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Abstract 

Most organisms’ transcript and protein level only moderately correlate for various 

reasons, such as regulation of transcription and protein degradation. Better prediction 

and understanding the correlation between gene expression and protein abundance has 

been possible by harnessing the matching RNA/protein datasets produced by modern 

high-throughput RNA-Seq and mass spectrometry methods. In this work, we have 

utilized some well-studied matching RNA/protein datasets, and explored for the first 

time a bi-clustering method to cluster genes that have consistent correlation patterns 

between gene expression and protein abundance. The clustering results have been 

interpreted from the perspective of both transcriptomic and proteomic features, which 

show that mRNA half-life, protein half-life and protein structure in concert 

significantly affect the correlation of gene expression and protein abundance. With 

these and other carefully selected features, a prediction model based on individual 

clusters, called Cluster-based Linear prediction Model (CLM), was built and tested on 

mouse liver mitochondrial, mouse brainstem mitochondrial, Saccharomyces 

cerevisiae and Danio rerio datasets. CLM could find genes for which protein 

abundance can be predicted from mRNA data. In summary, based on bi-clustering, 
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feature selection and CLM model, we have established a new and valuable 

cluster-based protein abundance prediction method. 
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Introduction 

In recent years, it has become obvious that the amounts of matching mRNAs and 

proteins in a cell are not only governed by mRNA and protein synthesis, but also by 

intricate regulatory processes, such as regulatory RNA and protein modifications1. 

Hence, based on studies with many species, the general conclusion is that cellular 

mRNA and protein levels only correlates weakly2-9: the squared Pearson’s correlation 

coefficient(R2) is ~0.4 for gene expression and protein abundance, implying that only 

~40% of the variance in protein abundance can be explained by changes at the 

transcript level10. And analyses by Ning et al.11 comparing RNA-Seq and 

mass-spectrometry-based protein abundance data also led to a similar conclusion of 

modest correlation. Several other investigations reported slightly higher correlation, 

but these were limited to a few hundred mRNA-protein pairs (0.7)12, or differential 

expressed genes (0.88)13. Thus, integration of proteomic and transcriptomic 

approaches is of great importance, especially for biomarker identification in disease 

diagnosis14. Admittedly, quantitative proteome analysis with mass spectrometry has 

undergone tremendous improvements in the last decade13,15,16, yet it still cannot 

compete in terms of coverage, sensitivity and dynamic range with RNA-Seq. Due to 

these technical limitations, we are facing the dilemma that the biologically often more 

relevant description of protein abundance is unachievable and adequate approaches 

are still required to predict protein abundance based on gene expression data and 

additional features. 

Whereas it remains impossible to account for all regulatory principles when 
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predicting protein abundance from gene expression, some have been implemented and 

essentially three kinds of approaches can be distinguished: (1) approaches based on 

models considering protein synthesis and degradation; (2) approaches based on 

models simulating the protein translation process; (3) approaches utilizing various 

gene properties such as mRNA and protein sequences and 3D structures. 

Regarding the first kind of approaches, many groups tried to develop 

mathematical models to predict the changes of protein expressions from translation 

rate of mRNA and degradation rate of protein13,17,18. Although their efforts faced 

many obstacles, such as technical difficulties in measuring these two rates and 

applicability of the model only to cells in steady state19, such mathematical model 

should have significant implications in research on translation or degradation 

regulation. For the second, utilizing models based on simulating the protein 

translation process, some groups have built models to predict key translation rates (i.e., 

Ribosome Flow Model based on Totally Asymmetric Exclusion Process20) in the 

translation process. Based on mathematical models, prediction of protein abundance 

from gene expression would become possible. However, protein abundance levels had 

to be determined by balancing protein production and degradation rates – which are 

hardly available. 

For the approaches that utilize various gene properties, researchers have 

previously utilized all-gene-based General Linear Model (GLM) to correlate gene 

expression with protein abundance11, but little biological insight was gained except 

for global correlation. Some groups tried to improve protein abundance prediction by 
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building models that combined protein or mRNA features such as sequence 

frequencies and properties with gene expression21,22. One of these is the Multivariate 

Adaptive Regression Splines (MARS) model23, in which each function is constructed 

to fit distinct intervals of variables, and in each function piecewise linear segments 

(referred to as splines) are smoothly connected. MARS model separates all genes into 

clusters, and for each cluster a linear relationship could be obtained. Such linear 

relationship would always result in better values (than global linear relationship value) 

since these clusters are generated to optimize the inner consistency of genes/proteins. 

Thus “divide and conquer” strategies would usually work better than a GLM (or 

similar) strategy. However, as MARS was modeled as a combination of piecewise 

continuous linear functions, the splines in MARS model were built without 

considering any biological mechanism, making biological interpretation of splines 

difficult. 

In this work, we utilized some well-studied matching RNA/protein datasets11 to 

explore the dynamic relationship between transcript and protein expression, for which: 

(1) We have evaluated the mouse liver mitochondrial dataset, and selected 

representatives from 18 methods that were most suitable for protein, and 2 methods 

most suitable for mRNA abundance calculation3. Gene groups with consistent 

proteome and transcriptome data were discovered with hierarchical clustering through 

the QUBIC algorithm24 (details in Supplementary Information). (2) We have 

interpreted the bi-clustering results mainly from three different aspects, including 

mRNA half-life, protein half-life and protein 3D structure, to identify the general 
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features of gene expression products in each subgroup after bi-clustering. (3) We have 

also quantified the general characters of gene products (protein sequence length, etc.) 

from the bi-clustering results, and used them to develop a mathematical prediction 

model (CLM, a “divide and conquer” strategy) that could be used to predict protein 

abundances from corresponding gene expression. (4) Finally, the prediction method 

(CLM modeling approach) was validated on the mouse brainstem mitochondrial 

dataset, a Saccharomyces cerevisiae dataset, as well as a Danio rerio dataset, based on 

which the advantage of our proposed framework was confirmed effective for feature 

selection as well as prediction model building.  

Materials and Methods 

Datasets. Currently more and more corresponding mRNA/protein datasets are 

becoming available11,13,25. In this work, we selected four different sets of 

High-Throughput Sequencing (HTS) transcriptome data and mass spectrometry data 

(normalized) were used to analyze the relationship between gene expression and 

protein abundance, as well as properties of genes for: 1. mouse liver mitochondria11, 2. 

mouse brainstem mitochondria11, 3. Saccharomyces cerevisiae25, and 4. Danio rerio26. 

We have used mouse liver mitochondria dataset as the main dataset for building and 

testing the CLM modeling approach. This dataset contained 442 genes in total (after 

biclustering), and each sample had the corresponding gene expression and protein 

abundance values determined by different methods, with half-lives of protein and 

mRNA derived from Schwanhausser et al.17. Additionally, the other three datasets 
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were used for validation of our approach: (1) The mouse brainstem dataset has similar 

data structure (380 genes with both corresponding gene expression and protein 

abundance values) with the liver dataset, differing only in tissue sources. (2) 

Saccharomyces cerevisiae dataset containing isotope-coded affinity tag (ICAT) for 

protein abundances and microarray methods for gene expressions. (3) Danio rerio 

embryonic development dataset (5001 genes in total) containing 

NanoHPLC-ESI-MS/MS data for protein abundances and RNA-Seq methods from 

gene expressions. These three datasets were used to validate the applicability of our 

approaches in different species. The use of genes from mouse brainstem tissue, as 

well as genes in Saccharomyces cerevisiae and Danio rerio would validate the 

applicability of our analytical approaches and prediction models for establishment of 

the connection between gene expression and protein abundance. 
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Figure 1. The workflow for bi-clustering, cluster interpretation and prediction 

modeling. The whole process includes 4 major components: (1) bi-clustering, (2) 

cluster interpretation (optional), (3) feature selection, (4) prediction modeling. 

 

Prediction workflow. The overall prediction workflow was depicted in Figure 1.  

(1) Gene bi-clustering and characterization. Suitable calculations for gene expression 

and protein abundance were chosen before gene clustering. For protein abundance 

data, we could select from 18 different calculation methods11 (Figure S1). However, 

since some of these methods are highly correlated in detecting protein abundance, we 

performed hierarchical clustering by IBM SPSS’s modules on these methods and 

selected one method from each cluster to avoid redundancy. 4 methods were kept 

thereafter. Based on these 4 methods, together with 2 methods for gene expression 

analyses, the gene expression and protein abundance measurement for mouse liver 

mitochondria genes were used as input (a matrix) for bi-clustering. Our goal was that 

(1) clusters contain at least 15 genes and (2) the gene/protein expression trend for 

genes in these clusters are consistent as judged by at least 1 protein abundance and 1 

gene expression method, and we adjusted the parameters (q = 0.5 and r = 2) 

accordingly. 

(2) Cluster interpretation. We interpreted the relationship of gene expression and 

protein abundance in each one of the obtained clusters from different aspects. For 

mRNA, the factors that can influence its half-life or stability (e.g., RNA secondary 

structure) varied. For protein, we considered its function and 3D structure 
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(considering the complexity of protein 3D structures, only the ratio of “protein surface 

area/volume” was calculated using online server (SARpred, http://www.imtech.res.in/ 

raghava/sarpred/)27,28 and observed that the higher the ratio, the more prone the 

protein to degrade), as well as other factors such as protein length (Table 1).  

 

Table 1. The list of features considered and their abbreviations. 

Feature NO. Feature Abbreviation 

1 The protein length Length(L) 

2 Exposed amino acids/ all amino acids from SABLE server29 SABLE 

3 Exposed amino acids/all amino acids from Fragment-HMM30 Exposed% 

4 Exposed amino acids/ all amino acids from SARpred server28 SARpred 

5 NO. of amino acids PEST No._PEST 

6 NO. of the amino acids WLCTFYV No._WCLTFYV 

7 NO. of the amino acids EDKNRQ No._EDKNRQ 

8 NO. of exposed Lys No._Lys_e 

9 NO. of Lys  No._Lys 

19 NO. of amino acids in secondary structure E E-secondary 

11 NO. of amino acids in secondary structure H H-secondary 

12 NO. of amino acids in secondary structure C C-secondary 

13 NO. of the amino acids W, L, C, T, F, Y and V/protein length WCLTFYV/L 

14 NO. of the amino acids E, D, K, N, R and Q/protein length EDKNRQ/L 

15 NO. of amino acids PEST/protein length PEST/L 

16 NO. of exposed Lys/protein length No._Lys_e/L 

17 NO. of exposed Lys/NO. of Lys Lys-e/Lys 
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18 NO. of Lys/protein length Lys/L 

19 NO. of amino acids in secondary structure E/protein length E-secondary/L 

20 NO. of amino acids in secondary structure H/protein length H-secondary/L 

21 NO. of amino acids in secondary structure C/protein length C-secondary/L 

 

(3) Feature selection. Based on gene bi-clustering and characterization, we have 

observed that many mRNA or protein features were related to mRNA and protein 

half-lives, thus affecting clustering results. Therefore, 21 important features that 

related to protein sequences and protein 3D structures were selected according to 

literatures31-34 (listed in Table 1). These features would be useful for building the 

prediction models, based on which gene expression and protein abundance could be 

connected. 4 different feature selection methods were employed for obtaining a 

minimal set of discriminatory features: Random forest, PCA (Principal Component 

Analysis) and LDA (Linear Discriminative Analysis), PLS (Partial least squares 

regression), and mRMR35 (minimum Redundancy Maximum Relevance Feature 

selection) (more details in Supplementary Information).  

(4) Prediction model. The prediction model that we have proposed and compared here 

referred to actual gene expression and protein abundance correlation models, based on 

which prediction of protein abundance from gene expression could be realized. In 

addition, the selected features for genes in each cluster had to be quantitative (e.g. 

sequence length or other properties), and we applied them to develop the prediction 

model that can accurately predict the correlation between gene expression and protein 
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abundance. Classification and prediction: The Libsvm36 classification method was 

employed to conduct classification and prediction of gene categories (100 times for 

each process), then Cluster-based Linear Model” (CLM) for prediction of protein 

abundance from gene expression was built in each cluster. Thereafter, the CLM 

prediction model was compared with GLM and MARS model in this study, using the 

whole genes in mouse liver mitochondrial dataset as the input data. Accuracy 

determination: all the predicted genes were firstly randomly divided into 7 parts; 

secondly, each part of genes was predicted by the linear model based on genes in the 

corresponding cluster; thirdly, the prediction process for each model was done many 

times to obtain an average accuracy result (Figure S2); finally, the average accuracy 

based on the 7 clusters was our prediction result on the total dataset.   

 

Results and Discussions 

In this work, we first established the bi-clustering method, then performed feature 

selection, and developed the prediction model with -omics data from mouse liver 

mitochondria. Thereafter, our new workflow was validated with datasets from mouse 

brainstem mitochondria, S. cerevisiae and Danio rerio. 

Bi-clustering results and interpretation of clusters 

(1) Selection of quantification methods: First, we have performed bi-clustering 

analysis based on the mouse liver mitochondrial dataset. To calculate protein 

abundance, we initially selected NSAF (MS2 based: using spectrum counting 
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information from MS/MS experiment results), msInspect (MS1 based: using peak 

intensity information from MS experiment results), msBID (MS1 based) and 

SpecturmMill (MS1 based) methods. These commonly used methods are selected 

because NSAF is based on spectral count, whereas the other three methods are based 

on MS signal intensity, yet use different algorithms11. As each of msInspect and 

msBID has 8 configurations, we could choose from overall 18 different measurements 

for protein abundances. To avoid bias in quantification methods /algorithms, guided 

by hierarchical clustering (the agglomeration method=“complete”) result (Figure S1), 

msInspectTop3absPeakIntensity, msBIDTop3normAreaIntensity, SpectrumMill and 

NSAF were chosen. Based on these 4 methods, together with 2 methods for mRNA 

analyses (microarray and RNA-Seq), the gene expression and protein abundance 

measurements for mouse liver mitochondria genes were normalized, and these 

normalized expression values were used as input for bi-clustering (due to the strict 

filtration, only hundreds of genes were kept as the input data). 

(2) Bi-clustering of genes: By using bi-clustering algorithm QUBIC, we have obtained 

7 clusters (Figure 2 and Figure S3), each of which had more than 15 genes. Out of 

these clusters, 4 main clusters each having relatively large number of genes and also 

having clear half-life patterns were shown in Figure 3. These clusters were selected 

by bi-clustering algorithm, which would have reflected intrinsic properties of gene 

expression that might not be understood a priori.  
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Figure 2. Bi-clustering results for mouse liver mitochondrial genes. The results of 

bi-clustering were presented in a matrix (442 genes * 6 methods). We have obtained 7 

clusters and each cluster contained different number of genes. Values shown in 

heatmap represented the normalized measurements by different methods. 

 

Despite the weak correlation between gene expression and protein abundance, the 

joint analysis of transcriptome and proteome data taken from the same samples can 

potentially reveal clusters of (a) genes with both stable mRNA and stable protein, 

such as Cluster 1; (b) genes with stable mRNA and unstable proteins, such as Cluster 
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3 and 4; (c) genes with stable proteins and unstable mRNA, such as Cluster 2; and (d) 

genes with both unstable mRNA and unstable proteins (Table S1). The analysis of 

these gene clusters in respect to mRNA half-life, protein half-life, protein 3D structure 

and other features, might further unfold the underlying dynamic relationship between 

gene expression and protein abundance. The half-life properties and protein functions 

for four representative clusters were explained as below: 

 

Figure 3. Clusters after bi-clustering for mouse liver mitochondrial genes. The 

scatter plots of gene distributions for 4 clusters. The red points indicate genes 

contained in each cluster, respectively. The horizontal axis is the log2 value of protein 

abundances determined by the msInspectTop3absPeakIntensity method. Vertical axis 

is the log2 value of gene expression (RPKM values). 
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(i) Cluster 1. 23 genes were classified in this cluster. The distribution of gene 

expression products for the whole population was shown in Figure 3 (Cluster 1). We 

observed that gene expressions in log (RPKM) were between 2 and 2.5. These gene 

expressions were consistent, but the distribution of corresponding protein abundance 

was dispersed. We conjectured that the stability of mRNA might account for their 

being in the same cluster. This seemed reasonable, as the average half-life of all 

mRNA was 12.06 hours, while the average half-life of mRNA in this cluster (15.76 

hours) was significantly longer according to t-test (p-value < 0.001) (Figure 4a). It 

was clear that the genes in cluster 1 can be divided into two sub-groups based on 

protein half-lives: one included some housekeeping genes with stable mRNAs and 

stable proteins, such as HAGH (encodes hydroxyacyl glutathione hydrolase), QDPR 

(encodes dihydropteridine reductase), NME2 (encodes nucleoside dephosphate 

kinase), and so on; the other included some genes encode regulatory proteins (e.g., 

FTH1, GPX4) and NADH dedydrogenase, which had stable mRNAs and unstable 

proteins. In addition, from the view of 3D structure, NME2 is more stable than GPX4 

(Figure S4). Interestingly, there was no conserved fragment for gene sequences in 

cluster 1, which might be due to the existence of two sub-groups of genes in this 

cluster (Figure S5). 

(ii) Cluster 2 and 3. There were 17 genes in each cluster, respectively. We have 

also attempted to interpret the combination of Cluster 2 and Cluster 3. The average 

global half-life of mRNAs and mRNAs in these clusters were not significantly 

different (t-test p-values were greater than 0.93 and 0.84, respectively) (Figure 4c and 
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Figure 4e). On the other hand, these two clusters had different distribution in protein 

half-lives (Figure 4d and Figure 4f). Interestingly, there were conserved fragments 

for gene sequences in cluster 2 and cluster 3, respectively, while the conserved 

fragments for these two clusters were also similar to certain degree (Figure S5). 

 

Figure 4. The mRNA and protein half-life histograms of clusters for mouse liver 

mitochondrial genes. The green bar refers to the secondary axis if the bar plot has 

one. (a) The histograms of the mRNA half-life distribution in Cluster 1 versus the 

global level distribution. (b) The mRNA and protein half-lives for Cluster 1 as shown 
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in a scatter plot. (c) The histograms of the mRNA half-life distribution in Cluster 2. (d) 

The histograms of the protein half-life distribution in Cluster 2. (e) The histograms of 

the mRNA half-life distribution in Cluster 3. (f) The histograms of the protein half-life 

distribution in Custer 3. (g) The histograms of the mRNA half-life distribution in 

Cluster 4. (h) The histograms of the protein half-life distribution in Cluster 4. All half- 

lives were measured by hour as the basic unit. 

 

(iii) Cluster 4. This cluster includes many ribosomal proteins. Compared with the 

half-lives of cytoplasmic ribosomal mRNA and protein, mitochondrial ribosomes had 

not only shorter-lived proteins (Figure S6), but also short-lived mRNAs. Interestingly, 

there was a conserved fragment for gene sequences in cluster 4 (Figure S5). These 

might be the reasons that 20 genes were clustered. 

In summary, each of the clusters had specific half-life properties or protein 

functions, even gene sequence specificities, indicating that the bi-clustering results 

have uncovered the underlying dynamic relationship between gene expression and 

protein abundance.  

Feature Selection 

Upon bi-clustering of the mouse liver mitochondria dataset, features that most 

appropriately describing and separating the clusters were identified. Different feature 

selection methods were applied, and their consensus results were used to build the 

prediction model. 

According to cluster interpretation, we believed mRNA and protein half-lives 
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could be most suitable for distinguishing genes from different clusters. Accordingly, 

we have analyzed 21 known features that are relatively well-studied, and have 

evidence to affect protein half-lives (Table 1). Other features associated with protein 

stability, such as the predicted instability index, were not included in this work but 

could be examined in future studies. Furthermore, 4 different methods: random forest, 

PCA and LDA analysis, PLS analysis, and mRMR were employed for feature 

selection analyses to identify the most important features (described in Materials and 

Methods).  

Based on these consensus variables selected by multiple methods, we have finally 

selected 5 most representative features: C-secondary, Length, No._Lys_e, No._Lys 

and No._WCLTFYV (5 features would be enough to achieve the optimal balance 

between accuracy and efficacy (Figure S7)). (1) C-secondary represents the number 

of amino acids in secondary structure C (random coil), for which there are reports 

showing that the proportion of random coils in a protein structure has empirical 

relationships with protein stability37. (2) Length represents the protein sequence 

length, for which previous researches indicated that longer proteins tend to be more 

stable31. (3) No._Lys_e represents the number of exposed Lys, and (4) No._Lys 

represents the number of Lys in protein sequence. Lys residue has positive charge and 

very long flexible side chain, which prefers to be in protein exposed surfaces and 

interact with other partners. Furthermore, they are likely to perform as functional 

active sites of ubiquitin-protein ligases in the ubiquitin-proteasome system34,38, 

therefore Lys residues in proteins may affect the stability of the protein. (5) 
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No._WCLTFYV represents the number of the amino acids W, L, C, T, F, Y in proteins. 

These 6 kinds of residues are large and hydrophobic which have also been shown in 

labile proteins by previous researches31. In summary, there are biological evidences to 

support that these 5 features are associated with protein stability. Therefore, we chose 

them for classification and building the prediction model. 

Comparison of prediction models 

In this section, we have used the mouse liver mitochondrial gene expression and 

protein abundance data, and compared our novel CLM model with the previous 

reported two models: GLM and MARS. The GLM model calculates a single linear 

relationship between mRNA and protein abundances for all genes. The MARS Model 

performs prediction based on subsets of genes (separated by segmentation based on 

all genes). MARS differs from the CLM model in that the subsets of genes are 

selected based on automatic selection that would yield best adaptation of linear model 

to datasets, while in CLM model the subsets are selected by bi-clustering. 

(1) Comparison with the GLM model.  

For GLM model, the average prediction accuracy of 27.0% was achieved, using 

100 genes as the training dataset and the last (342 genes) as the testing dataset (input: 

the mouse liver mitochondrial dataset). For CLM model, the genes as training and 

testing datasets were carefully selected basing on clustering results from bi-clustering, 

which would ensure the accuracy and fairness of the prediction model evaluation. One 

linear model was built for every cluster obtained from bi-clustering. Through this 

process, the average accuracy based on 7 clusters was 35.09%, which was larger than 
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that in GLM model on total genes (27%). Although the number of genes in these 

clusters (123 genes) were relatively small, they were representative enough for the 

general patterns that connect gene expressions and protein abundances.   

In addition, we discovered several genes that can only be predicted accurately by 

CLM model (the amaranth triangles in black circle in Figure 5), e.g., Nags and Surf1. 

The Nags gene encodes malonyl N-acetylglutamate synthase that catalyzes the 

production of N-acetylglutamate from glutamate and acetyl-CoA. This enzyme is 

important for mammals, because it produces the regulator of urea cycle 

N-acetylglutamate, which activates carbamoyl phosphate synthetase I, catalyzing the 

initial reactions of urea cycle. Since the gene expression and protein abundance are 

relatively low, the linear model on total genes cannot predict this gene. The same 

reason applies to Surf1 gene. Surf1 gene encodes surfeit gene 1 that may play both a 

positive and negative regulatory role in gene expression39. The mRNA and protein 

half-lives of the Surf1 gene were 10.61 hour and 36.03 hour, respectively, which is 

shorter to reflect its regulatory function, compared with the average mRNA and 

protein half-lives. These cases indicated the advantage of CLM model’s 

divide-and-conquer approach over that of GLM. 
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Figure 5. Results of GLM and CLM modeling for mitochondrial genes from 

mouse liver tissue. The amaranth triangles in black circle are representatives of genes 

that can only be predicted accurately by CLM model for different clusters. Notice that 

in CLM model for Cluster 7, gene Nags is in the left black circle and gene Surf1 is in 

the right black circle. 

 

(2) Comparison with the MARS model. In the previous study on MARS21, the 

correlation between real values and predicted values of protein abundance was 

considered as measure of model quality. However, “good correlation” is not 

equivalent to “accurate prediction”. Error Sum of Squares (SSE) between real and 

predicted values was another quality metric to compare CLM and MARS model. 

Based on the above 5 consensus features (C-secondary, Length, No._Lys_e, 

No._Lys and No._Lys_e/L) , CLM model could obtain better prediction results, with 

higher Pearson correlation (r) and lower SSE between real values and predicted 

values in 3 clusters (Cluster 2, 3 and 6) (Table S2). i) In Cluster 2 and 3, we observed 

that the correlation coefficients between mRNA abundance and protein abundance 
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was high (0.91 and 0.88, respectively) and genes in these two clusters deviated from 

the global distribution (Figure 3). In addition, the genes of the two clusters had 

similar average half-life of mRNAs compared with that of global mRNAs (t-test 

p-values were greater than 0.93 and 0.84, respectively), yet different distributions in 

protein half-lives (Figure 4). ii) In cluster 6, genes did not have high correlation and 

deviated from the global distribution, the properties of these genes were similar to 

those in Cluster 3 that included some ribosomal proteins. And there was no significant 

difference between global mRNA half-lives and those in this cluster (t-test p-values 

was 0.54). We concluded that CLM model might have superior prediction power for 

clusters whose mRNA half-lives were not significantly different from global mRNA 

half-lives. We conjectured that CLM was better than MARS for these clusters, mainly 

because for each cluster, predictions based on CLM were more biologically 

meaningful as regard to genes within the clusters, while predictions based on MARS 

might be affected by genes outside of the cluster but in the same segment based on 

which the spline was generated. 

 

Validation of the prediction method: Applicability of computational model on 

other samples 

     Due to the existence of various transcriptome datasets, the features for protein 

prediction might be diverse, thus the features selected above would be inconsistent 

among different datasets. Rather, the entire procedure to select features as well as 

building the prediction model should be generally applicable and superior to simpler 
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models like GLM model. Such a proof can only be given with validation based on 

different datasets. Therefore, we have validated the entire prediction procedure based 

on three additional datasets: mitochondrial genes from the mouse brainstem tissue 

(with relatively more stable turnover), genes in Saccharomyces cerevisiae (with 

relatively more dynamic turnover), as well as genes in embryonic development 

process in Danio rerio (with relatively more dynamic turnover). 

(1) Mitochondrial genes from mouse brainstem tissue. Similar to mitochondrial 

genes from mouse liver tissue, the data of transcripts, proteins and associated 

quantitative information in mouse brainstem tissue were obtained from the same work 

as used in Ning et al.11. We followed the same analysis procedure of bi-clustering, 

feature selection and prediction model building as above, in which the “prediction 

model building” module was repeated many times to reduce randomness in 

classification. The average accuracy of multiple clusters was 28.87% based on 5 

features (E-secondary, No._WCLTFYV, No._Lys, No._Lys_e/L and No._Lys_e). This 

accuracy was higher than that from all-gene-based linear correlation of 23.37%. When 

compared with MARS Model, CLM model could have a better performance (Table 

S3). 

Some interesting prediction results, such as those related with half-lives and 

protein functions, have also been observed. i) Gene Supv3l1 encodes ATP-dependent 

RNA helicase. The mRNA and protein half-lives of the gene Supv3l1 were 6.88 hour 

and 51.96 hour, respectively. Both the mRNA half-life and the protein half-life were 

shorter, compared with the overall average. This might be because the helicase only 
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takes part in the initiation of material replication process which is transient and 

happens occasionally. Therefore, short half-lives for mRNA and protein reflect the 

principle of the adaptation of the properties and function. In addition, the reason that 

the GLM model on all genes cannot predict the protein abundance of gene Supv3l1 

might be that mRNA and protein abundance were relatively low. ii) The same reason 

applied to gene Ppif. The Ppif gene encodes Polymerase delta-interacting protein. The 

mRNA and protein half-lives of the gene Ppif were 5.49 hour and 160.09 hour, 

respectively. The mRNA half-life is shorter, and the protein half-life is longer 

compared with the overall average. Although this protein participates in genetic 

material replication process, it is indispensable to function for a relatively long time, 

while the corresponding mRNA will degrade immediately after translation. These two 

genes’ protein abundance could not be predicted accurately by GLM model, but CLM 

model could predict it with good accuracy (Figure 6). 
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Figure 6. Results of GLM and CLM modeling for mitochondrial genes from 

mouse brainstem tissue. (a) GLM model and CLM model for Cluster 3 and gene 

Supv3l1 in circle. (b) GLM model and CLM model for Cluster 4 and gene Ppif in 

circle. The amaranth triangles in black circle are representatives of genes that can only 

be predicted accurately by CLM model for different clusters. 

 

(2) Genes from Saccharomyces cerevisiae. The transcripts, proteins and 

associated quantitative information for Saccharomyces cerevisiae were obtained from 

Griffin et al.25. After feature selection, the most important variables selected include 

Length (L), No._WCLTFYV, No._EDKNRQ, as well as No._Lys_e/L, No._Lys_e, 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 23, 2018. ; https://doi.org/10.1101/270397doi: bioRxiv preprint 

https://doi.org/10.1101/270397


27 
 

No._Lys, H-secondary, C-secondary, PEST/L. All 5 variables selected from the 

“mouse liver mitochondrial” dataset were also deemed most important for S. 

cerevisiae. But a couple of variables (e.g., No._PEST and Exposed%), which were not 

considered important for the “mouse liver mitochondrial” dataset, were important for 

discriminating different genes in S. cerevisiae samples. Based on this different set of 

selected features (again the top 5 features that include C-secondary, No._Lys_e, 

No._Lys, No._Lys_e/L, No._PEST), a new prediction model was built. Results have 

shown that the prediction accuracy (49.4%) could be higher than that from 

all-gene-based linear correlation (42.4%), and also higher than directly using the 

prediction model based on the “mouse liver mitochondrial” dataset (45%).  

 (3) Genes from Danio rerio. To further explore the applicability of our method, 

datasets including transcripts, proteins and associated quantitative information for 

Danio rerio in embryonic development process were obtained from Shaik et al.26. 

After feature selection, the most important variables selected include Length, 

Exposed%, NO._WCLTFYV, NO._EDKNRQ, and EDKNRQ\L. By comparing with 

the results for the other three datasets, we discovered the variable, NO._WCLTFYV, is 

a relatively more universal and important feature in the correlation analysis of mRNA 

and protein for these four the datasets/species. Meanwhile, the variable EDKNRQ\L, 

which was not considered important for either two “mouse” datasets or S. cerevisiae 

dataset, was important for discriminating different genes in the embryonic 

development process of Danio rerio. It was discovered previously that the above 

charged amino acids (E, D, K, N, R, Q) were enriched in more stable proteins33. Thus, 
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the variable of EDKNRQ\L might be much more related to protein stability or the 

process of selective protein degradation (mostly ubiquitin-mediated)38, which might 

be more critical for differentiation/signal transduction in the process of embryonic 

development in Danio rerio dataset than in the other three datasets. 

In summary, when the other three independent datasets have been used in this 

study, the prediction accuracy of CLM model could reach a higher accuracy compared 

to MARS model. Meanwhile, in Danio rerio dataset, the comparison results between 

MARS Model and CLM model demonstrated that CLM performed better than MARS, 

especially in Cluster 1 (MARS: R2=0.37, SSE=17200; CLM: R2=0.48, SSE=12720) 

and Cluster 3 (MARS: R2=0.45, SSE=2550; CLM: R2=0.52, SSE=2326), for which 

higher correlation coefficient values and smaller SSE values could be observed from 

CLM model (Table S3). 

Conclusion 

Identification of major determinants for the correlation between gene expression 

and protein abundance can lead to better understanding of gene regulation 

mechanisms and better prediction of protein abundance from gene expression data. In 

this work, we have proposed a bi-clustering method to cluster genes that have 

consistent patterns for the correlation between gene expression and protein abundance. 

The clustering results have been interpreted by the properties of both transcripts and 

proteins, which showed that mRNA half-life, protein half-life and protein 3D structure 

could affect gene expression and protein abundance profoundly. Based on these 
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results, we have proposed a CLM model for prediction of protein abundance based on 

gene expression and protein features. 

On the mouse liver and brainstem mitochondrial datasets, this approach worked 

well for protein abundance prediction from gene expression data, proving the validity 

of the prediction model on mouse mitochondrial genes. Additionally, on 

Saccharomyces cerevisiae transcriptomic and proteomic data, the CLM model was 

built on a different set of features, and the prediction accuracy could again reach a 

satisfactory level better than all-gene-based GLM model. Furthermore, relatively 

satisfactory results of this CLM modeling approach were also observed based on 

Danio rerio embryonic development dataset. Based on these results for four datasets 

representing diverse kinds of species and organelles, it was quite clear that for most 

clusters, CLM models could achieve higher correlation and lower SSE between real 

values and predicted values of protein abundance compared to MARS models. 

Therefore, we conclude that the general approach to select features as well as 

building the CLM prediction model can achieve relatively high accuracy for a wide 

range of datasets. Furthermore, the 5 most important protein features differ among 

species and tissues, resulting in different CLM models, and reflect different mRNA 

and protein turnover for diverse kinds of species and organelles. 

We also noticed that the prediction accuracies for all mouse genes/proteins were 

still far from perfect and quite low when using the prediction model built based on the 

“mouse liver mitochondrial” dataset. This may reflect a specificity of each dataset, 

indicating that there is still room for improving prediction model. And the improved 
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prediction model might be built based on further development of optimization 

methods for feature selection, as well as non-linear model tuning. All these might help 

for better prediction of protein abundances from gene expressions without much more 

other information. 

Availability 

The computational analysis pipeline for CLM methods, as well as manuals and 

example datasets are provided online at: 

http://www.microbioinformatics.org/software/clm.html. 
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