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Figure 1. Data organization and network architectures. (A) Single representative neuron 563 
GCaMP6 trace over a ~63-minute session. (B) 3D arrays were constructed where rows, columns, 564 
and ranks corresponded to scenes, neurons, and frames respectively. (C) Temporal breakdown of 565 
scenes and frames. Architectures utilized: (D) support vector machine (SVM), (E) single hidden-566 
layer neural network (SNN), (F) two hidden-layer neural network (DNN), and (G) convolutional 567 
neural network (CNN).  568 
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Figure 2. Decoding accuracy for six regions of the mouse visual cortex. (A) Peak accuracies 607 
across all frames for four different machine learning architectures. (B) Heatmap plot overlaid onto 608 
a horizontal view of the mouse visual cortex indicating cortical subregions as a function of 609 
accuracy (0-100%) using a CNN; data from (A). (C) Frame-by-frame accuracies for each region 610 
when decoding was performed using a CNN. Scene 1 refers to scene presented prior to the scene 611 
that the trace is labeled by. Scene 2 is the proximal scene, (the scene the trace is labeled by and the 612 
one being decoded). Scenes 3 and 4 are the two distal scenes presented after the proximal scene. 613 
(D) Peak accuracies across all frames for four machine learning architectures are shown when 614 
neuronal inputs for each region were limited to 1514 randomly-chosen neurons. (E) Heatmap plot 615 
overlaid onto a horizontal view of the mouse visual cortex indicating cortical subregions as a 616 
function of accuracy (0-100%) using a SNN; data from (D). (F) Frame-by-frame accuracies for 617 
each region when decoding was performed using a SNN. Scene classification as described in (C).  618 
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Figure 3. Decoding accuracy for the top neuronal populations parcellated by region, neuron 652 
type, and cortical depth. (A) Peak accuracies across all frames for four machine learning 653 
architectures are shown. (B) Peak accuracies across all frames for four machine learning 654 
architectures are shown when limited to 250 randomly-chosen neurons.  655 
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Figure 4. Decoding accuracy for the top neuronal populations parcellated by region, neuron 697 
type, and cortical depth selected after biologically-inspired and feature classifications. (A) 698 
Peak accuracies across all frames for four machine learning architectures are shown when neurons 699 
for each region were limited to high mean responding neurons. (B) Peak accuracies across all 700 
frames for a SNN are shown when limited to 583 high mean responding and 583 non-high mean 701 
responding neurons. (C) Peak accuracies across all frames for a shallow neural network are shown 702 
when limited to 35 high mean responding and 35 non-high mean responding neurons. (C) Peak 703 
accuracies across all frames for a shallow neural network are shown when neurons for each region 704 
were limited to feature selected neurons (G) Breakdown of the 1500 feature selected neurons in 705 
VISp during the frame where peak accuracy was achieved. 706 
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Supplementary Table 1. Peak accuracies for all regions and machine learning architectures, the 742 
frames these accuracies were achieved in, and the number of neurons used for decoding in each 743 
region. 744 
 745 

Regional decoding accuracies, all neurons 

Brain Region SNN DNN CNN SVM 

VISal 
3803 neurons 

70.93% 
15 

69.75% 
16 

68.14% 
16 

58.9% 
17 

VISam 
1514 neurons 

39.24% 
16 

37.8% 
15 

34.07% 
16 

15.17% 
16 

VISl 
4962 neurons 

85.17% 
16 

85.08% 
16 

86.36% 
17 

74.32% 
17 

VISp 
8661 neurons 

93.56% 
17 

93.98% 
17 

94.66% 
18 

87.8% 
18 

VISpm 
3054 neurons 

60.25% 
18 

57.71% 
16 

54.66% 
17 

43.22% 
18 

VISrl 
2815 neurons 

6.86% 
15 

6.69% 
15 

7.37% 
15 

4.49% 
16 
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Supplementary Table 2. Peak accuracies for all regions limited to 1514 neurons for each machine 766 
learning architecture, and the frames these accuracies were achieved in. 767 
 768 

Regional decoding accuracies, limited to 1514 neurons 

Brain Region SNN DNN CNN SVM 

VISal 52.37% 
15 

51.77% 
16 

47.71% 
16 

42.54% 
16 

VISam 39.24% 
16 

37.8% 
15 

34.07% 
16 

15.17% 
16 

VISl 67.8% 
16 

64.49% 
17 

61.19% 
17 

53.64% 
18 

VISp 72.2% 
17 

69.32% 
18 

66.69% 
17 

55.34% 
17 

VISpm 45.25% 
18 

42.29% 
18 

42.29% 
18 

32.71% 
18 

VISrl 4.66% 
15 

5.51% 
15 

5.17% 
15 

4.07% 
15 
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Supplementary Table 3. Peak accuracies for the top five neuronal populations parcellated by 790 
region, neuron type, and cortical depth, for each machine learning architecture, and the frames 791 
these accuracies were achieved in. 792 
 793 

Neuron type/region/depth decoding accuracies, all neurons 

Population (Top 5) SNN DNN CNN SVM 

Cux2, VISp, 175µm, 
1716 neurons 

77.97% 
18 

74.66% 
18 

72.12% 
18 

68.22% 
19 

Rorb, VISp, 275µm, 
1222 neurons 

64.15% 
15 

62.03% 
16 

60.25% 
16 

54.41% 
17 

Cux2, VISp, 275µm, 
2296 neurons 

63.22% 
16 

60.93% 
16 

60.59% 
16 

53.47% 
16 

Cux2, VISl, 275µm, 
1566 neurons 

58.22% 
15 

55.76% 
15 

53.39% 
16 

53.14% 
16 

Emx1, VISp, 
175µm, 

579 neurons 

49.32% 
16 

48.14% 
15 

45.93% 
16 

45.08% 
16 

 794 
Supplementary Table 4. Peak accuracies for the top five neuronal populations parcellated by 795 
region, cell type, cortical depth, and limited to 250 neurons. Accuracies are shown for each 796 
machine learning architecture, and the frames they were achieved in. 797 
 798 

Neuron type/region/depth decoding accuracies, limited to 250 
neurons 

Population (Top 5) SNN DNN CNN SVM 

Rbp4, VISp, 
375µm 

33.22% 
18 

32.37% 
18 

29.58% 
18 

25.85% 
18 

Emx1, VISl, 175µm 31.36% 
15 

30.17% 
15 

28.22% 
15 

26.78% 
15 

Emx1, VISp, 
175µm 

31.02% 
15 

30% 
15 

29.49% 
15 

28.81% 
15 

Cux2, VISp, 
175µm 

28.31% 
17 

27.37% 
18 

26.02% 
17 

25.93% 
17 

Rorb, VISp, 275µm 26.69% 
15 

24.92% 
15 

23.47% 
17 

20.34% 
17 
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Table 5. Peak accuracies for all regions limited to high mean responding neurons for each machine 799 
learning architecture, and the frames these accuracies were achieved in. 800 
 801 

Regional decoding accuracies, all high mean responders 

Brain Region SNN DNN CNN SVM 

VISal 
2613 neurons 

71.78% 
16 

70.34% 
16 

67.12% 
16 

56.44% 
18 

VISam 
931 neurons 

36.27% 
16 

37.46% 
15 

32.88% 
18 

14.75% 
18 

VISl 
3836 neurons 

88.14% 
17 

86.53% 
16 

86.19% 
16 

73.05% 
17 

VISp 
7283 neurons 

94.49% 
17 

94.41% 
18 

94.92% 
18 

88.31% 
18 

VISpm 
1959 neurons 

61.78% 
18 

58.39% 
18 

55.25% 
18 

45.76% 
19 

VISrl 
1639 neurons 

6.36% 
15 

7.46% 
15 

6.78% 
16 

4.32% 
17 

 802 
 803 
 804 
 805 
 806 
 807 
 808 
 809 
 810 
 811 
 812 
 813 
 814 
 815 
 816 
 817 
 818 
 819 
 820 
 821 
 822 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/271296doi: bioRxiv preprint 

https://doi.org/10.1101/271296


26 
 

Table 6. Peak accuracies for all regions limited to 583 high mean responding and non-high mean 823 
responding neurons for a shallow neural network, and the frames these accuracies were achieved 824 
in. 825 
 826 

Regional decoding accuracies, 583 HMRs 
vs. 583 nHMRs, shallow neural network 

Brain 
Region 

583 HMRs 583 nHMRs 

VISal 38.81% 
15 

17.54% 
15 

VISam 28.13% 
16 

11.02% 
16 

VISl 44.83% 
16 

18.56% 
16 

VISp 48.9% 
18 

20.17% 
16 

VISpm 32.37% 
18 

10.76% 
16 

VISrl 4.41% 
15 

2.80% 
13 
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Table 7: Peak accuracies achieved with feature selected neurons across six regions of the mouse 837 
visual cortex and comparison to total HMRs and total neurons in each region. Each cell lists the 838 
peak accuracy, the number of neurons in the group, and the frame the accuracy was achieved in. 839 
 840 

Neuron type/region/depth decoding 
accuracies, 35 HMRs vs. 35 nHMRs, 

SNN 

Population 
(Top 6) 

35 
HMRs 

35 
nHMRs 

Rbp4, VISp, 
375µm 

10.17% 
19 

3.73% 
19 

Emx1, VISl, 
175µm 

9.07% 
17 

4.15% 
15 

Emx1, VISp, 
175µm 

8.98% 
16 

2.71% 
15 

Cux2, VISl, 
175µm 

8.56% 
18 

3.98% 
16 

Cux2, VISp, 
175µm 

8.39% 
18 

3.81% 
18 

Rorb, VISp, 
275µm 

6.86% 
15 

3.81% 
14 
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Table 8. Peak accuracies for the top six performing neuronal populations limited to 35 high mean 860 
responding and non-high mean responding neurons for a shallow neural network, and the frames 861 
these accuracies were achieved in. 862 
 863 

Regional decoding accuracies, Neurons selected by F-
score, mean response, and total neurons 

Brain 
Region 

F-test 
(SNN) 

HMRs Total neurons 

VISal 75.93%, 
1500, 15 

71.78%, 2613, 
16, SNN 

70.93%, 3803, 
15, SNN 

VISam 43.14%, 
250, 15 

37.46%, 931, 
15, DNN 

39.24%, 1514, 
16, SNN 

VISl 90.59%, 
1500, 15 

88.14%, 3836, 
17, SNN 

86.36%, 4962, 
17, CNN 

VISp 95.76%, 
1500, 17 

94.92%, 7283, 
18, CNN 

94.66%, 8661, 
18, CNN 

VISpm 68.81%, 
1000, 17 

61.78%, 1959, 
18, SNN 

60.25%, 3054, 
18, SNN 

VISrl 13.22%, 
100, 14 

7.46%, 1639, 
15, DNN 

7.37%, 2815, 
15, CNN 
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