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ABSTRACT 

Summary: SMuRF is an ensemble method for prediction of somatic point mutations (SNVs) and 

small insertions/deletions (indels) in cancer genomes. The method integrates predictions and 

auxiliary features from different somatic mutation callers using a Random Forest machine 

learning approach. SMuRF is trained on community-curated tumor whole genome sequencing 

data, is robust across cancer types, and achieves improved accuracy for both SNV and indel 

predictions of genome and exome-level data. The software is user-friendly and portable by 

design, operating as an add-on to the community-developed bcbio-nextgen somatic variant 

calling pipeline. 
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INTRODUCTION 

Identification of somatic mutations from matched tumor and normal samples is challenged by 

sequencing and alignment artefacts as well as the heterogeneous composition and mutational 

processes of tumors. Recent studies have revealed low concordance between existing methods 

for somatic variant calling (1-4). Additionally, a benchmark study demonstrated that the 

accuracy of a given somatic mutation calling algorithm can vary extensively across different 

workflows and pipelines (5). Parameters influencing this variation may be choice of alignment 

algorithm, use of local re-alignment, as well as configuration of a multitude of post-processing 

filters. Furthermore, somatic mutation calling algorithms are often trained and evaluated on 

simulated tumor data and/or whole exome sequencing (WES) data, and it is less clear how well 

they perform in a genome-wide setting. Indeed, a recent benchmark study demonstrated that 

many methods and pipelines have low accuracy when applied to tumor whole-genome 

sequencing data (5).  

Previous studies have used the consensus of multiple callers to improve the accuracy of 

somatic variant calling (6,7). Taking this one step further, a machine learning based ensemble 

method may combine multiple mutation callers with auxiliary sequence and alignment features 

to improve mutation calling accuracy (8). While such approaches may improve accuracy, they 

are generally not portable. The end-user must identify and obtain a suitable training and testing 

datasets, need to have knowledge of machine learning, and must re-fit the model whenever 

parameters of the workflow changes (Fig. 1A). There is therefore a need for accurate ensemble 

approaches for somatic mutation calling that can be ported between research groups.  

Bcbio-nextgen is a highly popular (with almost 1000 code commits from over 50 contributors in 

2017) community developed next generation sequencing analysis pipeline that is fully 

automated, validated, and scalable (9). The default bcbio-nextgen somatic variant calling 

pipeline employs four mutation callers: MuTect2 (10), Freebayes (11), VarDict (12) and VarScan 
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(13), and offers a simple consensus vote to select the final set of somatic mutation variant calls. 

Here we developed a Somatic Mutation calling method using a Random Forest model (SMuRF), 

which combines the predictions from these individual mutation callers with auxiliary alignment 

and mutation features using supervised machine learning (Fig. 1B). By integrating SMuRF 

directly with the bcbio-nextgen framework, SMuRF is portable by design and require minimal 

efforts to setup and run. SMuRF is trained on a gold standard set of mutation calls that has 

been curated by the International Cancer Genome Consortium (ICGC) community using deep 

(>100x) whole genome sequencing (WGS) of two tumors (5). We show that SMuRF is highly 

accurate and outperforms individual somatic mutation callers as well as simple consensus 

voting. We demonstrate that the model is robust across different cancer types and is highly 

accurate for both WGS and WES data. 

 

MATERIALS AND METHODS 

Input and output 

SMuRF requires input files in variant call format (VCF) from the somatic mutation callers 

MuTect2, Freebayes, VarDict, and VarScan as generated by the default ‘variant2’ bcbio-

nextgen pipeline (9). The output from a SMuRF analysis is a set of data tables containing 

predicted SNVs and indels together with their associated confidence scores. The data tables 

can easily be converted into the mutation annotation format (MAF) which is compatible with 

other programs for downstream analysis.   

Implementation 

SMuRF is written in R and is freely available as an R package. First, VCF files from bcbio-

nextgen are processed to extract variant features which include base and mapping quality 

scores and other features provided by each of the four callers. SMuRF then uses a Random 
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Forest (h2o R package) classifier to accurately predict SNVs and indels given these features. 

Feature extraction and prediction of somatic variants takes ~15 minutes for tumor-normal WGS 

data on a standard computer (4 CPUs, 16GB RAM). To ensure future compatibility between 

SMuRF and bcbio-nextgen, the performance of SMuRF can be re-assesed, and model 

potentially re-trained, with future bcbio-nextgen releases. Information about compability of 

SMuRF and bcio-nextgen versions will be documented on the SMuRF Github page. 

Annotation of somatic mutations 

The “cdsannotation” function in the SMuRF package adds annotations for predicted mutations in 

the coding regions by merging annotation provided by the bcbio-nextgen pipeline (by SnpEff) 

(14).    

Training datasets  

The Random Forest model was trained on matched tumor-normal WGS data from a chronic 

lymphocytic leukemia (CLL) patient and a medulloblastoma (MB) patient, where the true 

somatic mutations have been identified through an extensive community curation procedure by 

the International Cancer Genome Consortium (ICGC) (5). For model training, we down-sampled 

both tumor datasets to sequence coverages typically generated in WGS studies (CLL: 

tumor/normal ~40x/~50x; MB: ~75x/~50x). Both tumors had a high tumor purity (cancer-cell 

fraction; ~0.92 for CLL and ~0.98 for MB). 

Feature selection, optimization and model training 

In the selection of features, potentially predictive alignment and variant features were extracted 

from the vcf-files. Features directly dependent on sequencing coverage, such as allele counts 

and read depth, were excluded. The features were evaluated by the random forest algorithm 

and ranked based on their relative importance. The most consistent features (with a geometric 

mean ranking <10) when training on the CLL or MB tumor alone were selected. Overall, 9 and 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2018. ; https://doi.org/10.1101/270413doi: bioRxiv preprint 

https://doi.org/10.1101/270413
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

10 features were selected for the SNV (Table 1) and indel (Table 2) models, respectively. The 

maximum number of randomly selected features (mtries) and maximum tree depth (depth) in 

the Random Forest model were determined by a grid search strategy using 5-fold cross 

validation (SNV: mtry = 5, depth = 11;  indel: mtry = 4, depth = 10).   

Evaluation of model accuracy 

We trained our model on 70% of the combined CLL and MB data using five-fold cross-

validation, withholding the remaining 30% as independent test data. The four individual variant 

callers were run with default parameters in the bcbio-nextgen pipeline. The accuracy of the 

model and individual mutation callers were evaluated with the F1-score, which is the harmonic 

mean between the precision and recall (𝐹1 = 2 ×  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
), where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 and 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 . Precision-recall curves were plotted to visualize the performance of SMuRF 

compared to the individual callers. We plotted precision-recall curves using the confidence 

score provided by each method: SMuRF confidence score, MuTect2 tumor log-odds score, 

Freebayes log-odds score, VarDict SSF score, and VarScan SSC score. The performance of 

mutation calls identified by the majority-vote (intersection of at least 1, 2, 3 or all 4 callers) were 

also evaluated. 

Generation of tumor samples with lower purity levels 

We generated tumor samples with lower purity by adding normal reads from the corresponding 

matched normal bam files into the tumor bam files. This provided lowered purity at two settings: 

tumor + 20x normal reads (20x contamination), and tumor + 40x normal reads (40x 

contamination). We also further down-sampled the normal samples to 30x sequence coverage 

(unbalanced) to simulate samples with unbalanced tumor/normal sequence coverage. 

Comparison of concordance for WGS and WES data 
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We analyzed an in-house colorectal cancer as well as The Cancer Genome Altas (TCGA) liver 

cancer cohort. 10 patient samples were randomly selected to evaluate the concordance of the 

mutation calls between WGS and WES platforms. The WGS/WES concordance was calculated 

based on the Jaccard index, (𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑖𝑛𝑑𝑒𝑥 =  
𝑊𝐺𝑆 ∩ 𝑊𝐸𝑆

𝑊𝐺𝑆 ∪𝑊𝐸𝑆
), which is the ratio of the intersection 

over the union of the WGS and WES calls in the coding regions.  

 

RESULTS AND DISCUSSION 

SMuRF is accurate for SNV and indel calling  

SMuRF uses separate models for SNV and indel prediction. The models incorporate the top 

predictive features extracted from the individual mutation callers (Table 1 and 2). To benchmark 

the performance of SMuRF in comparison with individual variant calling methods, we evaluated 

the accuracy (precision and recall) on an independent test set. The accuracy recorded for 

individual mutation callers in our comparison was comparable to the recent benchmark by Alioto 

et al. using the same dataset (5). While the best method in this benchmark obtained an F1-

score of 0.79 and 0.65 for SNVs and indels respectively, SMuRF achieved an F1-score of 0.91 

and 0.77 (using independent test data). The accuracy of SMuRF was noticeably higher than 

each of the four individual mutation callers as well as simple majority voting models (Fig. 2A-B). 

While all of the individual callers could recover most of the true SNVs (>90% recall), this came 

at the cost of very low precision (<20%). In contrast, SMuRF could recover 90% of the true 

SNVs at 92% precision and recover 77% of the true indels at 76% precision.  

In order to ensure that SMuRF is robust to variations in sequencing coverage and tumor purity, 

we performed spike-in of normal reads into the two tumor samples (contamination of 20x and 

40x normal reads). We also down-sampled the sequencing coverage of the normal sample to 

30x (“unbalanced”) so as to simulate unbalanced tumor/normal genome sequencing (Fig. 3A). 
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We trained SMuRF on the union of these datasets using 5-fold cross-validation, withholding 

20% of positions as independent test data. Neither lower tumor sample purity nor low 

sequencing coverage severely affected the accuracy of SMuRF (SNV: F1=0.91 for default, 

F1=0.89 for unbalanced, F1=0.91 for 20x contamination, F1=0.91 for 40x contamination; indels: 

F1=0.76 for default, F1=0.74 for unbalanced, F1=0.74 for 20x contamination, F1=0.74 for 40x 

contamination). These results support that SMuRF is robust to variations in sequencing 

coverage and tumor purity. 

SMuRF is robust across different cancer types    

A critical feature of a somatic variant caller is its ability to accurately predict somatic mutations 

across different cancer types, which may have unique mutational signatures and processes. 

Hence, we evaluated the extent that SMuRF predictions can generalize across cancer types. 

We therefore trained SMuRF on the CLL data and tested it on the MBL data, and vice versa 

(Fig. 4A). Cross-cancer evaluation between the CLL and MB datasets showed minimal changes 

in performance for SNV (F1: 0.87 vs. 0.86) and slight variation for indel (F1: 0.57 vs. 0.64) 

prediction respectively (Fig. 4B). This indicates that SMuRF is not over-fitted to a particular 

cancer type and may be applicable for somatic mutation predictions in other cancer types.  

Secondly, we analyzed the extent that SMuRF predicts the same somatic mutations in tumor 

samples profiled with both WES and WGS. We first selected 10 random in-house sequenced 

colorectal cancer samples with both WES and WGS data. Firstly, SMuRF was able to correctly 

predict mutations at a genome-wide rate (~10k-150k) expected from previous studies of 

colorectal cancer (~3k-300k per genome (15)). Secondly, we compared the overlap between 

WES and WGS variant calls, restricting analysis to variants in coding regions (defined by 

Ensembl). SMuRF achieved an average Jaccard Index concordance of 0.78 between the WES 

and WGS platforms (Fig. 4C). In order to compare individual callers with SMuRF, we used the 

top-K predictions from individual callers, where K was determined by the number of variants 
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identified by SMuRF for a given sample. MuTect2, Freebayes, Vardict and VarScan achieved 

an average concordance of 0.62, 0.69, 0.70 and 0.25 respectively. Similarly, we evaluated 10 

randomly selected samples from the public TCGA liver cancer dataset having both WES and 

WGS data. Here SMuRF predicted ~5k-25k SNVs per tumor genome, which is consistent with 

the expected mutation rate for liver cancer (~3k-30k per genome (15)). SMuRF achieved a 

concordance of 0.58 between WES and WGS calls, while the individual callers MuTect2, 

Freebayes, Vardict and VarScan achieved a concordance of 0.44, 0.49, 0.49 and 0.15 

respectively (Fig. 4D).  

Overall, SMuRF predicted SNVs at a higher concordance as compared to the individual callers 

in both datasets. We also observed a similar trend for the indels, with SMuRF achieving the 

highest concordance (Suppl. Fig. 1). We observed an overall reduction in concordance in the 

liver cancer dataset compared to the colorectal cancer dataset for both SMuRF and individual 

callers (Fig. 4C-D & Suppl. Fig. 1). The difference in the concordance of the two cancer 

datasets may be due to lower sequencing coverage in the liver cancer cohort (100-400x for 

WES, 40-60x for WGS) as compared to the colorectal cancer cohort (450-600x WES, 60-80x 

WGS) (Suppl. Fig. 2). The evaluation showed that SMuRF has the ability to analyze not only 

WGS data but also WES data and is capable of identifying a concordant set of mutations for 

downstream analyses.   

CONCLUSION 

SMuRF identifies somatic mutations with high accuracy by combining the predictions from 

individual somatic mutation callers with auxiliary alignment and mutation features using 

supervised machine learning. SMuRF is trained on a gold standard set of mutation calls curated 

by the scientific community using deep WGS of two tumors (5). We show that SMuRF can 

predict SNVs and indels with improved accuracy in both WGS and WES data. Furthermore, 
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SMuRF is robust to variation in tumor purity and tumor-normal sequence coverage bias, and 

can predict mutations with improved accuracy across different cancer types.   

By integrating SMuRF directly with the community validated and highly scalable bcbio-nextgen 

framework, SMuRF is portable by design and require minimal efforts to setup and run. The tight 

integration with the bcbio-nextgen framework may present a barrier for some users. However, 

this design ensures that end-users do not need to obtain their own training data and train their 

own machine learning models, a process that is both time consuming and require knowledge of 

machine learning. In summary, SMuRF is an accurate, portable, and user-friendly somatic 

mutation caller, which should benefit both large-scale cancer genomics studies as well as 

clinical applications.   

 

AVAILABILITY 

SMuRF is written in R and is freely available on GitHub: https://github.com/skandlab/SMuRF. 

Documentation for SMuRF is available at https://github.com/skandlab/SMuRF/wiki. 
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Figure legends 

Figure 1: Overview of approach. (A) General steps involved in an ensemble method for 

somatic mutation calling. In existing frameworks, end-users must obtain data to train the model 

before variant calling can be performed. In SMuRF, the model has already been pre-trained and 

end-users just need to provide variant calls from the bcbio-nextgen workflow. (B) Schematic 

workflow of somatic mutation analysis with SMuRF. Users provide input data of .fastq files for 

the bcbio-nextgen somatic variant calling pipeline. Variant call files are used in the SMuRF 

ensemble somatic mutation calling step. Output is the set of predicted somatic SNVs and indels 

together with their SMuRF confidence scores. 

Table 1: Summary of SNV features. Summary of the selected features for the SMuRF SNV 

model. Features were obtained from the corresponding callers. The percent importance 

indicates the relative importance of the particular feature in the overall prediction model and 

rank indicates the overall ranking of the feature. The percent importance and ranks were 

derived for the CLL and MB dataset independently. Mean ranks are calculated based on the 

geometric mean (G.mean) between the ranks of the CLL and MB dataset.    

Table 2: Summary of indel features. Summary of the selected features for the SMuRF INDEL 

model. Features were obtained from the corresponding callers. The percent importance 

indicates the relative importance of the particular feature in the overall prediction model and 

rank indicates the overall ranking of the feature. The percent importance and ranks were 

derived for the CLL and MB dataset independently. Mean ranks are calculated based on the 

geometric mean (G.mean) between the ranks of the CLL and MB dataset.       

Figure 2: Performance of SMuRF. Precision-recall profiles for individual somatic mutation 

callers and SMuRF evaluated on (A) SNV and (B) indels. SMuRF performance was evaluated 

from independent test data. Curves show the performance of the individual algorithms under 
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different variant score thresholds (MuTect2 tumor log-odds score, Freebayes log-odds score, 

VarDict SSF score, VarScan SSC score, and SMuRF confidence score). Solid points refer to 

the default performance of the caller in the bcbio-nextgen workflow. The black solid points 

denote the accuracy of concordant calls identified by the majority-voting scheme in bcbio-

nextgen (at least 1, 2, 3, or 4 callers). The grey curves show F1 scores as a function of recall 

and precision.  

Figure 3: Robustness of SMuRF. (A) Different conditions were generated from the datasets: 

original data (Default), normal sample down-sampled to 30x coverage (Unbalanced), lowered 

purity tumor samples spiked in with either 20x or 40x normal reads respectively (20x & 40x 

contamination). (B) F1 accuracy scores under each condition when evaluated on independent 

test data (20%). Scores were obtained from 5-fold cross-validation repeated 10 times. 

Figure 4: Performance across cancer types: Training and testing on datasets from different 

cancer types. (A) Schematic of training and testing on the CLL and MB datasets and vice versa 

using 70-30 (train-test) as compared to the respective SMuRF (SNV or Indel) model and the 

performance evaluated by the F1 score (B). (C & D) Concordance of SNV coding mutations 

between WGS and WES samples. 10 Colorectal Cancer (C) and Liver Cancer (D) patients were 

randomly chosen. The barplots shows the average Jaccard index for WES compared to WGS 

variants in the coding region for each of the callers. Error bars indicate the standard deviation of 

the mean and the points indicate the Jaccard index achieved by each sample. The number of 

calls analyzed in each caller were fixed to the total number of calls in SMuRF and selected 

based on the top-K mutations ranked by the respective caller features: MuTect2 tumor log-odds 

score, Freebayes log-odds score, VarDict SSF score & VarScan SSC score.  
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Table 1 

No. Caller Features %importance Ranks Description 

   

CLL MB CLL MB G.mean# 

 1 MuTect2 MQ 0.14 0.19 2 1 1.41 RMS Mapping Quality 

2 MuTect2 TLOD 0.22 0.13 1 2 1.41 Tumor LOD score 

3 FreeBayes MQMR 0.10 0.08 3 5 3.87 

Mean mapping quality of observed 

reference alleles 

4 MuTect2 MQRankSum 0.06 0.12 7 3 4.58 

Z-score From Wilcoxon rank sum test of Alt 

vs. Ref read mapping qualities 

5 VarDict SSF 0.09 0.07 4 6 4.90 p-value 

6 FreeBayes MQM 0.05 0.12 8 4 5.66 

Mean mapping quality of observed alternate 

alleles 

7 VarScan SSC 0.08 0.06 5 8 6.32 

Somatic score in Phred scale (0-255) 

derived from somatic p-value 

8 MuTect2 NLOD 0.04 0.07 11 7 8.77 Normal LOD score 

9 VarScan SPV 0.07 0.01 6 15 9.49 

Fisher's Exact Test P-value of tumor versus 

normal for Somatic/LOH calls 

#Geometric mean calculated between CLL and MB ranks 
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Table 2 

No. Caller Features %importance Ranks Description 

   

CLL MB CLL MB G.mean# 

 

1 VarScan SPV 0.23 0.15 1 3 1.73 

Fisher's Exact Test P-value of tumor 

versus normal for Somatic/LOH calls 

2 VarScan SSC 0.08 0.17 4 1 2.00 

Somatic score in Phred scale (0-255) 

derived from somatic p-value 

3 MuTect2 TLOD 0.09 0.08 2 6 3.46 Tumor LOD score 

4 MuTect2 NLOD 0.06 0.15 8 2 4.00 Normal LOD score 

5 VarDict SSF 0.08 0.06 3 7 4.58 p-value 

6 MuTect2 MQ 0.06 0.09 6 4 4.90 RMS Mapping Quality 

7 VarDict MSI 0.07 0.08 5 5 5.00 Micro-satellite 

8 FreeBayes LEN 0.06 0.06 7 8 7.48 Allele Length  

9 MuTect2 MQRankSum 0.05 0.05 10 9 9.49 

Z-score From Wilcoxon rank sum test 

of Alt vs. Ref read mapping qualities 

10 VarDict SOR 0.05 0.03 9 10 9.49 Odds ratio 

#Geometric mean calculated between CLL and MB ranks 
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Figure 2 
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Figure 3 
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Figure 4 
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Supplementary Information 

Supplementary figure 1. Concordance of INDEL coding mutations between WGS and WXS 

samples from 10 randomly chosen (A) Colorectal Cancer and (B) Liver Cancer patients. Indels 

from all 10 samples were pooled together for analysis. The plots shows the Jaccard index for 

WXS compared to WGS variants in the coding region for each of the callers. The number of 

calls analyzed in each caller were fixed to the total number of calls in SMuRF and selected 

based on the top-K mutations ranked by the respective caller features: MuTect2 tumor log-odds 

score, Freebayes allele length, VarDict SSF score & VarScan SSC score. 

Supplementary figure 2. Coverage estimates for WXS and WGS samples from 10 randomly 

chosen (A & B) Colorectal Cancer and (C & D) Liver Cancer patients respectively. The coverage 

estimates are calculated from the average of the total read depth from variants in the coding 

regions from each of the paired normal and tumor samples.  
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Supplementary figure 1 
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