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Abstract 

Different environmental factors, including diet, physical activity, or external conditions can 

contribute to genotype-environment interactions (GxE). Although high-dimensional 

environmental data are increasingly available, and multiple environments have been 

implicated with GxE at the same loci, multi-environment tests for GxE are not established. 

Such joint analyses can increase power to detect GxE and improve the interpretation of 

these effects. Here, we propose the structured linear mixed model (StructLMM), a 

computationally efficient method to test for and characterize loci that interact with multiple 

environments. After validating our model using simulations, we apply StructLMM to body 

mass index in UK Biobank, where our method detects previously known and novel GxE 

signals. Finally, in an application to a large blood eQTL dataset, we demonstrate that 

StructLMM can be used to study interactions with hundreds of environmental variables.  

Introduction 

Increasingly large population cohorts that combine genetic profiling with deep phenotyping 

and environmental information, including diet, physical activity and other lifestyle covariates, 
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have fostered interest to study genotype-environment interactions (GxE). Already, such 

analyses have identified GxE for human phenotypes, including disease risk1,2, and molecular 

traits3,4.   

 

Established methods to detect GxE implement tests that evaluate the effect of a single 

environmental variable on individual genetic variants5. Recent multivariate extensions enable 

assessing GxE across sets of genetic variants, either using genetic risk scores6 or variance 

component tests7-9.  

 

Whilst there is evidence to suggest that multiple environments can interact with a single 

genetic locus to influence phenotypes, for example FTO interacts with a number of 

environments to alter BMI risk, including physical activity10-13, diet12-15 and smoking12, there 

exist no robust methods for the joint GxE analysis of multiple environmental variables. Such 

joint tests may increase the power to detect GxE, in particular when GxE effects are 

simultaneously driven by multiple environments, while at the same time reducing the multiple 

testing burden. Additionally, joint models of multiple environmental variables can improve the 

interpretation of GxE effects, allowing to assess the relevance of individual environments. As 

increasingly high-dimensional environmental data are available in population cohorts, there 

is a growing need for multi-environment GxE tests.  

 

Here, we present a robust multi-environment GxE test based on linear mixed models 

(LMMs), using a random effect component to jointly model the effect of multiple 

environmental variables. The method generalises previous GxE tests to enable the joint 

analysis of hundreds of environmental variables and can be applied to large cohorts of 

hundreds of thousands of individuals. 

Results 

Usually, LMMs test for persistent genetic associations of individual variants, that means 

constant genetic effect sizes across the population. Covariates and additional random effect 

components are included to account for population structure, environment, and other 

additive (confounding) factors. StructLMM extends the LMM framework by modelling 

heterogeneity in effect sizes due to GxE 

 

                      (1)           . 
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Here, 𝛽 is a vector of per-individual effect sizes and follows a multivariate normal distribution 

 

                     (2)  . 

The first covariance term corresponds to a persistent genetic effect whereas the second 

covariance term accounts for heterogeneous effect sizes parameterised by an 

environmental covariance 𝛴, where the parameter ρ defines the fraction of genetic variance 

due to GxE. Depending on the functional form of 𝛴, this model can be used to account for 

different types of GxE, for example hierarchies of discrete environmental groups, or as 

considered here, GxE effects based on a set of continuous and discrete environmental 

covariates (Fig. 1b-c). The environmental covariance is also used to account for additive 

(i.e. non-genetic) environmental effects, 𝑒 ∼ 𝑁(0, 𝛴). The model is technically related to 

existing random effect tests for rare variants16 and epistasis17 (Methods). 

 

 
Figure 1 | Overview of the StructLMM model. (a) Basic genotype-environment interaction, 
with a group-specific genetic effect (blue and orange lines correspond to the average 
phenotypes observed within two environmental groups for two alleles). (b) Interaction with 
multiple environmental groups or bins of continuous environmental states (average 
phenotypes for groups exerting increasing GxE effects from blue to orange for two alleles). 
(c) StructLMM accounts for heterogeneity in effect sizes due to GxE using a multivariate 
normal prior, where alternative choices of the environmental covariance 𝛴 can capture 
discrete (two groups, group hierarchy; see a,b) or in the limit continuous substructure 
(multiple envs) of environmental exposures in the population. (d,e) Different example 
analyses using StructLMM. (d) Prediction of per-individual genetic effects in the population 
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at individual loci. The violin plot displays the estimated density of individuals in a cohort that 
exert a genetic effect of a particular size given the distribution of the environmental factors 
within the population. Median and the top and bottom 5% quantiles of the effect size 
distribution are indicated by the red and green bars, respectively. (e) Evidence for the 
different environmental variables contributing to GxE effects. 
 

Using the multi-environment model defined above (Eq. (1)), we propose score tests for two 

types of hypotheses: (i) an association test that accounts for heterogeneous effect sizes due 

to GxE and (ii) an interaction test to identify loci with significant GxE effects. StructLMM is 

computationally efficient, enabling genome-wide analyses using hundreds of environmental 

variables on cohorts of hundreds of thousands of individuals. The model facilitates different 

analyses to characterise GxE effects, including estimation of the fraction of genetic variance 

explained by GxE (ρ, Eq. (2)), and predicting per-individual genetic effect sizes based on 

environmental profiles in the population (Fig. 1d). Finally, the model can be used to assess 

the relevance of individual environmental variables for GxE (Fig. 1e). The full derivation of 

our method can be found in Methods. 

 

Model validation using simulated data 

Initially, we considered simulated data using genotypes from the 1000 Genomes project18 to 

assess the statistical calibration and power of StructLMM. To mimic environmental 

distributions as observed in real settings, we simulated GxE based on 60 environmental 

covariates from UK Biobank, including physical activity, diet, and other lifestyle factors 

(Methods). We varied the sample size of the simulated population, the extent of GxE, the 

number of driving environments and other parameters (Supp. Table 1).  

 

First, we confirmed the statistical calibration of StructLMM, considering phenotypes 

simulated without any genetic effects (i.e. the null model) (Fig. 2a, Supp. Fig. 1a) or 

simulated from a persistent effect model without interactions (Supp. Fig. 1b). Next, we 

simulated phenotypes with variable fractions of the genetic effects driven by GxE (ρ, Eq. 

(2)), and assessed power of the StructLMM association test (Fig. 2b). For comparison, we 

also considered a conventional LMM that ignores GxE, as well as a two-degrees-of-freedom 

(2-df) fixed effect model to jointly test for persistent associations and interactions using 

single environments (similar to the 2-df test in Kraft et al.5; Bonferroni adjusted for the overall 

number of environments, Methods). To facilitate direct comparisons, all considered models 

account for additive environmental effects using the same random effect term (Eq. (1)).  
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The power of the association tests decreased for larger GxE effects, demonstrating that 

strong GxE (large ρ) leads to reduced power for detecting associations (Fig. 2b). We also 

assessed power of StructLMM and single-environment fixed effect tests (one degree of 

freedom, e.g. Gauderman et al.19) for detecting GxE interactions based on the same data, 

where power increased for larger proportions of genetic variance due to GxE (Fig. 2c). 

Notably, both the StructLMM association and interaction tests were substantially better 

powered than existing methods, indicating that the model is broadly applicable to account for 

GxE. As a second parameter, we simulated phenotypes with increasing number of 

environments contributing to GxE effects, but tested for GxE effects using all 60 

environmental variables. The results of this analysis show that StructLMM increasingly 

outperforms the corresponding single environment GxE model as the number of 

environments with non-zero GxE increases (Fig. 2d, e), in particular when testing for 

interaction effects (Fig. 2e). 

 

 

Figure 2 | Assessment of statistical calibration and power using simulated data.  (a) 
QQ plots of negative log P values from the StructLMM association test (blue, StructLMM) 
and interaction test (green, StructLMM-int) using synthetic data simulated from the null (no 
genetic effect). (b) Comparison of power for detecting genetic associations for increasing 
fractions of genetic variance explained by GxE (ρ). Included in this comparison were 
StructLMM, a 2-df fixed effect tests that jointly tests for persistent associations and 
interactions with a single environment (Single-env-LMM), as well as a conventional LMM to 
test for persistent effects (LMM). (c) Assessment of alternative methods for detecting 
simulated GxE effects using the same data and settings as in b. Compared were the 
StructLMM interaction test (StructLMM-int) and a single-environment interaction test (Single-
env-LMM-int). (d, e) Analogous power analysis for detecting associations and interactions 
respectively, when simulating GxE using increasing numbers of environments with non-zero 
GxE effects (out of 60 environments total, considered in all tests). Models were assessed in 
terms of power (FWER<1%) for detecting simulated causal variants (Methods). Stars 
denote default values of genetic parameters, which were retained when varying other 
parameters (Supp. Table 1). 
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We considered a number of additional settings, including varying the total number of 

observed environments, the fraction of phenotypic variance explained by additive 

environmental effects and additional forms of model mismatch, where phenotypes are 

simulated with interaction effects from environments that are not included at the testing 

stage. Across settings, StructLMM produced calibrated P values (Supp. Fig. 2) and had 

consistent power advantages over alternative methods (Supp. Fig. 3). Finally, we note that 

multi-environment GxE tests can in principle also be implemented based on fixed effect tests 

with as many degrees of freedoms as environments. However, we observed that such tests 

were not always calibrated and had lower power in some settings (Supp. Fig. 4), 

demonstrating the advantages of the random effect approach taken in StructLMM.   

 

Taken together, these results show increased power and robustness of StructLMM 

compared to existing methods, in particular when large numbers of environments drive the 

GxE interaction effects.  

 

Application to data from UK Biobank  

We tested for associations between low-frequency and common variants (imputed variants, 

MAF>1%, 7,515,856 variants in total) and BMI, considering 64 lifestyle covariates similar to 

those used in Young et al.13 (12 diet-related factors, three factors linked to physical activity 

and six lifestyle factors, modelled as gender-specific and age-adjusted, Methods, Supp. 

Fig. 5, Supp. Fig. 6) to account for GxE. A set of 252,188 unrelated individuals of European 

ancestry, for which all 64 environmental covariates, and the BMI phenotype were available 

in the full release of UK Biobank20 were taken forward for all analyses. 

 

Initially, we applied a conventional LMM and StructLMM to test for associations, using an 

environmental covariance estimated using the 64 lifestyle factors to account for additive 

environmental effects in both methods and heterogeneity of genetic effects due to GxE in 

StructLMM. StructLMM and LMM identified slightly different sets of loci (323 and 327 loci 

were found by StructLMM and LMM, respectively), with 13 and 17 loci identified exclusively 

by StructLMM and LMM respectively (Fig. 3a, Supp. Table 2). As expected, the LMM had 

better detection power for loci with little or no GxE (Supp. Fig. 12). However, the distribution 

of ⍴ suggests substantial heterogeneity in genetic effect sizes for significant loci (Supp. Fig. 

12), in particular for the 13 loci that were exclusively detected by StructLMM (Supp. Table 2, 

Supp. Fig. 8-11) (0.23<⍴<0.94). Additionally, StructLMM yielded lower P values for 
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associations recovered by both models (Fig. 3a, e.g. P=1.57x10-183 vs P=1.84x10-150 for the 

well-documented FTO locus rs1421085), while retaining statistical calibration (Supp. Fig. 7). 

 

Several of the additional loci identified by StructLMM have been previously associated to 

BMI or BMI-related traits. These included a variant (rs11259931) in ADAMTSL3, which 

codes for a glycoprotein21. The same variant and variants in LD (r2>0.53) have previously 

been linked to BMI-related traits, including lean body mass22, waist circumference23, hip 

circumference adjusted for BMI24 and height25. A second example is rs11880064 in PEPD, 

which encodes for a protein involved in the final stage of degradation of endogenous and 

dietary proteins. Several additional PEPD genetic variants have been associated with 

adiponectin26,27, fasting insulin adjusted for BMI28, HDL cholesterol29, triglycerides29,30, type 2 

diabetes31, waist circumference adjusted for body mass24 and waist to hip ratio24. A third 

association (rs473428) was identified upstream of ONECUT1 and downstream of WDR72. 

ONECUT1 stimulates the production of liver expressed genes and can inhibit glucocorticoid-

stimulated gene transcription32 and genetic association with BMI33, cholesterol HDL30, lipids30 

and triglycerides30 were reported in early GWAS results but have not reached genome-wide 

significance in more recent meta-analyses34, which may be due to GxE effects varying 

across the different aggregated cohorts or due to differences in trait transformation. Variants 

in WDR72 are also associated to a large of number of relevant traits30,33. 
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Figure 3 | Applications to model GxE on body mass index (BMI) in UK Biobank. (a) 
Scatter plot of genome-wide negative log P values from a standard LMM (x-axis) versus the 
StructLMM association test (y-axis). Dashed lines indicate genome-wide significance at 

P<5x10-8 and colour denotes the estimated extent of heterogeneity (fitted parameter ⍴), 

where yellow/red denotes variants with low/high GxE component. The inset displays a 
zoom-in view of variants close to genome-wide significance. (b) Scatter plot of negative log 
P values from GxE interaction tests at 97 GIANT variants34, considering a single-
environment fixed effect GxE tests (x-axis, P values Bonferroni adjusted for the number of 
tested environments) versus the StructLMM interaction test (y-axis). Dashed lines 
correspond to alpha<0.05, Bonferroni adjusted for the number of tests. (c) Local Manhattan 
plots of an interaction identified by StructLMM at MC4R. From top to bottom: LMM 
association test, StructLMM interaction test, single-environment LMM interaction test for the 
environment with the strongest GxE effect at the GIANT SNP (vigorous physical activity x 
age). The red vertical line and diamond symbol indicates the GIANT SNP as in b. 
 

 

Next, we applied StructLMM to test for GxE interactions. To reduce the number of tests, we 

tested for interactions at 97 GIANT variants (corresponding genes as annotated by GIANT34) 

that have previously been linked to BMI using independent data34. For comparison, we also 

applied a one degree of freedom fixed effect GxE test using individual environments (Fig. 

3b, Supp. Fig. 7, Supp. Fig. 14, Supp. Table 3). Notably, StructLMM identified four 

significant GxE effects (α<0.05, Bonferroni adjusted), two of which were missed by the 

single-environment fixed effect test. Among the loci identified was the FTO locus 

(rs1241085,𝜌⍴ =0.14, Supp. Fig. 14a), which has previously been implicated with GxE for 

multiple environments10,12-14, MC4R (Fig. 3c) for which an interaction with physical activity in 
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females aged 20-40yrs has been previously suggested (P-adj=0.025)12, SEC16B (Supp. 

Fig. 14b), for which secondary analyses provided some evidence for an interaction 

(P=0.025) with physical activity in Europeans11 and in a separate study in Hispanics35 and 

PARK2 (Supp. Fig. 14c), a gene that has been linked to time-dependent variation in BMI 

suggested to be due to changes of environmental exposures36. StructLMM also enhanced 

the significance of test for interactions identified by both models, with significance levels for 

FTO and SEC16B dropping from P=4.23x10-16 to P-adj=6.76x10-6 and P=1.15x10-4 to P-

adj=4.48x10-4 respectively, when considering a single-environment test. Larger differences 

in the number of discoveries were observed for more lenient threshold, e.g. 11 versus six 

loci with GxE at 5% FDR (Benjamini-Hochberg adjusted, Supp. Table 3). Finally, we 

compared to a multi-environment GxE test based on fixed effects, which although calibrated 

on this large dataset, was underpowered (Sup. Fig. 15).  

 

StructLMM can be used for the interpretation of GxE interactions, and in particular to predict 

per-individual genetic effects based on environmental profiles (Fig. 4a). We assessed the 

consistency of these estimates using hold-out validation, confirming that StructLMM can be 

used to explain and predict inter-individual variations in genetic effects due to GxE (Supp. 

Fig. 16). To identify environmental variables that drive the GxE signal, we used backward 

elimination, calculating Bayes factors between the full model and models with increasing 

numbers of environments removed. This analysis identified approximately 21 environmental 

factors that contribute to the GxE effect at MC4R, including all three physical activity 

measures for females, in agreement with12, but also identified a number of additional 

environments (some of which were more relevant) (Fig. 4c), underlining the benefits of 

multivariate modelling of GxE using sets of environments. 

 

For other loci, we consistently observed that multiple environments contribute to GxE but 

there are large differences in the GxE architecture, with FTO driven by the largest number of 

environments (approximately 35) whilst SEC16B and PARK2 were driven by a much smaller 

number of environments (approximately 9 and 10 respectively) (Supp. Fig. 14d-f). We also 

note that many of the environmental effects were gender specific for MC4R and PARK2 and 

age dependent at SEC16B, with substantial overlap between the sets of interacting 

environments for three of the four loci, PARK2 being the exception. Differences in the 

environments that drive these GxE effects were also apparent when correlating effect size 

predictions across loci, which identified groups of variants with similar GxE profiles (Supp. 

Fig. 17). 
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Figure 4 | Analysis of environmental factors that drive GxE for BMI. (a) Violin plots 

showing distributions of estimated genetic effects on log BMI for the four GIANT variants 

with GxE (alpha<0.05, Fig. 3b). Estimated persistent genetic effects are shown by the red 

bar and the green bars indicate top and bottom 5% quantiles of variation in effect sizes due 

to GxE. (b) Cumulative evidence of environmental variables for GxE in order of relevance at 

MC4R, showing Bayes factors between the full model and models with increasing numbers 

of environmental variables removed using backward elimination. For comparison, shown is 

the total evidence of all environmental variables. ‘Alcohol frequency female’, is identified as 

the most important environmental factor, followed by ‘Alcohol frequency x age’ and so on.  

 

Identification of eQTL interactions with cellular state 

 
As a second application, we considered a gene expression dataset and used StructLMM to 

identify regulatory variants with genetic effects that depend on cellular contexts, such as cell 

type37 or external stimuli4. The identification of such context-dependent genetic effects can 

help elucidate the regulatory mechanisms of disease loci by identifying relevant cell types 

and molecular pathways38-40. 

 

We reanalyzed the large whole-blood expression dataset comprising of over 2,000 

genotyped samples profiled with RNA-seq41 (Methods) and investigated cell-context 

interactions of cis expression quantitative trait loci (eQTL). Following41, we considered gene 

expression levels both as phenotypes but also as proxy variables to capture inter-sample 

variation due to changes in blood cell composition and other factors. Specifically, we 

considered a set of 443 highly variable genes as environmental factors in our analysis 

(Methods). 

 

Initially, we applied a standard LMM to map cis expression quantitative trait loci (eQTL, plus 

or minus 250 kb from the centre of the gene, Methods). Next, we applied StructLMM to test 
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for cell-context interactions at lead variants for 23,277 genes with an eQTL (FDR<5%, 

Methods). This identified 3,483 eQTL with a cell-context interaction (FDR<5%, Supp. Table 

4), where StructLMM yielded calibrated P values despite the large number of environments 

(Supp. Fig. 18). Although overall, interactions with cell-context tended to explain only a 

small proportion of the cis genetic effect on gene expression variance (𝜌 < 0.2, for 68.0% of 

eQTL with a cell-context interaction, Fig. 5a), our analysis identified 532 genes (15.3% of 

eQTL with cell-context interaction) for which heterogeneity explained a larger proportion of 

the cis genetic variance than persistent effects (ρ> 0.5, Fig. 5a). As alternative method to 

detect cell-context interactions, we also considered multi-environment interaction tests 

based on fixed effects (Methods), which were less robust and identified fewer interaction 

eQTL than StructLMM (Supp. Fig. 18). Finally, we compared our interaction results to the 

findings of the primary analysis of the data41, where a step-wise procedure was employed to 

identify interaction eQTL (Methods). For 17,952 genes that were analysed in both studies, 

StructLMM identified 3,372 interaction eQTL compared to 1,841 interaction eQTL in the 

primary analysis (overlap 1,071, FDR<5%, Supp. Fig. 18).  

 
Figure 5 | Analysis of gene-context interactions in a large blood gene expression 
cohort. (a) Cumulative fraction (top) and density (bottom) of eQTL with significant 
interactions as a function of the estimated degrees of heterogeneity (𝜌). (b) Example of an 

interaction eQTL for CTSW, which is in LD with a risk variant for Crohn's disease rs568617 
(r2=1, Supp. Fig. 20). (b,c) expression level of CTSW for different eQTL genotype groups in 
the 10% stratum of samples with the lowest (b) and highest (c) predicted genetic effect; 
analogous figure for the 10% strata. (d) CTSW expression level versus estimated per-
individual genetic effects, stratified by the eQTL genotype. Analogous analyses for all 64 
interaction eQTL with evidence for colocalisation with disease loci are provided in Supp. 
Dataset 2. 
 

Next, we overlapped eQTL with cell-context interactions and risk variants from the NHGRI-

EBI GWAS catalog V1.0.142, which identified 64 instances of putative colocalisation (r2>0.8 

of lead eQTL and GWAS variants, Methods), including GWAS variants for autoimmune 

diseases, infectious diseases and blood cell traits (Supp. Table 5, Supp. Dataset 1). 

Notably, 46 of these eQTL with interactions were not reported in the primary analysis41. One 
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of these is an interaction eQTL for CTSW expression (Fig. 5c, P=2.2x10-15, ρ=0.12), which is 

in LD with a risk variant for Crohn's disease rs568617 (r2=1.00, Supp. Fig. 19). To 

investigate the molecular pathways that drive this interaction eQTL, we stratified the 

population into groups with increased/decreased genetic effects predicted using StructLMM, 

and tested for enriched pathways among genes that were differentially expressed between 

these groups (Methods). This identified positive T cell selection (GO:0046632) and positive 

regulation of interleukin-17 secretion (GO:0032740) as cell-context environments that 

underlie the interaction eQTL (See Supp. Table 5 for genome-wide enrichment results). 

Consistent with this, IL-17 producing CD4+ T cells are known to play a key role in the 

pathogenesis of inflammatory bowel disease, including Crohn’s disease43. 

 

Taken together, the analysis of context-specific QTL using molecular traits demonstrates 

how StructLMM can be used to identify genetic effects on molecular traits that depend on 

the cellular context, where the model again outperformed existing methods. These results 

demonstrate the broad applicability of the model, including settings with large numbers of 

environmental factors. 

Discussion 

We proposed a method based on LMMs to flexibly model GxE using sets of environments, 

thereby enabling the analysis of genotype-environment interactions with multiple 

environments. Conceptually, our approach is related to set tests for groups of variants, and 

offers power advantages when multiple environmental factors contribute to GxE (Fig. 2).  

 

We applied StructLMM to data from UK Biobank, where the model detected association 

signals that were missed by an LMM, in particular when a substantial fraction of the genetic 

variance was explained by GxE. This demonstrates that accounting for heterogeneity in 

effect sizes (GxE) is not only of interest for mechanistic characterization of known genetic 

effects across environments, but can in some instances also increase the power to detect 

new genetic effects, which is similar to previous uses of 2-df fixed effect tests5.  

 

When assessing GxE at 97 GIANT variants associated with BMI, we confirm established 

GxE effects for FTO, and we identified, for the first time, three additional GxE signals at 

stringent thresholds, some of which confirm prior evidence11,12,14,15,35,36. FDR-based 

significance, as frequently employed for GxE analyses6,12, would increase the number of 

discoveries further, yielding up to 11 GIANT variants with evidence for GxE on BMI (Supp. 

Table 2). In addition to offering power advantages, StructLMM yields per-individual 
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predictions of variation in genetic effects due to GxE. We have shown that this allows for 

important downstream analyses, including the identification of individuals with increased or 

decreased genetic effects at different loci based on their own environmental exposure, and 

the identification of environmental factors that drive GxE.  

 

As a second use case, we applied StructLMM to test for cell-context interactions in a large 

blood eQTL study. The same modelling principles enabled the identification of context-

specific eQTL. Several of these interaction eQTL colocalised with GWAS variants and the 

marker genes of the cellular environment that underlie these GxE effects could be 

connected to plausible biological processes. This analysis also confirms that StructLMM can 

be robustly applied to analyse interaction effects driven by large numbers of environments. 

 

Although we found that StructLMM is a robust alternative to conventional linear interaction 

tests, the model is not free of limitations. First, while the computational complexity of the 

model scales linearly with the number of individuals, thereby enabling genome-wide 

analyses of large cohorts, its application remains computationally more demanding than 

conventional LMMs. A second area for future developments is the selection of variants for 

GxE tests. To mitigate the cost of multiple testing, we have considered variants that have 

been associated with the phenotype in other studies. However, the fact that our association 

tests identifies novel loci if applied genome-wide suggests that this filter is not optimal. 

Finally, while StructLMM can in principle be used in conjunction with any environmental 

covariance, we have here limited the application to linear covariances. The model could be 

extended to account for non-linear interactions, for example using polynomial covariance 

functions. Such developments are a future area of work, in particular as increasingly large 

cohorts allow for detecting such higher order interaction effects. 

  

Availability of code and data. StructLMM is available from https://github.com/limix/struct-

lmm and is supported within the LIMIX framework at https://github.com/limix/limix. For 

tutorials and illustrations on how to use the model, see http://struct-lmm.readthedocs.io. The 

BIOS RNA data can be obtained from the European Genome-phenome Archive (EGA; 

accession/EGAS00001001077). Genotype data are available from the respective biobanks. 
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