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Abstract 
We constructed a lung cancer-specific database housing expression data and clinical data from over 
6,700 patients in 56 studies. Expression data from 23 “whole-genome” based platforms were carefully 
processed and quality controlled, whereas clinical data were standardized and rigorously curated. 
Empowered by this lung cancer database, we created an open access web resource – the Lung Cancer 
Explorer (LCE), which enables researchers and clinicians to explore these data and perform analyses. 
Users can perform meta-analyses on LCE to gain a quick overview of the results on tumor vs normal 
differential gene expression and expression-survival association. Individual dataset-based survival 
analysis, comparative analysis, and correlation analysis are also provided with flexible options to allow 
for customized analyses from the user. 

Introduction 
Lung cancer is the leading cause of cancer-related death worldwide. Despite tremendous efforts put 
toward diagnosis and treatment, the five-year survival rate of lung cancer is still as low as 18%[1]. Over 
the past few decades, advancements in genome profiling techniques have greatly improved our 
understanding of cancer development at the molecular level, and have enabled the discovery of 
biomarkers that facilitate individualized cancer treatments. With the advent of public data repositories 
of genome profiling data, such as the Gene Expression Omnibus (GEO, [2]), ArrayExpress[3, 4], and The 
Cancer Genomics Atlas (TCGA), it has become increasingly important and beneficial for researchers to 
mine the available data sets to discover potential biomarkers and test new biological hypotheses. 

Despite the wealth of information offered by such data, utilization of public datasets is not easy, and 
often it can be prohibitively challenging. There is a plethora of lung cancer patient data published each 
year, but the data are scattered around in different public data depositories or at individual websites. 
There are often inconsistencies for the same patient cohort among different websites, likely due to 
differences in preprocessing approaches and the versions of platform annotations. Moreover, clinical 
records from different studies are often summarized using different terminologies. Proper usage of 
publicly available datasets requires specialized expertise in acquiring, processing, normalizing and 
filtering of the data, which are challenging for general researchers and clinicians. To facilitate 
researchers to utilize public datasets for biomarker discovery, a number of re-annotated database have 
been developed, including OncoMine[5], GeneSapien[6], Gemma[7], M2DB[8], CancerMA[9], 
cBioPortal[10], KMPlot[11], PrognoScan[12], PROGgene[13] and so forth.  

In this study, we describe our development of a new web application, Lung Cancer Explorer (LCE) 
(http://lce.biohpc.swmed.edu/), populated by a centralized lung cancer database. Compared to other 
existing databases, our database houses the largest collection of lung tumor expression data from 56 
studies for over 6,700 patients (Table1, Figure 1 and Supplementary Table 1). Tremendous efforts were 
made in manual curation and standardization of the datasets so that they could be used for meta-
analysis. The user-friendly open web portal provides several easy but versatile analysis tools. These tools 
include meta-analysis, which enables users to gain a quick overview of the results from all datasets while 
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combining statistical power from multiple datasets, as well as individual dataset-based analyses that 
allow for more flexibility and customization from the user. 

Materials and Methods 
Data collection 

Datasets were collected from GEO, TCGA and individual literatures. The search from GEO was performed 

by GEOmetadb [14]. For datasets that have not been deposited into GEO, we made our selection 

through a literature search and by referencing other commonly used databases.  

Clinical data curation.  

Clinical data for datasets deposited into GEO were retrieved from GEO by R package GEOquery; TCGA 

clinical data were downloaded from Sage Bionetworks' Synapse database [15], and other datasets were 

downloaded from sources provided in the original publication. The clinical data obtained directly from 

these public domains often contains non-standard terminology. To standardize the clinical variables 

from different studies, codebooks were devised for each variable in order to ensure the accuracy and 

compatibility of the clinical annotation from different sources (Supplementary Table 3). The patient 

histology codebook was created based on the 2015 World Health Organization (WHO) Classification of 

Lung Tumors [16] (Figure 2 and Supplementary Table 2). For the TCGA lung cancer data in particular, 

instead of using the histology classification provided by the patient information file, histology was 

determined based on expression signature as developed by Girard et al [17], as the study has shown an 

improved classification accuracy with the gene expression classifier on the TCGA data. Consequently, the 

histology-misclassified samples were excluded from the TCGA cohorts in cancer specific meta-analysis. 

For all datasets, programmatic and manual data curations were carried out and the procedures were 

repeated three times with scrutiny. For our records, all the data handling steps were saved with detailed 

documentation.  

Expression data processing. 

Expression data for datasets deposited into GEO were retrieved from GEO by R package GEOquery. 

TCGA expression data were downloaded from Broad GDAD firehose [18], and other datasets were 

downloaded from sources provided in the original research paper. It is not uncommon in the field of 

biomarker discovery that the signatures have poor reproducibility in other data sets. Such discrepancy 

could be at least partially attributed to the differences in experimental settings, sample handling, 
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measurement platforms and, importantly, data processing procedures. The datasets collected in this 

study were generated from 23 different platforms, with the majority being microarrays. We adopted 

different strategies to process the data (Supplementary figure 1) to convert the expression data from 

probe level to gene level.  

Database structure/ web interface 

Our web application Lung Cancer Explorer (LCE) can be accessed through http://lce.biohpc.swmed.edu/. 

It was created using PHP (7.0.12-1) in the R Programing environment (3.3.1) with MySQL database (Ver 

14.14 Distrib 5.5.49) in the backend. Our MySQL database contains tables for samples, patients and 

gene expression data with supporting data dictionaries (Figure 5, Supplementary Table 3).  

Survival analysis 

Survival curves were estimated using the product-limit method of Kaplan-Meier [19] (survival, R package 

[20]). R package mclust [21] was used to identify the gene expression cut-off based on Gaussian mixture 

model clustering, assuming a bi-modal distribution when users select the “cluster” option under the 

survival analysis module of LCE. A log-rank test was used to compare the survival differences among 

different patient groups. A Cox Proportional Hazard regression model was used to assess the survival 

association and calculate the hazard ratio (HR) with the continuous gene expression in each individual 

dataset. 

Meta-analysis 

For survival meta-analysis, the R package meta [22] was used to calculate the summary HR from the HRs 

of individual datasets. For tumor vs normal differential expression meta-analysis, R package metafor [23] 

was used to calculate the summary standardized mean difference (tumor – normal) using Hedges’ G as 

an effect size metric. 

Results 
Construction of the Lung Cancer Database 

Over a span of 5 years, we have collected 56 datasets generated by 23 “whole-genome”-based 

expression platforms (See “Data collection”, “Clinical data curation” and “Expression data processing” 
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sections in Methods). The overarching goal is to include datasets with large numbers of samples as well 

as datasets with more comprehensive coverage of clinical information with an emphasis on survival data.  

 

Table 1 provides a summary of the sources and sample numbers of the datasets in our database.  

Friendly Name Pubmed ID GEO ID Sample Number 
Shedden_2008 18641660  442 
Ding_2008 18948947 GSE12667 75 
Tomida_2009 19414676 GSE13213 117 
Zhu_2010 20823422 GSE14814 133 
Lin_2009 19737969;20668451 GSE16534 43 
Neumann_2010 20196851 GSE17475 28 
Wilkerson_2010 20643781 GSE17710 51 
Sanchez-Palencia_2011 20878980 GSE18842 91 
Hou_2010 20421987 GSE19188 156 
Lu_2010 20802022 GSE19804 120 
Dehan_2007 17258348 GSE1987 37 
Landi_2008 18297132 GSE10072 107 
Fujiwara_2012b 21737174 GSE20853 164 
Wright_2010 20544843 GSE20875 36 
Fujiwara_2012a 21737174 GSE2088 87 
expO  GSE2109 141 
Wright_2012 22514692 GSE23822 56 
Stearman_2005 16314486 GSE2514 39 
Newnham_2011 21385341 GSE25326 85 
Wilkerson_2012 22590557 GSE26939 102 
Micke_2011 22011649 GSE28571 100 
Staaf_2012 22676229 GSE29016 72 
Kuner_2009 18486272 GSE10245 48 
Rousseaux_2013 23698379 GSE30219 307 
Okayama_2012 22080568;23028479 GSE31210 224 
Bild_2006 16273092 GSE3141 111 
Girard_N_b  GSE31547 50 
Girard_N_c  GSE31548 50 
Selamat_2012 22613842 GSE32863 116 
Botling_2013 23032747 GSE37745 196 
Spira_2007 17334370;20375364 GSE4115 192 
Jones_2004 15016488;21737174 GSE1037 80 
Sato_2013 23449933;24850841;27354471 GSE41271 275 
Tang_2013 23357979 GSE42127 176 
Kabbout_2013 23659968 GSE43458 110 
Raponi_2006 16885343 GSE4573 130 
Der_2014 24305008 GSE50081 181 
Larsen_2007a NA GSE5828 59 
Yu_2008 18636107 GSE5364 30 
Larsen_2007b 17504995 GSE5843 48 
Schabath_2016 26477306 GSE72094 442 
Moriya_N  GSE7339 100 
BroÌÇt_2009 19176396;20810387 GSE10445 72 
Noro_2017 27613525 GSE74777 107 
Su_2007 17540040 GSE7670 54 
Angulo_2008 17992665 GSE8569 75 
Lee_2008 19010856 GSE8894 138 
Mitra_2011 21242119 GSE9971 27 
Beer_2002 12118244  96 
Bhattacharjee_2001 11707567  203 
Baty_2010 19833826 GSE11117 44 
TCGA_LUAD_2016 25079552  576 
TCGA_LUSC_2016 22960745  552 
Takeuchi_2006 16549822;21465578 GSE11969 163 
Xi_2008 18927117 GSE12236 40 
Boelens_2011 20832896 GSE12472 63 

Table 1. Summary of studies collected into lung cancer database 
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The availability and distribution of clinical variables across all studies are summarized in Figure 1 and 

Supplementary Table 1. The clinical variables we collected include tumor histology as defined by the 

2015 WHO lung tumor classification system (Figure 2), as well as patient demographics, diagnosis, 

adjuvant therapy, smoking status, recurrence-free and overall survival time and status, and mutation 

status of some key cancer genes (Figure 1 and Supplementary Table 1). 

Quality control of data 

During the construction of the lung cancer database, extensive efforts were made in the manual 

inspection of clinical data and quality control of expression data. 

Specifically, manual data curation was done by examining the associated research paper and its 

supplementary files to check for consistency with the clinical data downloaded from GEO. We also 

looked for additional clinical information in the publication. In this study, substantial effort has been 

made to ensure the data quality, which is extremely important in utilizing public datasets. The following 

are a few examples of our manual curation from numerous instances: we checked if there were 

exclusion criteria in the paper that imposed restrictions on adjuvant therapy, tumor stage, etc.; when 

calculating the survival time we looked for surgical date, and if it was available we used it as the start 

date for survival time instead of the initial diagnosis date, since the gene expression data reflects the 

tumor profile on the surgical date; when certain samples were considered low quality and removed 

from analyses in the associated publication, we followed the same discretion to exclude such samples 

from our collection; we removed cell line samples to ensure our collection included exclusively patient 

samples; when tumor percentage information was available, we removed samples with less than 50% 

tumor content. 

To perform quality control of the expression data input for meta-analysis, we implemented a method 

that checks for reproducibility across studies based on the concept of the integrative correlation 

coefficient (ICC)[24, 25]. The premise of this approach is that most of the pairwise gene-gene correlation 

should be preserved across different studies. The relationship of reproducibility between studies could 

be visualized by ICC-based clustering as shown in Supplementary Figure 3. When we calculated ICC, we 

considered that some gene-gene correlation could be tissue-type specific. Therefore, we further 

separated samples of different tissue types from the same study into distinct groups before we 

calculated the ICC. Indeed, in clusters defined by ICC, we found that in many cases, subgroups of 

different samples types from the same study do not cluster together; instead, samples of the same 
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tissue type from different studies tend to cluster together. We identified a clade of 4 studies with very 

little correlation with other sample groups, and they were removed from subsequent meta-analyses. 

However, these studies are still available to use in the individual dataset-based analysis. On the other 

hand, the two RNA-seq datasets from TCGA revealed high correlation with datasets from microarray 

platforms, supporting the compatibility of datasets from different platforms based on our processing 

approach. 

Finally, with access to qPCR measurement of 46 nuclear hormone receptor genes in 30 pairs of matched 

tumor and normal lung cancer samples, we were able to compare the standardized mean difference 

between tumor and normal tissue gene expression estimated from meta-analysis to the qPCR 

measurement results. A strong agreement was observed between the two results, supporting the 

validity of our meta-analysis and high quality of our datasets (Figure 3, Supplementary Table 4). 

The Lung Cancer Explorer (LCE) 

Having established a high-quality lung cancer database, we constructed the user-friendly website Lung 

Cancer Explorer (LCE) (http://lce.biohpc.swmed.edu), allowing the cancer research community to gain 

easy access to our resources. Our dataset inventory and sources are described on the “DATA” page of 

LCE. The “ANALYSIS” page of LCE provides survival analysis, comparative analysis and co-expression 

analysis tools based on individual datasets, as well as meta-analysis tools based on multiple datasets.  

The functionality of these tools is described in detail in the following sections. 

Survival analysis in LCE 

In LCE, survival analysis based on individual datasets is provided to allow users to assess the association 

between gene expression and prognosis. Users can separate the patient cohort into two groups by the 

expression level of the user-specified gene, and the survival differences between the two groups are 

reported in terms of hazard ratios and p values from log-rank test. Sometime, selecting a cutoff value to 

dichotomize continuous gene expression into two groups can be a tricky and ad hoc procedure. The LCE 

survival analysis module offers four options for cutoff value selection. Median gene expression level is 

used as the default cut-off option to define patient groups, as it usually provides the best statistical 

power by separating patients into two equal-sized groups. Other cutoff options implemented include 

“mean”, “cluster” and “custom”. In the Results panel, a Kaplan-Meier plot, table of summary statistics 

and Kernel density plot of the expression data is provided to the user. The density plot visualizes the 

distribution of the gene expression and facilitates the user to determine whether they should modify 
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their choice of cut-off. For example, some genes might follow a bimodal distribution with two sub-

populations of imbalanced sample sizes; under such a scenario the “cluster” option in cut-off selection 

would be a more rational choice than the default “median” option, as it separates the sample groups by 

a cut-off estimated from Gaussian mixture modelling assuming bimodal distribution. In Figure 4 we 

show some examples using genes SMARCA4 and KYNU in two lung adenocarcinoma (ADC) studies. Bi-

modal distribution of gene expression was observed in both cases (Figure 4a and d). SMARCA4, a well-

known tumor suppressor gene [26], was under-expressed in a small fraction of samples from the 

Shedden_2008 study [27] and the corresponding patients have worse survival outcome (Figure 4c). In 

contrast, KYNU was over-expressed in a small proportion of samples in dataset Schabath_2016 [28] and 

the corresponding patients also have worse survival outcome. In both cases, results from survival 

analysis were more significant when the cut-off was selected by “cluster” as opposed to “median” 

(Figure 4b, c, e and f). With the built-in “cluster” option for cut-off selection, users can easily generate 

figures like Figure 4c and f and compare with the default “median” option like Figure 4b and e. In 

addition, we also allow the user to set a “custom” cut-off with their preferred value.  

In the survival analysis, options are provided for users to select a group of patients by age, race, gender, 

smoking status and histology. This allows users to assess the association between the expression of a 

user-selected gene and patient survival (gene-survival association) within a user-defined subpopulation 

of patients. Supplementary Figure 4 provides some examples where we compare gene-survival 

association in different patient groups defined by genders. We show that for several studies, a stronger 

positive association between high klotho gene expression and overall survival could be observed in male 

patients as compared to female patients. Klotho, encoded by gene KL, is a well characterized anti-aging 

gene [29]. It has been observed that the extension of lifespan by klotho overexpression is more 

pronounced in males than in females [30], and only male but not female klotho mutant mice responded 

to a phosphorus restriction diet to extend lifespan [31]. In recent years, klotho has also been 

characterized as a tumor suppressor gene [32]. From our analyses, it is interesting to see that the tumor 

suppressing effect of klotho also seems to be higher in males than in females (Supplementary figure 4). 

Comparative analysis in LCE 

Comparative analysis was implemented for users to assess the associations between a user-selected 

gene and clinical factors such as gender, age, histology types, disease stages, etc., within a specific 

dataset. The expression levels of the selected gene in the user-defined patient groups are shown in 

boxplots and p values of the expression differences are reported. In addition to group assignment based 
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on a single clinical variable, a unique functionality of LCE is that users can define patient groups based 

on a combination of clinical factors. This provides a great extent of flexibility in hypothesis testing to 

understand the interactions between different clinical variables. For example, expression comparison of 

hemoglobin subunit delta encoding gene HBD in the TCGA_LUAD_2016 cohort shows that tumor 

samples have decreased HBD expression compared to normal samples (Supplementary Figure 5a), 

whereas samples from smokers and non-smokers have similar expression levels (Supplementary Figure 

5d). However, by defining patient groups by both tissue type (tumor vs normal) and smoking status, we 

find the difference in HBD levels between normal and tumor tissues is significant only in smokers but not 

in non-smokers (Supplementary Figure 5b and c), and normal samples from smokers have elevated HBD 

expression compared to normal samples from non-smokers (Supplementary Figure 5f). In contrast, no 

difference in HBD expression was observed for tumor tissues from smokers vs non-smokers 

(Supplementary Figure 5b), nor do HBD expression levels differ in the tumor and normal tissues of non-

smokers (Supplementary Figure 5f).  

The results from these comparisons suggest that HBD expression is upregulated in normal lung tissue by 

smoking but is down-regulated again when tumors formed in smokers. We also observed similar trends 

in other hemoglobin subunit encoding genes HBG1, HBG2 and HBM, which is consistent with the 

previous finding that hemoglobin levels increase in smokers [33]. 

Meta-analysis in LCE  

In LCE, meta-analysis tools are provided to allow users to address two questions: (1) differential 

expression between tumor and normal samples; and (2) survival association of gene expression. Meta-

analysis not only provides users an overview of whether a significant trend could be consistently 

observed across multiple studies, it is also more powerful and precise than using any single dataset.  

Results from both types of meta-analyses are visualized as forest plots. We provide three options, “All 

Cancer”, “Adenocarcinoma” (ADC), or “Squamous Cell Carcinoma” (SCC), to allow users to choose the 

type of studies they want to include for the meta-analysis since the survival association and expression 

difference between tumor and normal could be cancer-type specific. 

For example, with lung cancer subtype specific meta-analysis, we found consistent down-regulation of 

RAR Related Orphan Receptor C (RORC) in multiple lung SCC studies (Figure 5B) but not in lung ADC 

studies (Figure 5A). Interestingly, RORC was also previously found in a 3-gene signature to distinguish 

lung ADC and lung SCC [34]. We also found that in multiple lung ADC studies, expression of Cell Division 
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Cycle-Associated protein 2 (CDCA2) is associated with worse overall survival outcome (Figure 5C), 

whereas this trend was not observed for lung SCC datasets (Figure 5D).  

Importantly, meta-analysis allows users to recognize the extent of reproducibility of a specific analysis 

across different datasets. In the forest plots generated by LCE meta-analysis module, we provide users 

with a heterogeneity test using the I2 statistic, which describes the percentage of variation across studies 

that is due to heterogeneity[35]. It is important to note that inconsistency of the results between 

different studies could arise from differences in patient population or sample procurement, as well as in 

data acquisition. In some cases, the results are more consistent for specific genes than others 

(Supplementary Figure 6). Hence, the meta-analysis tool provided by LCE allows users to identify 

discrepancies among different datasets in order to estimate the generalizability of the results. 

 

Correlation analysis in LCE 

The correlation analysis tool from LCE provides users a heatmap to visualize the expression correlations 

among a list of user-defined genes in user-selected data sets. A high degree of expression correlation of 

genes often implies functional association, as genes involved in the same pathway or biological function 

are often subject to concerted regulation at transcription level [36]. Functional partners of the same 

gene could differ in a tissue-specific manner [37], and the gene network could also re-wire under a 

different disease context. In LCE we provide three options, “All”, “Lung Tumor” and “Normal”, to allow 

users to calculate a gene expression correlation matrix based on a specific sample type and 

subsequently generate a clustered heatmap, which conveniently allows users to identify changes in co-

expression patterns of the user-defined gene list. One such example is provided in Figure 6, where we 

show that in tumor, there is a high degree of co-expression between Poly (ADP-ribose) polymerase-2 

(PARP2) and 10 cell cycle genes (Figure 6a) selected from MSigDB “REACTOME_CELL_CYCLE” gene set 

[38, 39], whereas this co-expression is diminished in normal tissues (Figure 6b). This is consistent with 

the role of PARP2 in DNA repair [40]; since genomic instability and mutation is a hallmark of cancer, the 

cancer specific co-expression of PARP2 and cell cycle genes may indicate that PARP2 is actively engaged 

in DNA repair while cancer cells divide. On the other hand, we found PARP2 highly correlated with Zinc 

fingers C2H2-type genes (ZNF) [41] in normal but not cancer tissue (Figure 6 c and d). This normal 

specific co-expression of PARP2 and ZNF genes may suggest alternative roles of PARP2 in transcriptional 

regulation independent of its DNA repair function. 
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Discussion 
In this paper, we described the construction of the LCE database for lung cancer gene expression 

analysis. It was carefully designed for lung cancer researchers to interrogate gene expression association 

with patient clinical features. As the collected datasets are highly heterogeneous, extensive efforts were 

put forth to reprocess and normalize expression data from 23 different expression profiling platforms, 

and a large amount of manual curation work was performed to standardize clinical terminology. Such 

manual inspection, though time consuming, greatly improves the data accuracy and usability, which sets 

our work apart from other databases. The resulting database with high-quality datasets enables 

versatile analysis tools in our Lung Cancer Explorer. We provide meta-analysis tools that summarize 

results across multiple datasets in the form of forest plots to allow users to gain a summary view of the 

overall trend and heterogeneity among studies. We also provide individual dataset-based analysis tools 

to allow users the flexibility to intricately formulate their analysis to best fit the research question. 

Results and biological insights we obtained from examples (Figures 4-6 and Supplementary Figures 4 and 

5) demonstrated the unique advantages of our tools over the current publically available web tools, as 

none of these results could have been produced with the existing public tools.  

We welcome users to contribute or suggest additional datasets to be evaluated and added to our lung 

cancer database. Suggestions can be made by leaving a comment at the contact page of LCE. It is in our 

plan to add a functionality to LCE to enable users to upload their own data to our database and perform 

analysis with our web application. In the future, we would also like to expand the lung cancer database 

to include cell line data and patient-derived xenograft (PDX) data. Besides gene expression data, other 

types of molecular profiling data (such as proteomic data, mutation data, copy number variation data, 

epigenomics data, microRNA data, etc.) and imaging data (such as H&E pathological slide images) will 

also be added to the lung cancer database. Separate data tables and supporting data dictionaries will be 

created for the new molecular data types. We will first identify studies within our collection that possess 

such data and add them to our database, then we will look for additional datasets that contain such 

molecular data as well as clinical data to add to our database. We will also expand the analysis tool 

repertoire on LCE to include multivariate analysis and other integrative analytical approaches.  

Finally, we will conduct a variety of systematic analyses with the lung cancer database to generate 

testable hypothesis (for example, identification of genes associated with different oncogenotypes, 

gender, smoking status, etc. followed by gene set enrichment analysis). Results from such systematic 
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analyses will be provided to the lung cancer research community to provoke hypothesis generation, 

testing and validation.  
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Figure 1. Summary of lung cancer database variable distribution. 

This is an overview summary of the lung cancer database that feeds into the Lung Cancer Explorer. Gene 

expression data and clinical data were collected from 56 studies that include over 6,700 patients. For 

each study and each variable, a pie chart is used to summarize the data. The size of the pie chart is 

proportional to the number of samples from the study, and the color scheme for the pie chart sectors 

are provided below the gridded pie charts. All the detailed numbers can be found in Supplementary 

Table 1. 
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Figure 2. Histology classification of samples collected in the lung cancer database. 

This tree diagram represents the hierarchical structure of the 2015 WHO classification system of lung 

tumors. Numbers on the red nodes denote the number of samples from the lung cancer database 

belonging to the corresponding histology type. 
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Figure 3. Meta-analysis estimates agree with qPCR measurements on tumor vs normal expression 

differences for 46 nuclear hormone receptor genes. 

Results from qPCR measurements of 30 tumor-normal pairs (x-axis values) and meta-analysis estimates 

from 21 studies (y-axis values) on gene expression differences between tumor and normal tissues for 46 

nuclear hormone receptor genes were used to evaluate consistency between the two approaches. The 

values on the x-axis and y-axis are the standardized mean difference estimated by Hedges’ G method. 

The solid purple line represents a linear regression line, whereas the dashed gray line identifies where x 

equals y. 
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Figure 4. Examples of survival analysis with more significant results when cluster based cut-off is used. 

a, Bi-modal distribution of expression in Shedden_2008 dataset. The solid blue line marks the cut-off at 

the median, whereas the solid red line marks the cut-off determined by Gaussian mixture model. b, 

Kaplan Meier curves from the survival analysis of Shedden_2008 using groups defined by SMARCA4 

gene expression with cut-off at median. P-value from the log-rank test is denoted at the bottom left 

corner of the plot. c, Survival analysis of Shedden_2008 using groups defined by Gaussian mixture model 

of SMARCA4 expression. d, Bi-modal distribution of KYNU expression in Schabath_2016 dataset. e, 

Survival analysis of Schabath_2016 using groups defined by SMARCA4 gene expression with cut-off at 

median. f, Survival analysis of Schabath_2016 using groups defined by Gaussian mixture model of KYNU 

expression. 
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Figure 5. Examples of different meta-analysis results in lung adenocarcinoma vs squamous cell 

carcinoma. 

a,b RORC tumor vs normal meta-analyses in lung ADC studies (a) and lung SCC studies (b). c,d CDCA2 

survival meta-analyses in lung ADC studies (a) and lung SCC studies. Note that differential gene 

expression meta-analysis for RORC is only significant in lung SCC patients, whereas survival meta-

analysis for CDCA2 is only significant in lung ADC patients. In each forest plot, the name of each study is 

followed by the number of tumor and normal samples (tumor vs normal meta-analysis) or total tumor 

samples (survival meta-analysis). Abbreviations: SMD, standardized mean difference; TE, estimated 

treatment effect; seTE, standard error of treatment effect; HR, hazard ratio; CI, confidence interval. 
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Figure 6. Different co-expression pattern between PARP2 and cycle genes. 

a,b,c,d Heatmaps of gene-gene correlation matrices from TCGA_LUAD_2016 for PARP2 and 10 selected 
cell cycle genes from tumor sample expression data (a) or normal sample expression data (b), and for 
PARP2 and 10 selected C2H2 type zinc finger genes (ZNF) from tumor sample expression data (c) or 
normal sample expression data (d). The highly positive correlation between PARP2 and cell cycle genes 
was seen only in tumor samples but not normal samples (a and b), whereas the high degree of positive 
correlation between PARP2 and ZNF genes was observed only in normal tissue samples but not tumor 
samples (c and d). 
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Supplementary Figure 1. Flowchart of expression data processing strategies. 

Different strategies were adopted to process expression data from different platforms with or without 

raw data available for download. We re-annotated the probes whenever possible because the original 

probe design and annotations were often based on obsolete transcriptome databases. If the data were 

generated on an Affymetrix platform with raw data available for download, we processed from the raw 

data using an RMA algorithm [1] with updated probe annotation [2]; for data generated from the 

Affymetrix platform without raw data available for download, we mapped the probes to genes based on 

the most up-to-date probe annotation files (Release 36) downloaded from the Affymetrix website [3]. 

For data generated on a non-Affymetrix platform with probe sequence information available, re-

annotation of datasets with short probes was performed using Re-Annotator [4], whereas datasets with 

long probes such as cDNA probes had probes remapped by Blast, similar to the strategy we adopted in 
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ProbeMapper [5]. For data without probe sequence information available, we used the vender-provided 

probe annotation. Once the expression data have been mapped to gene level, we perform normalization 

steps for all datasets as follows: data was transformed if it followed a log normal distribution, quantile 

normalization and global normalization were performed subsequently, and the expression data was 

aggregated so that each sample has a unique expression value per gene.  
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Supplementary Figure 2. Structure of the lung cancer database. 

This schematic diagram shows the design of main data storage tables surrounded by supporting data 

dictionaries comprising our relational lung cancer database. Three main data storage tables are the 

patients table, samples table and the mRNA expression table. The patients table and the samples table 

are connected by patient ID, whereas the samples table and the mRNA expression table are connected 

by sample ID. 
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Supplementary Figure 3. ICC Clustering of samples by sample type and sample source. 

82 tissue-and-study-specific expression datasets were generated from 56 studies and were used to 

perform quality control of expression datasets used for meta-analysis. Integrative correlation 

coefficients were calculated based on the global expression correlation among these 82 expression data 

sets and were visualized in the heatmap. Datasets were clustered by hierarchical clustering using the 

average linkage method. Column-side color labels of the heatmap highlight the location of datasets 

originating from specific studies, and different tissue types were represented by different colors. Four 

studies that had little ICC with all other studies were excluded from meta-analysis in LCE. 
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Supplementary Figure 4. High klotho expression has more significant association with positive survival 

outcome in males. 

For each of the six selected studies, survival analysis assessing prognosis association of KL gene 

expression was performed for male patients or female patients only. In each analysis, the median was 

used as a cut-off for dichotomizing patients. In all six studies, a more significant association with better 

prognosis was found in the male patients compared to the female patients. 
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Supplementary Figure 5. Interaction between sample tissue type and smoking status in HBD gene 

expression.  

a,d Boxplots comparing HBD gene expression between two groups dichotomized on a single clinical 

variable: tissue type (a) or smoking status (d). b,c,e,f Boxplots comparing HBD gene expression between 

two groups defined by a combination of two clinical variables: different tissues in smoker (b), different 

tissues in non-smoker (c), tumor from patients with different smoking status (e) and normal tissues from 

patients with different smoking status (f). 
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Supplementary Figure 6. Adenocarcinoma meta-analysis of survival-gene expression association 

a Density estimation of I2 distribution. Three genes with different I2 statistics were selected as examples 

in b, c and d. A larger I2 value suggests a larger degree of heterogeneity across studies, whereas a 

smaller I2 value is reflective of a higher degree of consistency among studies. b,c,d Example forest plots 

of survival meta-analysis with different heterogeneity: large (b), intermediate (c) and small (d).  
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