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Abstract 
 

Background:  Exposure to “early life” adversity is known to predict DNA methylation (DNAm) 
patterns that may be related to prolonged psychiatric risk. However, few studies have 
investigated whether adversity has time-dependent effects based on the age at exposure.  
 
Methods:  Using a two-stage structured life course modeling approach (SLCMA), we tested the 
hypothesis that there are sensitive periods when adversity induced greater DNAm changes. We 
tested this hypothesis in relation to two alternative explanations: an accumulation hypothesis, in 
which the effect of adversity on DNAm increases with the number of occasions exposed, 
regardless of timing, and a recency model, in which the effect of adversity is stronger for more 
proximal events. Data came from the Accessible Resource for Integrated Epigenomics Studies 
(ARIES), a subsample of mother-child pairs from the Avon Longitudinal Study of Parents and 
Children (ALSPAC; n=670-776).  
 
Results:  After covariate adjustment and multiple testing correction, we identified 40 CpG sites 
that were differentially methylated at age 7 following exposure to adversity. Most loci (n=32) 
were predicted by the timing of adversity, namely exposures during infancy. Neither the 
accumulation nor recency of the adversity explained considerable variability in DNAm.  A 
standard EWAS of lifetime exposure (vs. no exposure) failed to detect these associations.  
 
Conclusions:  The developmental timing of adversity explains more variability in DNAm than 
the accumulation or recency of exposure. Infancy appears to be a sensitive period when exposure 
to adversity predicts differential DNAm patterns.  Classification of individuals as exposed vs. 
unexposed to “early life” adversity may dilute observed effects.   
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Introduction 
Exposure to childhood adversity, including poverty (1), abuse (2, 3), family disruption or 

dysfunction (4, 5), and other stressors (6, 7), is a common and potent determinant of mental 
health across the lifespan, increasing risk of childhood- and adult-onset psychiatric disorders by 
at least two-fold (8-10). Although the biological mechanisms explaining this relationship are 
poorly understood, accumulating evidence suggests adversity may become programmed 
molecularly, leaving behind biological memories that persistently alter genome function and 
increase susceptibility to mental disorders.  Indeed, dozens of candidate gene and epigenome-
wide association studies (EWAS) in both animals and humans have shown that early life 
adversity is associated with persistent alterations in the epigenome (11-15), including changes in 
DNA methylation (DNAm), which is the most studied epigenetic mechanism involving the 
addition of methyl groups to cytosines in the DNA sequence (16, 17).  These differential DNAm 
sites can robustly alter specific gene expression, providing an epigenetic mechanism by which 
gene by environment interactions directly affect biological responses (18). 

Recent evidence, particularly from animal studies, suggests that epigenetic programming 
may be developmentally time-sensitive and that there may be sensitive periods (19, 20) when 
adversity exposure is more likely to induce DNAm changes.  For instance, rodent experiments 
have demonstrated the existence of sensitive periods for different aspects of epigenetic regulation 
– from embryonic reprogramming to postnatal exposure leading to differences in epigenetic 
outcomes and gene expression (21-25).  Recent work in nonhuman primates also suggests that 
there are differential effects on DNAm profiles based on whether adversity exposure, including 
maternal separation, occurred at birth versus later stages of development (26).  Yet, few human 
studies, whether candidate gene (16, 27-29) or EWAS (30-32), have examined the time-
dependent effects of psychosocial adversity on DNAm; nearly all human epigenetic studies have 
instead focused on the presence versus absence of exposure to “early life” adversity.  Thus, it is 
unknown whether there are age stages when adversity exposure differentially affects DNAm, and 
when children are therefore more vulnerable and prevention efforts could be most efficacious.  

This study aimed to address this limitation by using data from a prospective, longitudinal 
birth cohort of young children to test the hypothesis that there are sensitive periods associated 
with DNAm alterations following adversity exposure.  To test this hypothesis, we utilized a two-
stage Structured Life Course Modeling Approach (SLCMA) (33, 34) to examine the effect of 
repeated exposure to seven types of childhood adversities across three developmental periods (in 
infancy, before age 3; preschool, ages 3-5; and middle childhood, ages 6-7) on DNAm profiles 
measured at age 7.  Recognizing that alternative conceptual models have been proposed to 
explain the effects of adversity, we also used the SLCMA to determine whether the sensitive 
period model explained more variability in DNAm relative to two other theoretical models 
described in the life course epidemiology literature (35-37): (1) an accumulation model (38-40), 
in which the effect of adversity on DNAm increases with the number of occasions exposed, 
regardless of timing; and (2) a recency model (41), in which the effect of adversity on DNAm is 
stronger for more proximal events.  Finally, to evaluate the potential advantage of the SLCMA 
relative to the standard EWAS approach, which would ignore the timing or frequency of 
adversity, we examined the number of epigenome-wide significant loci identified by each 
approach and evaluated their degree of overlap.  

 
Methods and Materials 

Sample and Procedures 
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Data came from the Avon Longitudinal Study of Parents and Children (ALSPAC), a 
population-based birth cohort (42-44). ALSPAC generated blood-based DNAm profiles at birth 
and age 7 as part of the Accessible Resource for Integrated Epigenomics Studies (ARIES), a 
subsample of 1,018 mother-child pairs from the ALSPAC (45).  The ARIES mother-child pairs 
were randomly selected out of those with complete data across at least five waves of data 
collection (Supplemental Materials). 
 
Measures 
Exposure to Adversity 

We examined the effect of seven adversities shown previously to associate with 
epigenetic marks (46-48): (a) caregiver physical or emotional abuse (49-52); (b) sexual or 
physical abuse (by anyone) (49-52); (c) maternal psychopathology (53, 54); (d) one adult in the 
household (55); (e) family instability (56, 57); (f) financial stress/poverty (58, 59); and (g) 
neighborhood disadvantage/poverty (60).  Each adversity was measured via maternal report on at 
least four occasions at or before age 7 from a single item or psychometrically validated 
standardized measures.  Specific time periods of assessment varied across adversity type 
(Supplemental Methods).  For each type of adversity, we generated three sets of encoded 
variables (Supplemental Materials): (a) a set of variables indicating presence versus absence of 
the adversity at a specific developmental stage, to test the sensitive period hypothesis; (b) a 
single variable denoting the total number of time periods of exposure to a given adversity, to test 
the accumulation hypothesis; and (c) a single variable denoting the total number of 
developmental periods of exposure, with each exposure weighted by the age of the child during 
the measurement time period, to test the recency hypothesis; this recency variable upweighted 
more recent exposures, allowing us to determine whether more recent exposures were more 
impactful.  

 
DNA Methylation   

DNAm was measured at 485,000 CpG dinucleotide sites across the genome using the 
Illumina Infinium Human Methylation 450k BeadChip microarray, which captures DNAm 
variation at 99% of RefSeq genes (17 CpG sites per gene, on average).  DNA for this assay was 
extracted from cord blood and peripheral blood leukocytes at age 7.  DNA methylation wet 
laboratory procedures, preprocessing analyses, and quality control were performed at the 
University of Bristol (Supplemental Materials and (45)). DNAm levels are expressed as a 
‘beta’ value (β-value), representing the proportion of cells methylated at each interrogated CpG 
site and ranges from 0 (no methylated dinucleotides observed) to 1 (all dinucleotides 
methylated).   

Prior to analysis, raw methylation β-values, which are preferred over M-values due to 
their interpretability (61), were normalized (62) to remove or minimize the effects of variation 
due to technical artifacts.  To adjust for DNAm variation due to cell type heterogeneity in 
peripheral and cord blood samples, we estimated cell counts from DNAm profiles (63) and 
regressed out these estimates from the normalized β-values.  Additionally, to remove possible 
outliers, we winsorized the β-values at each CpG site, setting the bottom 5% and top 95% of 
values to the 5th and 95th quantile, respectively (64).  
 
Covariates 
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To adjust for baseline socio-demographic differences in the cohort, all analyses 
additionally controlled for the following variables, measured at child birth (Supplemental 
Methods): child race/ethnicity; child birth weight; maternal age; singleton vs. multiple birth; 
number of previous pregnancies; sustained maternal smoking during pregnancy; and parent 
social class (65).  Parent social class was included because it captures a more fixed aspect of 
social class, encompassing job industry and rank, as well as education, wealth, social status and 
other aspects of socioeconomic status (66), thus allowing us to control for potential confounding 
effects of the social class into which children are born.  Inclusion of parent social class also did 
not preclude the examination of financial adversity, which is a more temporally dynamic aspect 
of socioeconomic status. 
 
Data Analysis 

Our primary analyses involved comparing the three theoretical models using the 
SLCMA, which was originally developed by Mishra (67) and later extended by Smith (33, 34) to 
analyze repeated, binary exposure data across the life course.  The major advantage of the 
SLCMA is that it provides an unbiased way to compare multiple competing theoretical models 
simultaneously and identify the most parsimonious explanation for the observed outcome 
variation. The SLCMA uses Least Angle Regression (LARS) (68) and an associated covariance 
test (69) to identify the single theoretical model (or potentially more than one model working in 
combination) that explains the most outcome variation (R2). Compared to other methods for 
structured life course analysis, LARS has greater statistical power (33) and does not over-inflate 
effect size estimates (68) or bias hypothesis tests (69).  The SLCMA has been used in several life 
course epidemiology studies (70, 71), including studies of other birth cohorts (72, 73).  The 
LARS procedure functions under the same assumptions as multiple linear regression.  

In the first stage, we entered the set of encoded variables described previously into the 
LARS variable selection procedure (68).  LARS identified the variable with the strongest 
association with the outcome, thus identifying whether the sensitive period, accumulation, or 
recency model was most supported by the data. Therefore, for each CpG site, seven unique 
LARS models were selected, corresponding to each type of adversity.  For each selected model, 
we performed a covariance test of the null hypothesis that the variable selected is unassociated 
with the outcome.  With respect to multiple testing, the covariance test p-values are adjusted for 
the number of variables included in the LARS procedure, controlling the type I error rate for 
each adversity type and CpG site.  To adjust for confounding during the first stage, we regressed 
each encoded variable on the covariates and implemented LARS on the regression residuals (34).  

In the second stage, the theoretical model shown in the first stage to best fit the observed 
data for a specific type of adversity was then carried forward to a multivariate regression 
framework, where measures of effect were estimated.  Only models with a covariance test p-
value <1x10-7, the standard Bonferroni correction threshold for epigenome-wide statistical 
significance, were included in the second stage.  Positive effect estimates thus indicate elevated 
(hyper) methylation and negative effect estimates indicate decreased (hypo) methylation.  The 
same covariates were also included in the second stage.  We compared the distribution of 
theoretical models across the Bonferroni-significant CpG sites with an omnibus chi-squared test, 
which tested the null hypothesis that the theoretical models were likely to be represented among 
the significant results in proportion to the frequency in which they were tested. 

To evaluate the loss or gain of information when using a simpler versus more complex 
analytic approach, we also performed seven EWASs (one for each type of adversity) to evaluate 
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the association between lifetime exposure to adversity (coded as ever versus never exposed) and 
DNAm across all CpG sites.  The EWAS results were then compared to the SLCMA to 
determine if the two approaches yielded similar or distinct conclusions regarding the number of 
significant loci detected. 

We also performed sensitivity analyses to evaluate the fit of the LARS selection 
procedure, determine the degree of differential methylation present at birth, and control for 
genetic variation.  We examined the biological significance of the findings by: (a) examining the 
correlation in methylation between blood and brain tissue for the top CpG sites using an online 
database (74); (b) investigating enrichment of regulatory elements annotated to false discovery 
rate (FDR)-significant CpG sites; (c) performing a functional clustering analysis of all Gene 
Ontology (GO) terms for genes annotated to FDR-significant sites in DAVID 6.8 (75); (d) 
assessing the selective constraint of these genes using the Exome Aggregation Consortium 
(ExAC) (76); and (e) searching the NHGRI-EBI GWAS Catalog (GRASP, (77)) for phenotypic 
associations with genes annotated to the top CpG sites. 
 

Results 
Sample Characteristics and Distribution of Exposure to Adversity 

Demographic characteristics of the ARIES analytic sample are shown in Table S1 for the 
total sample and among children exposed to any adversity (n=744, 76%, experienced at least one 
adversity at some point in their lifetime).  Details on the prevalence and correlations of exposure 
across time are also reported in Figures 1 and S1 and Table S2.  Of note, differences in the 
prevalence of exposure across time are unlikely to affect model selection as all variables are 
automatically standardized by the LARS procedure. 
 
Model Comparison and Effect Estimation 

We identified 40 CpG sites (“top sites”) that were differentially methylated at age 7 
following exposure to adversity (p<1x10-7, Figure 2). Methylation at most sites (n=38) was 
related to the developmental timing of exposure to adversity, especially adversity during infancy, 
meaning between birth and age 2 (Figure 3a).  In fact, exposure to adversity during infancy 
explained variability at more CpG sites (23 in total) than expected, while the accumulation and 
recency models were associated with fewer CpG sites than expected (0 and 2 CpG sites, 
respectively; 𝜒2=13.36, p=0.01).  

As shown in Table 1 and Figure 3a, neighborhood disadvantage was the type of 
adversity predicting the greatest number of genome-wide methylation differences (10 CpG sites), 
followed by financial stress (8 CpG sites) and maternal psychopathology (6 CpG sites). The 
remaining adversities were associated with differences at five CpG sites each, except for family 
instability, which was associated with differential methylation at a single CpG site.  

Across all 40 top sites, exposure to adversity was typically associated with 
hypermethylation (67.5% positive beta coefficients; 𝜒2=4.9, p=0.027; Table 1). However, 
exposure to maternal psychopathology and family instability were primarily associated with 
hypomethylation (6 out of 7 negative beta coefficients, across both types). On average, exposure 
to adversity during a sensitive period was associated with a 2.4% difference in methylation level 
(beta) after controlling for all covariates (range 0.1–14.3%). For the two CpG sites associated 
with recency of exposure to financial stress, one additional adverse event was associated with a 
0.3–0.4% increase in methylation per year of age at the event.  Of these 40 CpG sites, 17 
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remained statistically significant after imposing a more stringent p-value threshold that 
accounted for the testing of seven types of adversity (p=1x10-7 / 7=1.43x10-8; Table 1). 

After relaxing the multiple testing correction threshold to a FDR q<0.05, there were 365 
CpG sites affected by exposure to adversity (Figure 3b; Table S3). As with the top 40 
Bonferroni-significant sites, methylation at 342 of the 365 FDR-significant sites was best 
explained by sensitive period models (Figures 3b, Table S3). Exposure in infancy explained 
methylation variation at more CpG sites than expected from the background for family instability 
and neighborhood disadvantage (Figures S2). The effects of adversity type and timing on 
methylation were distributed throughout the genome (Figure S3). 
 
Exposed vs. Unexposed Analysis 
 Across the seven EWASs, which separately evaluated the effect of ever versus never 
exposed to each type of adversity on CpG site DNAm, only one statistically significant result 
emerged (Figure S4); this was for cg02431672, a locus located on chromosome 1 79kb away 
from the gene FAM183A and was associated with exposure to abuse (b=-0.005; p=1.58x10-8).   

Overall, there was very little overlap in identified CpG sites across the top SLCMA and 
EWAS results.  Most of the top 40 sites had effect estimates that were larger in the SLCMA 
compared to the EWAS (Figure 4).  There was also little overlap in findings across specific CpG 
sites.  For example, the cg02431672 locus, which was the top hit in the EWAS of abuse, did not 
emerge as a top hit in the SLCMA of abuse, failing to appear in the list of FDR significant loci 
(p=0.0125).  Similarly, the top CpG site in the SLCMA (cg21299458), which suggested a 
sensitive period at age 5 associated with the effects of financial stress, was non-significant in the 
EWAS of financial stress (b=0.012; p=0.0181; Figure 5).  These results suggest that the 
SLCMA allowed us to more effectively identify methylation differences among children with 
and without a history of exposure to adversity. 
 
Sensitivity Analyses 
Evaluation of the LARS Selection Procedure 

There was no evidence in support of compound theoretical models, whereby more than 
one theoretical model explained the most outcome variability.  For each of the top 40 CpG sites, 
the marginal increase in variance of methylation explained by additional steps of the LARS 
procedure was not significant (each p>0.05, Figure S5), suggesting that methylation was best 
explained by a single theoretical model.  
 
Evaluation of Methylation at Birth for Top CpG Sites 

Adversity-associated methylation differences occurred during early childhood for most 
top CpG sites.  For all but two sites, the age 7 DNAm differences between exposure groups were 
not present at birth (p>0.05/40=0.00125), though the direction of DNAm differences were 
similar between birth and the other time points for many sites (Table S4).  An example of a site 
differentially methylated at birth and an example of a site non-differentially methylated at birth 
are shown in Figure S6. 

 
Correction for Genetic Variation 
 Genetic variation did not appear to influence observed DNAm differences at the top CpG 
sites. Using a database of methylation quantitative trait loci (mQTLs) of the ARIES cohort (78), 
there were 627 SNPs associated with DNAm at 17 of the top 40 sites. After controlling for 
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genetic variation at mQTLs linked to these 17 sites, the effect of exposure to adversity remained 
significant (each FDR q<0.05; Table S5), suggesting that adversity could have caused these 
methylation differences distinct from genetic sequence variation. 
 
Exploring the Biological Significance of Findings 
Correlation Between Blood and Brain Tissue 

On average, methylation in blood at the top 40 sites was slightly positively correlated 
with methylation in four brain regions (prefrontal cortex: ravg=0.12, entorhinal cortex: ravg=0.16, 
superior temporal gyrus: ravg=0.14, cerebellum: ravg=0.08; Table S6). CpG sites with methylation 
that is highly correlated between blood and brain tissue may be indicative of important inter-
individual covariation (i.e., because of adversity) or a strong genetic influence on methylation, 
while those that are uncorrelated may still be biomarkers of a response to adversity. 
 
Enrichment of Regulatory Elements 

As compared to all autosomal loci tested, FDR-significant loci were more likely to be 
located in gene promoters (𝜒2=13.02, p<0.0005) and less likely to be in gene enhancers (𝜒2=3.90, 
p=0.048; Figure S7A). Furthermore, the location of FDR-significant loci differed from all other 
loci tested relative to CpG Islands (𝜒2=36.48, p<0.0001; Figure S7B).  With eFORGE 1.2 (79), 
we also tested whether FDR-significant loci colocalize with markers of transcriptional activity. 
FDR-significant loci were not enriched for DNase I hypersensitivity sites or histone marks in any 
tissue or cell-type after correction for multiple comparisons (each q>0.05). The strongest trend 
for enrichment was detected in the analysis of all histone marks in derived neuronal progenitor 
cells (uncorrected p=0.0003). Annotations at each FDR-significant site are presented in Table 
S3. 

 
Biological Processes Potentially Affected by Adversity 

Genes near the FDR-significant sites (n=354 genes) corresponded to 158 clusters of GO 
biological process terms (75). The top 8 GO term clusters, including circulatory system 
development, cell proliferation and migration, and neuronal development, were more likely to be 
represented than chance (average enrichment p<0.05; the top 15 clusters are presented in Figure 
S8).  

Additionally, we uncovered evidence of functional constraint for these genes. Genes 
annotated to FDR-significant sites were more highly constrained, as measured by the probability 
of intolerance to Loss-of-Function variation (pLI) from ExAC (76), than the rest of the 
autosomal genes tested (permutation p=0.0001; Figure S9). This indicates a greater importance 
of these genes, on average, to survival and reproduction over human evolution. 
 
Phenotypic Associations for Genes Near Top Sites 

We searched the NHGRI-EBI GWAS Catalog (GRASP) (77) to identify whether 
common variants in genes corresponding to our 40 top CpG sites were associated with relevant 
phenotypes. Six genes mapped to our top sites had SNPs associated with psychiatric or 
neurological phenotypes at a genome-wide suggestive level (p<1x10-5; Table S7), underscoring 
the possible biological significance of these methylation differences.   
 

Discussion 
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This prospective study used data from a large population-based sample of children to test 
three competing life course theoretical models describing the association between exposure to 
childhood adversity, measured repeatedly across the first 7 years of life, and DNAm at age 7.  By 
comparing these theoretical models to each other, we could evaluate which one explained the 
most variation in DNAm.  To our knowledge, this is the first use of the SLCMA in an 
epigenome-wide context.   

The main finding of this study is that the effect of adversity on DNAm depends primarily 
on the developmental timing of exposure.  In our Bonferroni-corrected analysis, we identified 40 
CpG sites that were differently methylated following exposure to adversity, with more than half 
of these loci showing associations based on adversity occurring during infancy, meaning before 
age 3.  These results are consistent with at least one human longitudinal study (16) and multiple 
animal studies (21, 22, 24, 25) in emphasizing the existence of sensitive periods (19, 20) – 
particularly occurring shortly after birth – when epigenetic programming is maximally dynamic 
in response to parental care disruptions and other environmental inputs.  The lack of detectable 
sensitive periods in one recent study (32) may be due to focusing only on adversities occurring at 
or after 5 years of age.  Interestingly, neither the accumulation nor recency of the adversity 
explained considerable variability in DNAm.  The observed DNAm differences were absent at 
birth, identified for a range of adversities, and unrelated to genetic variation.  The absence of 
support for an accumulation model is surprising, given previous research linking cumulative time 
spent in institutional care to DNAm status in key stress-related genes (29).   

Perhaps more importantly, our results suggest that broad classifications of individuals as 
exposed versus unexposed to “early life” adversity – although commonly used – may dilute 
observed effects and fail to detect DNAm differences among those exposed to adversity during 
specific life stages.  The lack of overlap in identified loci across the SLCMA and EWAS suggest 
that refinement of the environmental phenotype – by treating each time point of exposure (and its 
accumulation) as unique – may better capture underlying signal.  Indeed, results of a post-hoc 
power calculation suggest that the EWAS of exposed versus unexposed will be underpowered 
when the true underlying relationship between exposure and outcome depends on the timing or 
amount of exposure (Supplemental Materials). 

Although these findings emphasize the importance of exposure timing, greater insights 
are needed regarding the age stages when adversity may be most harmful, as mixed results have 
emerged among the small number of studies comparing the effects of “early” to “later” adversity.  
Some retrospective studies have shown that adolescent DNAm patterns are more strongly 
associated with exposure to life stress during adolescence more than with earlier adversity (27).  
However, other studies have found potentially persistent effects of childhood adversity into 
adolescence (80) and adulthood (81), even after accounting for subsequent stress exposure.  A 
recent study also found that the effects of the timing of adversity may be gene-specific (29).  As 
epigenetic patterns appear to vary over the life course (26, 82), longitudinal studies are needed to 
study the developmental trajectories of DNAm and evaluate the extent to which these adversity-
induced DNAm differences persist or attenuate over time, and operate independently of or in 
interaction with subsequent experience to ultimately predict disease outcomes.    

Several limitations are noted. First, some adversity measures were drawn from single 
items.  Parents may have also under-reported exposure to stigmatizing experiences (83, 84), 
especially if they were implicated in the exposure (85).  However, the prevalence of several 
adversities, including those capturing possible experiences of child abuse, were similar to and 
even greater than those reported from some nationally-representative samples (9, 86).  Second, as 
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with any longitudinal study, there was attrition over time, which could result in bias due to loss 
of follow-up.  However, ARIES children were sampled from among those with the most 
complete longitudinal data.  Within the field of epigenetics, efforts are now underway to 
understand the consequences of attrition and how potential biases arising from attrition could be 
mitigated through multiple imputation or other strategies.  Third, we were unable to examine the 
impact of experiencing multiple adversities simultaneously because these adversities were 
measured at different time points.  Fourth, the DNAm samples were obtained from peripheral 
tissue and not the brain; multiple datasets, however, are starting to identify limited though 
important shared DNAm patterns across central nervous system and peripheral tissue (87).  
Finally, the p-values derived from the covariance tests could be potentially inflated, as the test 
relies on asymptotic theories and therefore does not theoretically guarantee the control of Type I 
error rate in a finite sample (70). However, the covariance test might be a more sensitive method 
to detect signals compared to other post-selection significance tests that make fewer assumptions 
(88). As the relative statistical power of the available tests remains unclear, future simulation 
studies are much needed to identify the best inference tools in different settings.    

In summary, this study lends further support to the evidence base showing that DNAm 
patterns are responsive to experience. However, these results reveal that DNAm patterns may be 
most influenced by exposures during sensitive periods in development.  Efforts may therefore be 
needed to move beyond crude comparisons of those exposed versus unexposed to “early life” 
adversity.   
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Table 1. Results of the Structured Lifecourse Modeling Approach (SLCMA) in ARIES, with annotation to the closest gene, for the Bonferroni-significant CpG sites (p<1x10-7). 

CpG site Adversity First hypothesis chosen  
by LARS procedure 

DNAm in 
unexposed 

group (beta) 

DNAm in 
exposed 
group 
(beta) 

Increase 
in R2 P Beta (effect 

estimate) SE 
Lower 
95% 
CI 

Upper 
95% 
CI 

Chr Coordinate 
(bp) Nearest gene 

Distance to 
nearest 

gene (bp) 

cg06550546 

Caregiver physical or 
emotional abuse 

(N=721) 

infancy (age 2.75) 0.012 0.014 0.029 1.42E-08* 0.001 0.0003 0.001 0.002 17 4166847 ANKFY1 0 

cg15312673 preschool (age 4) 0.017 0.020 0.027 7.59E-08 0.002 0.0005 0.001 0.003 17 73201980 NUP85 0 
cg10713431 middle childhood (age 6) 0.132 0.139 0.025 4.50E-08 0.008 0.0019 0.004 0.012 20 43933204 MATN4 0 
cg12023170a middle childhood (age 6) 0.074 0.089 0.038 3.83E-10* 0.013 0.0023 0.008 0.017 1 23751761 TCEA3 499 
cg19825600a,b middle childhood (age 6) 0.457 0.366 0.027 3.30E-08 -0.073 0.0158 -0.104 -0.042 2 3704501 ALLC 1283 
cg01370449 

Sexual or physical 
abuse (by anyone) 

(N=705) 

infancy (age 2.5) 0.249 0.355 0.030 8.46E-08 0.084 0.0166 0.051 0.116 7 27183369 HOXA-AS3 0 
cg06430102 infancy (age 2.5) 0.921 0.842 0.037 1.55E-09* -0.060 0.0102 -0.080 -0.040 19 1151960 SBNO2 0 
cg19170021 preschool (age 4.75) 0.732 0.830 0.027 7.48E-08 0.093 0.0209 0.052 0.133 17 79077169 BAIAP2 0 
cg05072819a preschool (age 5.75) 0.041 0.056 0.030 3.67E-08 0.014 0.0027 0.008 0.019 3 20081367 KAT2B 155 
cg05936516 middle childhood (age 6.75) 0.130 0.172 0.031 7.13E-08 0.025 0.0047 0.016 0.035 5 114507066 TRIM36 0 
cg04583813 

Maternal 
psychopathology 

(N=693) 

infancy (age 8 mo.) 0.900 0.868 0.035 3.49E-09* -0.023 0.0045 -0.032 -0.014 10 560323 DIP2C 0 
cg14515274 infancy (age 8 mo.) 0.966 0.962 0.027 5.98E-08 -0.004 0.0010 -0.006 -0.002 4 128391842 INTU 162243 
cg00741259a,b infancy (age 2.75) 0.819 0.734 0.028 8.99E-08 -0.080 0.0175 -0.114 -0.045 12 77174623 ZDHHC17 0 

cg08171937 infancy (age 2.75) 0.016 0.018 0.036 9.76E-11* 0.002 0.0003 0.001 0.002 12 49454761 RHEBL1 3705 
cg04445570a,b preschool (age 5) 0.929 0.915 0.029 7.69E-08 -0.013 0.0028 -0.018 -0.007 11 126456651 KIRREL3 0 
cg17806989 preschool (age 5) 0.980 0.973 0.036 6.72E-10* -0.007 0.0012 -0.009 -0.004 13 25338287 RNF17 12 
cg08337366a 

One adult in the 
household (N=670) 

infancy (age 8 mo.) 0.933 0.907 0.029 5.66E-08 -0.029 0.0065 -0.042 -0.016 19 6371622 ALKBH7 820 
cg10192047 infancy (age 8 mo.) 0.016 0.021 0.028 1.41E-08* 0.003 0.0007 0.002 0.005 19 18722754 TMEM59L 926 
cg26990406 infancy (age 8 mo.) 0.860 0.705 0.027 7.43E-08 -0.143 0.0308 -0.204 -0.083 7 178829 FAM20C 14138 
cg24468070 infancy (age 1.75) 0.042 0.077 0.034 3.33E-10* 0.023 0.0046 0.014 0.032 19 54976501 CDC42EP5 0 
cg03397307 infancy (age 2.75) 0.027 0.059 0.030 7.62E-09* 0.004 0.0010 0.002 0.006 12 3862423 CRACR2A 56 

cg06493154a Family instability 
(N=705) infancy (age 1.5) 0.216 0.192 0.033 2.62E-09* -0.020 0.0038 -0.027 -0.013 6 42859023 C6orf226 468 

cg11631610 

Financial stress 
(N=776) 

infancy (age 8 mo.) 0.945 0.913 0.027 1.04E-08* -0.027 0.0056 -0.038 -0.016 19 11322739 DOCK6 0 
cg06783003 infancy (age 1.75) 0.856 0.894 0.024 5.42E-08 0.036 0.0083 0.020 0.052 1 45116008 RNF220 0 

cg01050704a preschool (age 5) 0.017 0.019 0.025 5.67E-08 0.002 0.0005 0.001 0.003 19 59084995 MZF1-AS1 0 
cg02006977 preschool (age 5) 0.015 0.017 0.024 8.21E-08 0.002 0.0005 0.001 0.003 12 69139955 SLC35E3 0 
cg21299458 preschool (age 5) 0.113 0.155 0.035 2.54E-11* 0.038 0.0070 0.024 0.051 22 20779896 SCARF2 0 
cg19219503 middle childhood (age 7) 0.917 0.869 0.030 2.77E-10* -0.034 0.0070 -0.048 -0.020 10 37414802 ANKRD30A 0 
cg21924472 recency 0.755 0.772 0.027 1.86E-08 0.003 0.0006 0.002 0.004 4 139600734 LINC00499 255235 
cg24996440 recency 0.567 0.587 0.026 2.88E-08 0.004 0.0009 0.003 0.006 2 3583570 RNASEH1 9119 
cg00928478 

Neighborhood 
disadvantage (N=704) 

infancy (age 1.75) 0.021 0.018 0.027 2.68E-08 -0.002 0.0005 -0.003 -0.001 10 99078824 FRAT1 196 
cg01954337 infancy (age 1.75) 0.051 0.061 0.028 6.29E-08 0.008 0.0018 0.005 0.012 11 3819010 NUP98 0 
cg04996689 infancy (age 1.75) 0.029 0.036 0.028 3.08E-08 0.006 0.0011 0.003 0.008 5 52285560 ITGA2 0 
cg12069925 infancy (age 1.75) 0.042 0.052 0.029 5.40E-09* 0.007 0.0014 0.004 0.009 17 11900858 ZNF18 72 
cg14522055 infancy (age 1.75) 0.031 0.037 0.027 7.38E-08 0.005 0.0011 0.003 0.007 15 64338757 DAPK2 235 
cg19157140 infancy (age 1.75) 0.014 0.016 0.037 3.58E-11* 0.002 0.0004 0.001 0.003 7 766323 PRKAR1B 0 
cg21740964 infancy (age 1.75) 0.160 0.177 0.025 6.62E-08 0.013 0.0028 0.008 0.019 6 3849331 FAM50B 299 
cg24826892a infancy (age 1.75) 0.016 0.019 0.030 6.03E-09* 0.003 0.0006 0.002 0.004 11 71159390 DHCR7 0 
cg08546016 preschool (age 5) 0.051 0.057 0.029 3.93E-09* 0.006 0.0012 0.004 0.009 17 72776238 TMEM104 0 
cg12412390 middle childhood (age 7) 0.039 0.047 0.030 9.07E-08 0.008 0.0016 0.005 0.011 4 96469286 UNC5C 0 
DNAm = unadjusted DNA methylation (beta values) averaged within group; Increase in R2 = increase in R2 explained by first hypothesis chosen after accounting for covariates; P = p-value of covariance test assessing significance of increase in R2 explained; Beta, SE, Lower 95% CI, Upper 95% 
CI = parameter estimate, standard error, and lower and upper limits of 95% confidence interval of regression coefficient of first hypothesis chosen; Chr, Coordinate = chromosome and position of CpG site; Nearest gene, Distance to nearest gene = Gene symbol of and distance in bases to nearest 
gene from CpG site (as measured from transcription start site) 
aIn potentially noisy probe list of Naeem et al. 2014 (i.e., cross-reactive probes, probes with SNPs/INDELs/repeat regions, probes affected by unknown factors)  bIn potentially noisy probe list of Chen et al. 2013 (i.e., cross-reactive probes, probes with SNPs) 
*significant at p < 1.43x10-8 , a more stringent p-value threshold that accounted for the testing of seven types of adversity (1x10-7 / 7=1.43x10-8) 
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Figure 1.  Exposure to adversity in the ARIES dataset 
 
                                                                               A                      B                        C 

 
The figure displays the lifetime prevalence by age 7 of exposure to each adversity 
(labeled as total exposed), the average correlation between exposure to one type of 
adversity at one time point with exposure to that same adversity at a second time point 
(labeled as correlation over time), and the average correlation between exposure to one 
type of adversity and a second type of adversity (labeled as correlation with other 
adversities). Panel A: The lifetime prevalence of each adversity varied by type.  The 
most commonly reported adversities were family instability (47%), maternal 
psychopathology (29%), and financial stress (27%).  The remaining adversities were the 
least reported adversities, but still common:  One adult in the household (12%), caregiver 
physical or emotional abuse (12%), sexual or physical abuse (by anyone; 13%), and 
neighborhood disadvantage (15%).  Panel B: Among specific types of adversity, 
exposures tended to correlate over time, with neighboring time points being more related 
than distant time points. For instance, exposure to one adult in the household and 
neighborhood disadvantage were most strongly correlated over time (r=0.57–0.93 and 
r=0.70–0.88, respectively), whereas exposure to family instability (r=0.14–0.66) and 
sexual or physical abuse (r=0.23–0.65) were more weakly correlated across time. Panel 
C:  The average correlation of exposure to the other adversities was modest across 
adversities, suggesting that we were capturing unique subtypes of adversity.   
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Figure 2. Manhattan plot displaying top CpG sites associated with exposure to adversity 

 
 
In this Manhattan plot, the x-axis is the chromosomal position for each CpG site and the y-axis is the -log10 p-value for the association 
between exposure to adversity and DNAm values at each CpG site.  The dashed line shows the epigenome-wide significance level, 
with each CpG site above the line representing a statistically significant association (p<1x10-7).  The color of each CpG site refers to 
the type of adversity.  The shape of each CpG site indicates the lifecourse model tested.  The sensitive period hypotheses were encoded 
as circle: infancy, triangle: preschool, square: middle childhood.  The recency hypothesis was encoded as a diamond.  As shown, CpG 
sites significantly affected by exposure adversity were distributed throughout the genome. There was no obvious genomic spatial 
pattern by adversity type or timing of exposure. 

 

Sensitive period Additive

infa
nc

y

pre
sch

oo
l

midd
le

ch
ildh

oo
d

ac
cu

mula
tio

n

rec
en

cy
0

5

10

15

20

Theoretical Model

Nu
m

be
r o

f s
ig

nf
ica

nt
 C

pG
 s

ite
s

Adversity
Caregiver physical or emotional abuse
Sexual or physical abuse (by anyone)
Maternal psychopathology
One adult in the household
Family instability
Financial stress
Neighborhood disadvantage

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2018. ; https://doi.org/10.1101/271122doi: bioRxiv preprint 

https://doi.org/10.1101/271122
http://creativecommons.org/licenses/by-nd/4.0/


 
Figure 3. Frequency each lifecourse theoretical model was chosen for each type of 
adversity  

 
Each plot displays the number of CpG sites for which adversity significantly predicted 
methylation, after controlling for covariates and correcting for multiple comparisons 
using (a) a Bonferroni threshold (p<1x10-7, n=40 sites) and (b) a False Discovery Rate 
(FDR) correction q < 0.05 (n=365 sites). The distribution of theoretical models chosen 
first by the LARS procedure for top CpG sites was significantly different than expected 
by chance, with exposure to adversity during sensitive periods, especially during 
infancy, more frequently predicting methylation. 
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Figure 4. Scatterplot displaying increased power in the SLCMA shown by the 
comparison of beta estimates from the EWAS vs. SLCMA approaches  

 
In this scatterplot, the y-axis represents the beta estimates associated with the 40 top CpG 
sites derived for the SLCMA; the x-axis represents the beta estimates associated with the 
same 40 CpG sites obtained from EWAS. Different types of adversity are indicated by 
colors. The black straight line denotes the 1:1 correspondence between the two sets of 
beta values. Substantial deviation from the line suggests increased power in the SLCMA. 
For most CpG sites, the magnitudes of effect were larger for the SLCMA compared to the 
EWAS results.  
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Figure 5. Comparison of EWAS vs. SLCMA estimates for the top CpG site identified in SLCMA, cg21299458 

 
The effect estimates and the confidence intervals obtained from the EWAS approach 
comparing ever exposed to never exposed to financial stress for cg21299458 are 
presented on the left. The stage 2 effect estimates and confidence intervals obtained from 
the SLCMA comparing being exposed to financial stress at age 5 to being unexposed at 
age 5 for the same CpG site are displayed on the right. The top CpG site in the SLCMA, 
which suggested a sensitive period at age 5 associated with the effects of financial stress, 
was non-significant after correction for multiple testing (p=0.0125) in the EWAS of 
financial stress. 
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