those hubs with broad 70 

host/symbiont ranges are expected to play key roles by mediating otherwise discrete 71 

ecological processes within a community [19, 24]. For example, although arbuscular 72 

mycorrhizal and ectomycorrhizal symbioses have been considered to involve distinct sets of 73 

plant and fungal lineages [38] (but see [39, 40]), hub endophytic fungi with broad host ranges 74 

may mediate indirect interactions between arbuscular mycorrhizal and ectomycorrhizal plant 75 

species through below-ground mycelial connections. As information of plant-associated 76 

fungal communities is now easily available with high-throughput DNA sequencing 77 
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technologies [1, 21, 22], finding hub microbial species out of hundreds or thousands of 78 

species within a network has become an important basis for understanding and predicting 79 

ecosystem-scale phenomena.  80 

Nonetheless, given that fungi can disperse long distances with spores, conidia, and 81 

propagules [41-44], information of local-scale networks alone does not provide thorough 82 

insights into below-ground plant–fungus interactions in the wild. In other words, no forests, 83 

grasslands, and farmlands are free from perturbations caused by fungi immigrating from other 84 

localities [45-49]. Therefore, to consider how local ecosystem processes are interlinked by 85 

dispersal of fungi, we need to take into account “metacommunity-scale” networks of plant–86 

fungus associations [35]. Within a dataset of multiple local communities (e.g., [25]), fungal 87 

species that occur in multiple localities may interlink local networks of plant–fungus 88 

associations. Among them, some species that not only have broad geographic ranges but also 89 

are associated with diverse host plant species would be placed at the core positions of a 90 

metacommunity-scale network [35]. Such “metacommunity hub” fungi would be major 91 

drivers of the synchronization and restructuring of local ecosystem processes (sensu [50]), 92 

and hence their functional roles need to be investigated with priority [35]. Moreover, in the 93 

screening of mycorrhizal and endophytic fungi that can be used in agriculture and ecosystem 94 

restoration programs [17, 20, 51], analytical pipelines for identifying metacommunity hubs 95 

will help us explore species that are potentially applied (inoculated) to diverse plant species 96 

over broad geographic ranges of farmlands, forests, or grasslands. Nonetheless, despite the 97 

potential importance of metacommunity hubs in both basic and applied microbiology, few 98 

studies have examined metacommunity-level networks of plant–symbiont associations.  99 

By compiling Illumina sequencing datasets of root-associated fungi [52], we herein 100 

inferred a metacommunity-level network of below-ground plant–fungus associations and 101 

thereby explored metacommunity hubs. Our metadata consisted of plant–fungus association 102 

data in eight forest localities across the entire range of the Japanese Archipelago, including 103 

150 plant species/taxa and 8,080 fungal operational taxonomic units (OTUs) in temperate and 104 

subtropical regions. Based on the information of local- and metacommunity-level networks, 105 

each of the fungal OTUs was evaluated in light of its topological positions. We then 106 
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examined whether fungal OTUs placed at the core of local-level plant–fungus networks could 107 

play key topological roles within the metacommunity-level network. Overall, this study 108 

uncover how diverse taxonomic groups of mycorrhizal and endophytic fungi can form 109 

metacommunity-scale networks of below-ground plant–fungus associations, providing a basis 110 

for analyzing complex spatial processes of species-rich host–microbe systems. 111 

 112 

Methods 113 

Terminology 114 

While a single type of plant–fungus interactions is targeted in each of most mycological 115 

studies (e.g., arbuscular mycorrhizal symbiosis or ectomycorrhizal symbiosis), we herein 116 

analyze the metadata including multiple categories of below-ground plant–fungus 117 

associations [52]. Because arbuscular mycorrhizal, ectomycorrhizal, and endophytic fungi, for 118 

example, vary in their microscopic structure within plant tissue [38], it is impossible to 119 

develop a general criterion of mutualistic/antagonistic interactions for all those fungal 120 

functional groups. Therefore, we used the phrase “associations” instead of “interactions” 121 

throughout the manuscript when we discuss patterns detected based on the Illumina 122 

sequencing metadata of root-associated fungi. Consequently, our results represented not only 123 

mutualistic or antagonistic interactions but also neutral or commensalistic interactions [24, 53, 124 

54]. Our aim in this study is to gain an overview of the metacommunity-scale plant–fungus 125 

associations, while the nature of respective plant–fungus associations should be evaluated in 126 

future inoculation experiments.  127 

 128 

Data 129 

We compiled the Illumina (MiSeq) sequencing data collected in a previous study [52], in 130 

which community-scale statistical properties of below-ground plant–fungus associations were 131 

compared among eight forest localities (four cool-temperate, one warm-temperate, and three 132 

subtropical forests) across the entire range of the Japanese Archipelago (45.042–24.407 ºN; 133 
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Fig. 1). In each forest, 2-cm segment of terminal roots were sampled from 3-cm below the 134 

soil surface at 1-m horizontal intervals [52]. Those root samples were collected irrespective of 135 

their morphology and mycorrhizal type: hence, the samples as a whole represented 136 

below-ground relative abundance of plant species in each forest community. Based on the 137 

sequences of the genes encoding the large subunit of ribulose-1,5-bisphosphate carboxylase 138 

(rbcL) and the internal transcribed spacer 1 (ITS1) of the ribosomal RNA region, host plant 139 

species were identified, although there were plant root samples that could not be identified to 140 

species with the rbcL and ITS1 regions [52]. The sequencing data are available through DDBJ 141 

Sequence Read Archives (accession: DRA006339).  142 

The Illumina sequencing reads of the fungal ITS1 region were processed using the 143 

program Claidnet [55, 56] as detailed in the data-source study [52]: the Unix scripts used are 144 

available as Additional file 1. The primers used were designed to target not only Ascomycota 145 

and Basidiomycota but also diverse non-Dikarya (e.g., Glomeromycota) taxa [57]. In most 146 

studies analyzing community structure of Ascomycota and Basidiomycota fungi, OTUs of the 147 

ITS region are defined with a cut-off sequence similarity of 97% [22, 58, 59] (see also [60]). 148 

Meanwhile, Glomeromycota fungi generally have much higher intraspecific ITS-sequence 149 

variation than other taxonomic groups of fungi [61]. Consequently, we used 97% and 94% 150 

cut-off sequence similarities for defining non-Glomeromycota and Glomeromycota fungal 151 

OTUs, respectively [52]. The OTUs were then subjected to reference database search with the 152 

query-centric auto-k-nearest-neighbor algorithm [55, 56] and subsequent taxonomic 153 

assignment with the lowest common ancestor algorithm [62]. Based on the inferred taxonomy, 154 

the functional group of each fungal OTU was inferred using the program FUNGuild 1.0 [63].  155 

After a series of bioinformatics and rarefaction procedures, 1,000 fungal ITS reads were 156 

obtained from each of the 240 samples collected in each forest locality (i.e., 1,000 reads × 240 157 

samples × 8 sites). A sample (row) × fungal OTU (column) data matrix, in which a cell entry 158 

depicted the number of sequencing reads of an OTU in a sample, was obtained for each local 159 

forest (“sample-level” matrix) (Additional file 2: Data S2). Each local sample-level matrix 160 

was then converted into a “species-level” matrix, in which a cell entry represented the number 161 

of root samples from which associations of a plant species/taxa (row) and a fungal OTU 162 
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(columns) was observed: 17–55 plant species/taxa and 1,149–1,797 fungal OTUs were 163 

detected from the local species-level matrices (Additional file 3: Data S3). In total, the 164 

matrices included 150 plant species/taxa and 8,080 fungal OTUs (Additional file 4: Data S4).  165 

 166 

Local networks 167 

Among the eight forest localities, variation in the order-level taxonomic compositions were 168 

examined with the permutational analysis of variance (PERMANOVA; [64]) and the 169 

permutational analysis for the multivariate homogeneity of dispersions (PERMDISP; [65]) 170 

with the “adonis” and “betadisper” functions of the vegan 2.4-3 package [66] of R 3.4.1 [67], 171 

respectively. The β-diversity values used in the PERMANOVA and PERMDISP analyses 172 

were calculated with the “Bray-Curtis” metric based on the sample-level matrices (Additional 173 

file 2: Data S2). Note that the “Raup-Crick” β-diversity metric [68], which controls 174 

α-diversity in community data but requires computationally intensive randomization, was not 175 

applicable to our large metadata. Geographic variation in the compositions of fungal 176 

functional groups was also evaluated by PERMANOVA and PERMDISP analyses. The R 177 

scripts for the PERMANOVA and PERMDISP analyses are available as Additional file 5. 178 

For each of the eight local forests, the network structure of below-ground plant–fungus 179 

associations was visualized based on the species-level matrix (Additional file 3: Data S3) 180 

using the program GePhi 0.9.1 [69] with the “ForceAtlas2” layout algorithm [70]. Within the 181 

networks, the order-level taxonomy of fungal OTUs was highlighted.  182 

To evaluate host ranges of each fungal OTU in each local forest, we first calculated the d’ 183 

metric of interaction specificity [71]. However, estimates of the d’ metric varied considerably 184 

among fungal OTUs observed from small numbers of root samples (Additional file 6; Figure 185 

S1) presumably due to overestimation or underestimation of host preferences for those rare 186 

OTUs. Therefore, we scored each fungal OTU based on their topological positions within 187 

each local network by calculating network centrality indices (degree, closeness, betweenness, 188 

and eigenvector centralities metrics of network centrality; [31]). Among the centrality metrics, 189 

betweenness centrality, which measures the extent to which a given nodes (species) is located 190 
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within the shortest paths connecting pairs of other nodes in a network [72], is often used to 191 

explore organisms with broad host or partner ranges [35]. Thus, in each local network, fungal 192 

OTUs were ranked based on their betweenness centrality scores (local betweenness).  193 

 194 

Metacommunity-scale network 195 

By compiling the species-level matrices of the eight local forests, the topology of the 196 

metacommunity-scale network of plant–fungus associations was inferred. In general, species 197 

interaction (association) networks of local communities can be interconnected by species that 198 

appear in two or more local networks, thereby merged into a metacommunity-scale network 199 

[35]. In our data across the eight local forests, 2,109 OTUs out of the 8,080 fungal OTUs 200 

appeared in two or more localities. Therefore, we could infer the topology of a 201 

metacommunity-scale network, in which the eight local networks were combined by the 202 

2,109 fungal OTUs. In the metacommunity-scale network, plant species/taxa observed in 203 

different localities were treated as different network nodes because our purpose in this study 204 

was to explore fungi that potentially play key roles in synchronizing local ecosystem 205 

processes [35]. In total, 227 plant nodes representing local populations of 150 plant 206 

species/taxa were included in the metacommunity-scale network.  207 

We then screened for fungal OTUs with broad geographic and host ranges based on the 208 

betweenness centrality scores of respective fungal OTUs within the metacommunity network 209 

(metacommunity betweenness, Bmeta ). In general, species with highest metacommunity 210 

betweenness scores not only occur in local communities over broad biotic/abiotic 211 

environmental conditions but also are associated with broad ranges of host/partner species 212 

[35]. Possible relationship between local- and metacommunity-scale topological roles was 213 

then examined by plotting local and metacommunity betweenness scores (Blocal  and Bmeta ) of 214 

each fungal OTUs on a two-dimensional surface. To make the betweenness scores vary from 215 

0 to 1, betweenness centrality of a fungal OTU i was standardized in each of the local- and 216 

metacommunity-scale networks as follows: 217 
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B 'local, i =
Blocal, i −min(Blocal )

max(Blocal )−min(Blocal )
 and

 
B 'meta, i =

Bmeta, i −min(Bmeta )
max(Bmeta )−min(Bmeta )

,  218 

where Blocal, i  and Bmeta, i  were raw estimates of local- and metacommunity-scale 219 

betweenness of a fungal OTU i, and min() and max() indicated minimum and maximum 220 

values, respectively. For local betweenness of each OTU, a mean value across local networks 221 

was subsequently calculated (B 'local, i ): the local communities from which a target OTU was 222 

absent was omitted in the calculation of mean local betweenness. On the two-dimensional 223 

surface, the OTUs were then classified into four categories: metacommunity hubs having high 224 

betweenness in both local- and metacommunity-scale networks (B 'local, i  ≥ 0.5; B 'meta, i  ≥ 225 

0.5), metacommunity connectors that had broad geographic ranges but displayed low local 226 

betweenness (B 'local, i  < 0.5; B 'meta, i  ≥ 0.5), local hubs that had high betweenness in local 227 

networks but not in the metacommunity-scale network (B 'local, i  ≥ 0.5; B 'meta, i  < 0.5), and 228 

peripherals with low betweenness at both local and metacommunity levels (B 'local, i  < 0.5; 229 

B 'meta, i  < 0.5) [35]. Approximately, 1–2% of fungal OTUs show betweenness scores higher 230 

than 0.5 in each local or metacommunity network, while the threshold value can be changed 231 

depending on the purpose of each study [35]. 232 

In addition to metacommunity hubs within the metacommunity-scale network 233 

representing all the eight localities, those within the metacommunity-scale network 234 

representing northern (sites 1–4) or southern (sites 5–8) four localities were also explored. 235 

This additional analysis allowed us to screen for fungal OTUs that potentially adapted to 236 

broad ranges of biotic and abiotic environments within northern (cool-temperate) or southern 237 

(warm-temperate or subtropical) part of Japan.  238 

 239 

Results 240 

Local networks 241 

Among the eight forest localities, order-level taxonomic compositions of fungi varied 242 

significantly (PERMANOVA; Fmodel = 35.7, P < 0.001), while the differentiation of 243 
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community structure was attributed at least partly to geographic variation in among-sample 244 

dispersion (PERMDISP; F = 13.2, P < 0.001) (Fig. 2a). Compositions of fungal functional 245 

groups were also differentiated among the eight localities (PERMANOVA; Fmodel = 34.9, P < 246 

0.001), while within-site dispersion was significantly varied geographically (PERMDISP; F = 247 

9.2, P < 0.001) (Fig. 2b). The proportion of ectomycorrhizal fungal orders, such as Russulales, 248 

Thelephorales, and Sebacinales, was higher in temperate forests than in subtropical forests, 249 

while that of arbuscular mycorrhizal fungi increased in subtropical localities (Fig. 2). The 250 

proportion of the ascomycete order Helotiales, which has been known to include not only 251 

ectomycorrhizal but also endophytic, saprotrophic, and ericoid mycorrhizal fungi [73], was 252 

higher in northern localities. In contrast, Diaporthales, which has been considered as 253 

predominantly plant pathogenic taxon [74] (but see [75]), was common in subtropical forests 254 

but not in others.     255 

In each of the eight local networks depicting plant–fungus associations, some fungal 256 

OTUs were located at the central positions of the network, while others are distributed at 257 

peripheral positions (Additional file 7; Figure S2). Specifically, fungal OTUs belonging to the 258 

ascomycete orders Chaetothyriales (e.g., Cladophialophora and Exophiala) and Helotiales 259 

(e.g., Rhizodermea, Pezicula, Rhizoscyphus, and Leptodontidium) as well as some Mortierella 260 

OTUs had high betweenness centrality scores in each of the cool-temperate forests (Fig. 3a-b). 261 

In contrast, arbuscular mycorrhizal fungi (Glomeromycota) were common among OTUs with 262 

highest betweenness scores in subtropical forests (Fig. 3a-c). Some fungi in the ascomycete 263 

order Hypocreales (e.g., Trichoderma, Ilyonectria, Simplicillium, and Calonectria) also had 264 

high betweenness scores in some temperate and subtropical forests (Fig. 3b).  265 

 266 

Metacommunity-scale network 267 

In the metacommunity-scale network representing the connections among the eight local 268 

networks, not only arbuscular mycorrhizal but also saprotrophic/endophytic fungi were placed 269 

at the central topological positions (Fig. 4; Additional file 8; Figure S3). Among 270 

non-Glomeromycota OTUs, Mortierella (Mortierellales), Cryptococcus (Trichosporonales; 271 
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the Blast top-hit fungus in the NCBI database was recently moved to Saitozyma 272 

(Tremellales); [76]), Malassezia (Malasseziales), Oidiodendron (incertae sedis), Trichoderma 273 

(Hypocreales), and a fungus distantly allied to Melanconiella (Diaporthales) displayed highest 274 

metacommunity betweenness (Table 1). Among the OTUs with high metacommunity 275 

betweenness, only a Mortierella OTU was designated as a metacommunity hub (i.e., B 'local, i  276 

≥ 0.5; B 'meta, i  ≥ 0.5) and others had low betweenness scores at the local community level 277 

(B 'local, i  < 0.5; Fig. 5a).  278 

In the metacommunity-scale network representing the four cool-temperate forests (sites 279 

1–4), many saprotrophic/endophytic fungal OTUs were associated with diverse plant 280 

species/taxa, located at the central topological positions within the network topology 281 

(Additional file 9; Figure S4; Fig. 5b). The list of these fungi with high metacommunity 282 

betweenness involved OTUs in the genera Mortierella, Cladophialophora (Chaetothyriales), 283 

Pezicula (Helotiales), and Oidiodendron as well as OTUs allied to Ilyonectria protearum 284 

(Nectriales) and Cadophora orchidicola (Helotiales) (Table 1). Most of those fungal OTUs 285 

also had high metacommunity betweenness, designated as metacommunity hubs (Fig. 5b). 286 

In the metacommunity-scale network consisting of the warm-temperate and subtropical 287 

forests (sites 5–8), arbuscular mycorrhizal and saprotrophic/endophytic fungi were placed at 288 

the hub positions (Additional file 10; Figure S5; Fig. 5c). The list of non-Glomeromycota 289 

OTUs with highest metacommunity betweenness included Saitozyma (Cryptococcus), 290 

Mortierella, Trichoderma, and Tomentella as well as OTUs allied to Cladophialophora, 291 

Scleropezicula (Helotiales), Melanconiella (Diaporthales), and Rhexodenticula (incertae 292 

sedis) (Table 1). Among the taxa, Saitozyma and Mortierella included OTUs classified as 293 

metacommunity hubs (Fig. 5c; Table 1). In an additional analysis of a metacommunity-scale 294 

network including only the three subtropical forests (sites 6-8), similar sets of fungal taxa 295 

were highlighted (Additional file 11; Table S1). The detailed information of the network 296 

index scores examined in this study is provided in Data S3 (Additional file 4: Data S4). 297 

 298 

Discussion 299 
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Based on the metadata of root-associated fungi across the Japanese Archipelago, we herein 300 

inferred the structure of a network representing metacommunity-scale associations of 150 301 

plant species/taxa and 8,080 fungal OTUs. Our analysis targeted diverse functional groups of 302 

fungi such as arbuscular mycorrhizal, ectomycorrhizal, ericoid-mycorrhizal, 303 

saprotrophic/endophytic, and pathogenic fungi, which have been analyzed separately in most 304 

previous studies on plant–fungus networks. The comprehensive analysis of below-ground 305 

plant–fungus associations allowed us to explore metacommunity hub fungi, which not only 306 

occurred over broad geographic ranges but also had broad host ranges in respective local 307 

communities. Consequently, this study highlights several taxonomic groups of fungi 308 

potentially playing key roles in synchronizing metacommunity-scale processes of temperate 309 

and/or subtropical forests.  310 

In the metacommunity-scale network representing all the eight local forests (Fig. 4), 311 

fungi in several saprotrophic or endophytic taxa showed higher betweenness centrality scores 312 

than other fungi (Table 1). Mortierella is generally considered as a saprotrophic lineage [77] 313 

but it also includes fungi contributing to the growth and pathogen resistance of plants [78-80]. 314 

A phosphate solubilizing strain of Mortierella, for example, increases shoot and root growth 315 

of host plants under salt stress, especially when co-inoculated with an arbuscular mycorrhizal 316 

fungus [78]. In addition, polyunsaturated fatty acids produced by some Mortierella species 317 

are known to increase resistance of plants against phytopathogens [79, 80]. Fungi in the genus 318 

Trichoderma are commonly detected and isolated from the rhizosphere [77, 81]. Many of 319 

them inhibit the growth of other fungi, often used in the biological control of phytopathogens 320 

[82-84]. Some of them are also reported to suppress root-knot nematodes [85] or to promote 321 

root growth [86]. The analysis also highlighted basidiomycete yeasts in the genus Saitozyma 322 

or Cryptococcus (teleomorph = Filobasidiella), which are often isolated from soil [22, 87] as 323 

well as both above-ground and below-ground parts of plants [88-91]. 324 

Along with those possibly saprotrophic or endophytic taxa, ericoid mycorrhizal and 325 

phytopathogenic taxa of fungi displayed relatively high betweenness scores within the 326 

metacommunity-scale network representing all the eight local forests (Table 1). Specifically, 327 

Oidiodendron (teleomorph = Myxotrichum) is a taxon represented by possibly ericoid 328 
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mycorrhizal species (O. maius and O. griseum) [92, 93], although fungi in the genus are found 329 

also from roots of non-ericaceous plants and soil [94]. On the other hand, fungi in the family 330 

Nectriaceae are known to cause black foot disease [95], often having serious damage on 331 

economically important woody plants [96, 97]. Although we collected seemingly benign roots 332 

in the study forests, some samples may be damaged by those pathogens. Alternatively, some 333 

lineages of Nectriaceae fungi may be associated with plant hosts non-symptomatically, 334 

having adverse effects context-dependently.    335 

Although these fungi were candidates of metacommunity hubs, which are characterized 336 

by broad geographic ranges and host plant ranges, none except but a Mortierella OTU had 337 

high betweenness scores at both local and metacommunity levels (Fig. 5a). This result 338 

suggests that even if some fungi have broad geographic ranges across the Japanese 339 

Archipelago, few played important topological roles in each of the local networks 340 

representing plant–fungus associations. In other words, fungi that can adapt to biotic and 341 

abiotic environments in forest ecosystems throughout cool-temperate, warm-temperate, and 342 

subtropical regions are rare.   343 

Therefore, we also explored fungi with broad geographic and host ranges within the 344 

metacommunities representing northern (cool-temperate) and southern (warm-temperate and 345 

subtropical) regions of Japan. In the metacommunity consisting of the four cool-temperate 346 

forests (Additional file 9; Figure S4), fungal OTUs in the genera Mortierella, 347 

Cladophialophora, and Pezicula as well as those allied to Ilyonectria and Cadophora had 348 

highest betweenness at both local and metacommunity levels, classified as metacommunity 349 

hubs (Fig. 5b; Table 1). Among them, Cladophialophora is of particular interest because it 350 

has been known as a lineage of “dark septate endophytes” [98-100] (sensu [14, 15, 101]). A 351 

species within the genus, C. chaetospira (= Heteroconium chaetospira), to which 352 

high-betweenness OTUs in our data were closely allied, has been known not only to provide 353 

nitrogen to host plants but also to suppress pathogens [12, 16, 102]. Likewise, the Helotiales 354 

genus Pezicula (anamorph = Cryptosporiopsis) includes endophytic fungi [103-105], some of 355 

which produce secondary metabolites suppressing other microbes in the rhizosphere [106, 356 

107]. Our finding that some of Cladophialophora and Pezicula fungi could be associated with 357 
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various taxonomic groups of plants over broad geographic ranges highlights potentially 358 

important physiological and ecological roles of those endophytes at the community and 359 

metacommunity levels. 360 

In the southern metacommunity networks consisting of warm-temperate and subtropical 361 

forests (Additional file 10; Figure S5), some arbuscular mycorrhizal OTUs and Saitozyma 362 

(Cryptococcus) and Mortierella OTUs had high betweenness scores at both local and 363 

metacommunity levels, designated as metacommunity hubs (Fig. 5c; Table 1). Given the 364 

above-mentioned prevalence of fungal OTUs allied to Cladophialophora chaetospira in the 365 

cool-temperate metacommunity, the contrasting list of metacommunity hubs in the southern 366 

(warm-temperate–subtropical) metacommunity implies that different taxonomic and 367 

functional groups of fungi play major metacommunity-scale roles in different climatic regions. 368 

This working hypothesis is partially supported by previous studies indicating endemism and 369 

vicariance in the biogeography of fungi and bacteria [108, 109], promoting conceptual 370 

advances beyond the classic belief that every microbe is everywhere but the environment 371 

selects microbes colonizing respective local communities [110].  372 

The roles of those metacommunity hubs detected in this study are of particular interest 373 

from the aspect of theoretical ecology. Hub species connected to many other species in an 374 

ecosystem often integrate “energy channels” [111] within species interaction networks, 375 

having great impacts on biodiversity and productivity of the ecosystems [35]. The concept of 376 

“keystone” or “foundation” species [112, 113] can be extended to the metacommunity level, 377 

thereby promoting studies exploring species that restructure and synchronize ecological (and 378 

evolutionary) dynamics over broad geographic ranges [35]. Given that below-ground plant–379 

fungus symbioses are key components of the terrestrial biosphere [1, 2], identifying fungal 380 

species that potentially have great impacts on the metacommunity-scale processes of such 381 

below-ground interactions will provide crucial insights into the conservation and restoration 382 

of forests and grasslands. We here showed that the list of metacommunity hubs could involve 383 

various lineages of endophytic fungi, whose ecosystem-scale functions have been 384 

underappreciated compared to those of mycorrhizal fungi. As those endophytic fungi are 385 

potentially used as inoculants when we reintroduce plant seedlings in ecosystem restoration 386 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 26, 2018. ; https://doi.org/10.1101/270371doi: bioRxiv preprint 

https://doi.org/10.1101/270371


 

 16 

programs [20, 51], exploring fungi with highest potentials in each climatic/biogeographic 387 

region will be a promising direction of research in conservation biology.   388 

The finding that compositions of metacommunity hubs could vary depending on climatic 389 

regions also gives key implications for the application of endophytes in agriculture. Although 390 

a number of studies have tried to use endophytic fungi and/or bacteria as microbial inoculants 391 

in agriculture [17, 18, 114], such microbes introduced to agroecosystems are often 392 

outcompeted and replaced by indigenous (resident) microbes [115, 116]. Moreover, even if an 393 

endophytic species or strain increases plant growth in pot experiments under controlled 394 

environmental conditions, its effects in the field often vary considerably depending on biotic 395 

and abiotic contexts of local agroecosystems [17] (see also [117]). Therefore, in the screening 396 

of endophytes that can be used in broad ranges of biotic and abiotic environmental conditions, 397 

the metacommunity-scale network analysis outlined in this study will help us find promising 398 

candidates out of thousands or tens of thousands microbial species in the wild. Consequently, 399 

to find promising microbes whose inocula can persist in agroecosystems for long time periods, 400 

exploration of metacommunity hubs needs to be performed in respective climatic or 401 

biogeographic regions.  402 

For more advanced applications in conservation biology and agriculture, continual 403 

improvements of methods for analyzing metacommunity-scale networks are necessary. First, 404 

while the fungal OTUs in our network analysis was defined based on the cut-off sequence 405 

similarities used in other studies targeting “species-level” diversity of fungi [59, 61], 406 

physiological functions can vary greatly within fungal species or species groups [14, 118]. 407 

Given that bioinformatic tools that potentially help us detect single-nucleotide-level variation 408 

are becoming available [119], the resolution of network analyses may be greatly improved in 409 

the near future. Second, although some computer programs allow us to infer functions of 410 

respective microbial OTUs within network data [63, 120], the database information of 411 

microbial functions remains scarce. To increase the coverage and accuracy of automatic 412 

annotations of microbial functions, studies describing the physiology, ecology, and genomes 413 

of microbes should be accelerated. With improved reference databases, more insights into the 414 

metacommunity-scale organization of plant–fungus associations will be obtained by 415 
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reanalyzing the network data by compiling enhanced information of fungal functional groups. 416 

Third, as the diversity and compositions of plant–fungus associations included in a network 417 

can depend on how we process raw samples, special care is required in the selection of 418 

methods for washing and preparing root (or soil) samples. By sterilizing root samples with 419 

NaClO [121], for example, we may be able to exclude fungi or bacteria that are merely 420 

adhering to root surfaces. Meanwhile, some of those fungi and bacteria on root surfaces may 421 

play pivotal physiological roles in the growth and survival of plants [122]. Accordingly, it 422 

would be productive to compare network topologies of plant–microbe associations among 423 

different source materials by partitioning endosphere, rhizoplane, and rhizosphere microbial 424 

samples with a series of sample cleaning processes using ultrasonic devices [123]. Fourth, 425 

although this study targeted fungi associated with roots, our methods can be easily extended 426 

to network analyses involving other groups of microbes. By simultaneously analyzing the 427 

prokaryote 16S rRNA region [123-125] with the fungal ITS region, we can examine how 428 

bacteria, archaea, and fungi are involved in below-ground webs of symbioses. Fifth, not only 429 

plant–microbe associations but also microbe–microbe interactions can be estimated with 430 

network analytical frameworks. Various statistical pipelines have been proposed to infer how 431 

microbes interact with each other in facilitative or competitive ways within host 432 

macroorganisms [37, 126, 127]. Overall, those directions of analytical extensions will 433 

enhance our understanding of plant microbiome dynamics in nature.  434 

 435 

Conclusions 436 

By compiling datasets of below-ground plant–fungus associations in temperate and 437 

subtropical forest ecosystems, we explored metacommunity-hub fungi, which were 438 

characterized by broad geographic and host ranges. Such metacommunity-scale analyses are 439 

expected to provide bird’s-eye views of complex plant–microbe associations, highlighting 440 

plant-growth-promoting microbes that can be applied to diverse plant taxa in various 441 

environments. Given that endophytic fungi promoting the growth and pathogen resistance of 442 

host plants can be isolated from forest soil (e.g., Cladophialophora chaetospira [99]), the list 443 
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of metacommunity-hub endophytic fungi featured in this study itself may include prospective 444 

species to be used in agriculture. By extending the targets of such network analyses to diverse 445 

types of plant-associated microbes (e.g., phyllosphere fungi and bacteria [75, 124, 128]) in 446 

various climatic/biogeographic regions, a solid basis for managing plant microbiomes will be 447 

developed.   448 
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Table 1 Top-10 list of non-Glomeromycota OTUs with highest betweenness within the metacommunity networks. In each of the three 

metacommunity-scale networks examined (full, cool-temperate, and warm-temperate/subtropical), fungal OTUs were ranked based on their 

betweenness centrality scores. As taxonomic information of Glomeromycota OTUs with high betweenness scores was redundant (e.g., Glomus spp. or 

Glomeraceae spp.), the top-10 list of non-Glomeromycota OTUs is shown. Taxonomy information of each OTU was inferred based on the query-centric 
auto-k-nearest-neighbor algorithm of reference database search [55, 56] and subsequent taxonomic assignment with the lowest common ancestor 

algorithm [62]. The results of the NCBI nucleotide Blast are also shown. For simplicity, the functional groups of fungi inferred with the program 

FUNGuild [63] were organized into several categories. See Data S4 (Additional file 4) for details of the categories and for full results including 

Glomeromycota and other fungal OTUs.  

 
OTU Phylum Class Order Family Genus Category NCBI Blast top hit Accession Cover Identity 

Full (8sites) 

         F_0042* - - Mortierellales Mortierellaceae Mortierella Saprotroph/Endophyte Mortierella humilis KP714537 100% 100% 

F_0381 Basidiomycota Tremellomycetes Trichosporonales Trichosporonaceae Cryptococcus Others_Unknown Saitozyma podzolica† KY320605 92% 99% 

F_0079 Ascomycota Sordariomycetes Hypocreales Nectriaceae - Saprotroph/Endophyte Ilyonectria protearum NR_152890 99% 100% 

F_0489 - - Mortierellales Mortierellaceae Mortierella Saprotroph/Endophyte Mortierella sp. KM113754 100% 100% 

F_0010 Ascomycota Leotiomycetes - Myxotrichaceae Oidiodendron Ericoid_Mycorrhizal Oidiodendron maius LC206669 100% 100% 

F_0368 Basidiomycota Malasseziomycetes Malasseziales Malasseziaceae Malassezia Others_Unknown Malassezia restricta KT809059 100% 100% 

F_0623 - - Mortierellales Mortierellaceae Mortierella Saprotroph/Endophyte Mortierella gamsii KY305027 100% 100% 

F_1188 Basidiomycota Tremellomycetes Trichosporonales Trichosporonaceae Cryptococcus Others_Unknown Saitozyma podzolica† KY320605 92% 99% 

F_0007 Ascomycota Sordariomycetes Diaporthales Melanconidaceae Melanconiella Saprotroph/Endophyte Melanconiella elegans KJ173701 100% 85% 

F_0485 Ascomycota Sordariomycetes Hypocreales Hypocreaceae Trichoderma Saprotroph/Endophyte Trichoderma sp. HG008760 100% 100% 

           

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 26, 2018. ; https://doi.org/10.1101/270371doi: bioRxiv preprint 

https://doi.org/10.1101/270371


Northen 4 sites (cool-temperate) 

        F_0042* - - Mortierellales Mortierellaceae Mortierella Saprotroph/Endophyte Mortierella humilis KP714537 100% 100% 

F_0034* Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae Cladophialophora Saprotroph/Endophyte Cladophialophora chaetospira KF359558 100% 99% 

F_0079* Ascomycota Sordariomycetes Hypocreales Nectriaceae - Saprotroph/Endophyte Ilyonectria protearum NR_152890 99% 100% 

F_0015* Ascomycota - - - - Others_Unknown Cadophora orchidicola KX611558 100% 99% 

F_0202* Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae Cladophialophora Saprotroph/Endophyte Cladophialophora chaetospira HQ871875 100% 99% 

F_0195* Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae Cladophialophora Saprotroph/Endophyte Cladophialophora chaetospira EU035405 100% 100% 

F_0181* Ascomycota Leotiomycetes Helotiales Dermateaceae Pezicula Endophyte Pezicula melanigena LC206665 100% 99% 

F_0010 Ascomycota Leotiomycetes - Myxotrichaceae Oidiodendron Ericoid_Mycorrhizal Oidiodendron maius LC206669 100% 100% 

F_0103* Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae Cladophialophora Saprotroph/Endophyte Cladophialophora chaetospira EU035403 100% 97% 

F_0489* - - Mortierellales Mortierellaceae Mortierella Saprotroph/Endophyte Mortierella sp. KM113754 100% 100% 

           Southern 4 sites (warm-temperate and subtropical) 

       F_0381* Basidiomycota Tremellomycetes Trichosporonales Trichosporonaceae Cryptococcus Others_Unknown Saitozyma podzolica† KY320605 92% 99% 

F_0042* - - Mortierellales Mortierellaceae Mortierella Saprotroph/Endophyte Mortierella humilis KP714537 100% 100% 

F_0610* Ascomycota Sordariomycetes Hypocreales Hypocreaceae Trichoderma Saprotroph/Endophyte Trichoderma spirale KU948158 100% 100% 

F_1188* Basidiomycota Tremellomycetes Trichosporonales Trichosporonaceae Cryptococcus Others_Unknown Saitozyma podzolica† KY320605 92% 99% 

F_0029 Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae - Others_Unknown Cladophialophora sp. LC189029 100% 99% 

F_0017 Ascomycota - - - - Others_Unknown Scleropezicula sp. KT809119 100% 98% 

F_0007 Ascomycota Sordariomycetes Diaporthales Melanconidaceae Melanconiella Saprotroph/Endophyte Melanconiella elegans KJ173701 100% 85% 

F_0485 Ascomycota Sordariomycetes Hypocreales Hypocreaceae Trichoderma Saprotroph/Endophyte Trichoderma sp. HG008760 100% 100% 

F_0112 Basidiomycota Agaricomycetes Thelephorales Thelephoraceae Tomentella Ectomycorrhizal Tomentella stuposa KR019860 100% 98% 

F_0073 Ascomycota Sordariomycetes - - - Others_Unknown Rhexodenticula acaciae KY173442 94% 95% 
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*Fungal OTUs classified as metacommunity hubs (mean local betweenness > 0.5; metacommunity betweenness > 0.5) 

†Synonym, Cryptcoccus podzolica 
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 1 
 2 
Fig. 1 Study sites examined in this study. Across the entire range of the Japanese Archipelago, 3 
root samples were collected in four cool-temperate forests (sites 1–4), one warm-temperate 4 
forest (site 5), and three subtropical forests (sites 6–8).  5 
  6 
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 7 

 8 

Fig. 2 Compositions of fungal taxa and functional groups in each forest. a Order-level 9 

taxonomic composition of fungal OTUs in each locality. The number of fungal OTUs 10 

detected is shown in a parenthesis for each forest. b Functional-group composition. The 11 

fungal functional groups were inferred by the program FUNGuild [63]. 12 
  13 
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 14 

 15 

Fig. 3 Fungal OTUs with highest local betweenness. a Order-level taxonomic composition of 16 

top-20 OTUs with highest local betweenness in each forest. See Data S4 (Additional file 4) 17 

for betweenness scores of all fungal OTUs in respective local forests. b Genus-level 18 

taxonomic composition of top-20 OTUs with highest local betweenness. c Functional-group 19 

composition of top-20 OTUs with highest local betweenness. 20 
  21 
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 23 

Fig. 4 Metacommunity-scale network including all the eight local forests. The size of circles 24 
roughly represents relative scores of betweenness centrality. The functional groups of fungi 25 
inferred with the program FUNGuild [63] were organized into six categories: i.e., arbuscular 26 
mycorrhizal (bue), ectomycorrhizal (red), ericoid mycorrhizal (skyblue), 27 
saprotrophic/endophytic (yellow), plant pathogenic (purple), and other/unknown fungi (grey) 28 
(Additional file 4; Data S4). For plant species/taxa (green), the geographic information of 29 
source populations is indicated in Additional file 8 (Figure S3). 30 
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 33 

Fig. 5 Relationship between local- and metacommunity-level betweenness. a Full 34 

meatcommunity. On the horizontal axis, the mean values of betweenness centrality scores 35 

across all the eight local forests are shown for respective fungal OTUs. On the vertical axis, 36 

the betweenness scores within the metacommunity-scale network consisting of the eight 37 

localities (Fig. 4) are shown for respective OTUs. b Metacommunity of cool-temperate 38 

forests. For the sub-dataset consisting of the four cool-temperate forests (Additional file 9: 39 

Figure S4), mean local betweenness and metacommunity betweenness are shown on the 40 

horizontal and vertical axes, respectively. c Metacommunity of warm-temperate and 41 

subtropical forests. For the sub-dataset consisting of the warm-temperate forest and the three 42 

subtropical forests (Additional file 10: Figure S5), mean local betweenness and 43 

metacommunity betweenness are shown on the horizontal and vertical axes, respectively.  44 
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