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 Abstract  

An important heuristic in developing image processing technologies is to mimic the computational 

strategies used by humans.  Relevant to this, recent studies have shown that the human brain’s processing 

strategy is closely matched to the characteristics of natural scenes, both in terms of global and local image 

statistics. However, structural MRI images and natural scenes have fundamental differences: the former 

are two-dimensional sections through a volume, the latter are projections.  MRI image formation is also 

radically different from natural image formation, involving acquisition in Fourier space, followed by 

several filtering and processing steps that all have the potential to alter image statistics. As a consequence, 

aspects of the human visual system that are finely-tuned to processing natural scenes may not be equally 

well-suited for MRI images, and identification of the differences between MRI images and natural scenes 

may lead to improved machine analysis of MRI. 

With these considerations in mind, we analyzed spectra and local image statistics of MRI images in 

several databases including T1 and FLAIR sequence types and of simulated MRI images [1]–[6], and 

compared this analysis to a parallel analysis of natural images [7] and visual sensitivity [7][8]. We found 

substantial differences between the statistical features of MRI images and natural images. Power spectra 

of MRI images had a steeper slope than that of natural images, indicating a lack of scale invariance. 

Independent of this, local image statistics of MRI and natural images differed: compared to natural 

images, MRI images had smaller variations in their local two-point statistics and larger variations in their 

local three-point statistics – to which the human visual system is relatively insensitive.  Our findings were 

consistent across MRI databases and simulated MRI images, suggesting that they result from brain 

geometry at the scale of MRI resolution, rather than characteristics of specific imaging and reconstruction 

methods.  
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1 Introduction 	 	 	 	

Development of image processing systems is often guided by the strategies used by the human visual 

system. The basic reason for this approach is that drawing inferences from images is a complex and ill-

posed problem, but one that the human visual system, as a result of evolutionary and developmental 

forces, has become reasonably effective at solving.  

What is unclear, however, is the level of detail at which human vision should be taken to provide useful 

guidance:  not only does it operate under different constraints, but also, it is matched to the statistical 

properties of images that result from projections of the natural environment onto the retina. This matching 

is at a surprising degree of detail – including not only the well-recognized stage of redundancy reduction 

by removal of global correlations [9], [10], but also an analysis of local statistics in a way that is closely 

matched to the features that distinguish patches of natural images [7].  While the computational strategies 

in human vision are sufficiently robust and general to enable perceptual judgments about images that are 

highly non-natural – for example, modern art – there is ample evidence that these strategies reflect a 

specific allocation of computational resources:  for example, some kinds of local correlations are readily 

perceptible, while others, which are of comparable mathematical complexity, escape our notice [11]. 

Therefore, understanding the extent to which a particular image class shares the statistical properties of 

natural images is likely to be helpful in translating the lessons learned by the human visual system into 

specific applications.  Here, we focus on this comparison for brain MRI. 

Because the human visual system is matched to natural images both in terms of their global and local 

statistical properties, we consider both of these aspects of MRI images independently.  Specifically, we 

analyze global statistical properties via the spatial power spectrum, and we analyze local statistical 

properties in terms of multipoint correlations. The latter analysis is carried out on whitened images, so it 

is independent of any overall differences in the power spectrum.   
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We may anticipate differences both in terms of power spectra and multipoint correlations. In principle, 

differences in power spectra may arise because natural scenes are equally likely to be viewed from many 

distances and angles but MRI images have a stereotyped size and framing.  Thus, the spectral scaling 

behavior associated with natural scenes may not be shared by MRI.  Differences in multipoint correlations 

may arise because of the differences in the imaging process itself.  For example, in natural images, local 

features such as “T-junctions”  arise because of occlusion [12].  But occlusion is not relevant to 

tomographic reconstruction, so T-junctions, when present, are likely to indicate a meeting-point of three 

objects.  In addition, MRI acquisition involves computational reconstruction, and the details of this 

multistage process will influence the statistics of the image that is presented to the observer.   

As we describe, we find substantial differences in both global and local statistics between MRI images 

and natural scenes.  For both kinds of statistics, many of these differences are consistent across T1 

weighted and FLAIR datasets.  These findings suggest several paths for development of novel machine-

vision tools, including extension of existing algorithms through recognition of the distinctive statistical 

features of MRI images and the development of new classes of algorithms to mitigate the mismatch 

between MRI images and the images our visual system has evolved to process.  

 

2 Materials and Methods   

2.1 Databases and Image Selection  

 Analyses were carried out on de-identified human brain MRI images obtained from three 

databases and on simulated MRI images computed by BrainWeb [1]–[4].  The human MRI databases 

were: the Open Access Series of Imaging Studies (OASIS) [5],  the Alzheimer Disease Neuroimaging 

Initiative (ADNI) [6], and a dataset from healthy volunteers and individuals diagnosed with a variety of 

neuroinflammatory diseases (mostly multiple sclerosis) collected in the Translational Neuroradiology 
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Section of NINDS (here designated the TNS dataset).  The TNS dataset was provided by Daniel S. Reich 

at the NINDS.  Characteristics of the databases are summarized in Table 1. 

All images were analyzed as sagittal slices, with a voxel size of 1.0 x 1.0 x 1.0 mm for the ADNI 

and TNS databases, and 1.0 x 1.0 x 1.25 mm for the OASIS database. For the OASIS and ADNI 

databases, images were obtained using T1weighted sequences[5][6]. For the TNS database, images were 

obtained with a T2-weighted FLAIR sequence. 

The OASIS database, 380 datasets, consists of healthy subjects and patients with a variety of 

diagnoses, age range 18 to 96 years. The ADNI database, 119 datasets, consists of patients diagnosed with 

Alzheimer’s disease, age range 55 to 90 years. The TNS database had two subsets:  one with 39 healthy 

subjects and one with 255 patients suspected of having neuroinflammatory diseases, such as multiple 

sclerosis; combined age range was 18 to 83 years. All databases included male and female subjects, and 

all datasets were analyzed.  As detailed below, this yielded a total of 67,908 regions of interest (ROI’s) 

from 793 brain volumes (Table 1).  

Simulated T1 weighted MRI images were calculated using the BrainWeb simulator [2]–[4].  We 

used the system defaults, namely, a voxel size of 1.0 x 1.0 x 1.0 mm and spoiled FLASH with TR=18 ms, 

TE=10 ms, flip angle 30 deg.  FLAIR MRI images with CSF suppression were not supported by the 

online BrainWeb simulator.  To obtain these images, we modified the simulator code to use a T1 

relaxation time of 4500 ms for CSF instead of the default value of 2569 ms, and a T2 relaxation time of 

2300 ms for CSF rather than the default value of 329 [13]and simulated an inversion-recovery sequence 

with TR=11000 ms, TE=140 ms, TI =4600ms. These modifications required recompiling the simulator 

code locally, using Ubuntu 16.04.2. For both types of images, noise was simulated as additive Gaussian 

white noise, and its standard deviation was specified as a fraction of the most intense tissue value. 

2.2	Processing	Pipeline:	Spectral	Analysis	
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2018. ; https://doi.org/10.1101/271338doi: bioRxiv preprint 

https://doi.org/10.1101/271338
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

        7 
       

The processing pipeline was designed to extract individual regions of interest (ROI’s) that were 

fully contained within brain parenchyma in an automated, unbiased fashion (Figure 1). For each sagittal 

section, the skull was stripped using Freesurfer’s “watershed.” Then, using Matlab’s bwconvhull, the 

convex hull was determined, and the largest rectangle that fit inside this region was then found.  Next, we 

randomly selected one 64 x 64 ROI from inside each rectangle (slices whose convex hulls were too small 

to contain a 64 x 64 rectangle were discarded). Optionally, to probe the possible effects of high-frequency 

artifacts in the reconstruction, the 64x64 ROI’s were downsampled to 32 x 32 ROI’s by averaging the 

intensities in 2x2 blocks. We present data from the full-resolution and the down-sampled analyses in 

parallel, to show that these artifacts have little effect on our findings. 

Spectra were computed by applying Matlab’s fft2 in each such region, and averaging the squared 

values across all slices from each database.  Spectra were computed both with and without twofold 

padding.  We focused on the frequency range from 2 to 16 cycles per ROI (1/32 to 0.25 cycles per pixel); 

in this range, padding (not used in the figures below) had minimal effect. For simplicity, we did not use 

windowing; the use of windows  (e.g., a multitaper approach) would have little effect because the spectra 

are broadband. 

To fit the power spectra to a power-law function, we regressed the logarithm of the spectral 

densities against the logarithm of spatial frequency (using Matlab’s regress), for spatial frequencies 

ranging from 2 cycles per ROI (1/32 cycles per pixel) to 10% below the Nyquist frequency.  

  

2.3 Processing Pipeline: Local Image Statistics    

 Local image statistics characterize the features of images in small neighborhoods, and therefore 

they complement the statistical description provided by spectral analysis.  We focus on the statistics that 

characterize the distribution of black-and-white colorings of 2x2 blocks of pixels.  We choose this 

strategy for two reasons.  First, they capture local features such as edges and corners.  Second –critical to 
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the goals of this study -- their distribution in natural images  has been well-characterized[7], as has their 

salience to human observers [8].  The close match of these sets of findings [7] suggests that the human 

visual system is tuned to make efficient use of these natural image statistics, and motivated us to 

determine whether a similar match was present for MRI images.  

 Our procedure (Figure 2) is modeled after the processing pipeline used in that study, with 

parameters R (ROI size) and N (downsampling) of  ( , ) (64,1)R N   and ( , ) (32, 2)R N  . The larger 

( , )R N  parameter values used by Hermundstad [7] for natural images ( 64R N   ) could not be used, 

because of the limited number of voxels per plane in the MRI images. 

For analysis of local image statistics, we began with the square ROI’s extracted above for spectral 

analysis (64 x 64 pixels, and also a parallel set downsampled to 32 x 32). Then, as in [7], we whitened 

these ROI’s by filtering them in the frequency domain, attenuating each Fourier component by the inverse 

square-root of the power spectrum.  Then, these images were binarized at the median point, where the 

median was determined from all of the ROI’s drawn from the same brain. The binarized images were then 

parceled into 2x2 blocks, after removing a one-pixel border to avoid edge artifacts due to the whitening 

operation. 

To describe the distribution of these blocks within an ROI, we proceeded as follows.  Since each 

of the pixels in a block were either black or white, there are 16 ( 2 22  ) different kinds of blocks.  However, 

fewer than 16 degrees of freedom are required to describe them.  These constraints arise because (a) the 

16 probabilities add up to 1, and (b) the left two pixels of one block are also the right two pixels of the 

next (and similarly, for top and bottom). To take these constraints into account, we used the parameter set 

of [14], which uses a linear transformation to express the 16 raw block probabilities as 10 independent 

statistics.   
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These statistics, each of which ranges from -1 to 1, may be summarized as follows (see Figure 3). 

There are four two-point statistics, denoted | , _ , \ , and / .  These describe the statistics of pairs 

of pixels, in directions corresponding to the subscript.  For example, 
|  is defined as the probability that 

two vertically-adjacent checks match, minus the probability that they do not match.  So 
| 1   means that 

all 2x1 (vertical) blocks are either both black or both white, while 
| 1    means that all 2x1 pixel 

blocks contain mis-matching pixels. Similarly, _  is the probability of matching vs. mismatching pixels 

in a1x2 (horizontal) block. \   and /  describe the probability that pixels which share a common corner 

either match or mismatch. Together, |  and _  will be referred to as the cardinal  ’s; / , and \  will 

be referred to as the oblique  ’s.  

 There are four three-point statistics, denoted  ,  ,  , and  .These coordinates indicate the 

probability of that L-shaped regions containing an even or an odd number of white pixels. 1  means 

that there is always an odd number of white pixels in such a region, and 1    means that there is 

always an even number of white pixels in the such a region, i.e., an odd number of black pixels. As shown 

in Figure 3, high or low   values create regions with triangular shapes. 

 The four-point statistic   indicates the probability that the parity of the number of white pixels in 

a 2x2 block is even:  1   means that 2x2 blocks always contain an even number of white pixels and 

1     means that 2x2 blocks always contain an odd number of white pixels. 

 Finally, there is a one-point statistic, γ, which is defined as the probability of a white check minus 

the probability of a black check, and indicates the overall intensity.  However, since binarization was 

carried out at the median, this statistic was always close to zero, and not further analyzed. 
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 Together, the ten quantities  | _ \ /, , , , , , , , ,           are independent parameters that 

specify the probabilities of the 2x2 blocks.  We determined these quantities for each ROI, and then 

examined their means, variances, and covariances across the ROI’s within each database.  To determine 

confidence limits on these estimates, we used a bootstrap procedure (500 resamplings).  Resamplings 

were done with replacement of each slice.  Each time a slice was drawn, a new square ROI was randomly 

chosen from the maximal rectangle within its convex hull. 

3 Results 

We characterize the statistics of MRI images in two complementary ways. We begin with the 

power spectrum, as it is a standard approach that captures global correlations.  We then examine local 

image statistics, which are independent of the power spectra, and capture the features contained in small 

neighborhoods of pixels.  

3.1 Spectral analysis 
 

Figure 4 shows the spatial power spectra of images in the T1 weighted databases, plotted as a 

function of the magnitude of spatial frequency, along with the corresponding quantities computed from 

simulated T1 weighted data.  For each database, there is a broad frequency range in which the power 

spectrum is approximately a power-law function of spatial frequency, i.e., ( )P k A k



 

, independent of 

whether images were analyzed at the full resolution or after downsampling. As is well-known, this power-

law relationship also holds for natural images, with the power-law exponent    in the range -1.8 to -2.2  

[15]–[17]. We therefore used this relationship to summarize and compare the spectra, and compare them 

with the spectra of natural images.  Table 2 shows the exponent determined from each database, as well as 

from the simulated MRI data with various noise levels.  For the T1 weighted images, this exponent was in 

the range -3.1 to -2.6 (see Table 2 for details and confidence limits), which is more negative than the 

values characteristic of natural images [15]–[17].  This means that, relative to natural images, MRI 
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images have a greater amount of energy at low spatial frequencies.  As the Figure 4 and Table 2 show, 

slopes more negative than -2 are also found in the simulated data, and slopes similar to the database 

images were found when a modest amount of noise (3%) was added.   

Beyond the spatial frequency range considered in the above analysis, MRI spectra become flatter, 

and are no longer well-fit by a single power-law function. This contrasts with the behavior of natural 

images, which have power-law behavior over a range of more than two decades [17]. However, because 

of the concern that these characteristics may reflect details of image reconstruction, smoothing, and noise, 

we do not further consider this behavior. 

 The two-dimensional power spectra (Figure 5) show that the MRI image spectra have significant 

anisotropies.  In both T1 weighted databases, there is a prominent excess of power along the horizontal 

and vertical axes – amounting to a tenfold excess at the highest spatial frequencies.  Such anisotropies are 

not typical of natural scenes, but have been noted in images containing manmade objects [15].  Away 

from the axes, the iso-intensity contours show a mild deviation from circularity, indicating a relative 

decrease of power in the oblique directions. Simulated T1weighted images share these features:  they also 

have an excess of power along the horizontal and vertical axes, to a similar extent as in the MRI images 

drawn from the database. 

Power spectra of FLAIR images, taken from the TNS database, show these same characteristics 

(Figures 6 and 7, and Table 2): as was the case for the T1 images, spectral slopes were more negative than 

-2.  The TNS database was subdivided into images from both healthy volunteers and patients; slopes were 

closely similar for the two subsets:  -2.82 vs. -2.85 without downsampling, -2.25 vs. -2.21 with 

downsampling; overlapping confidence limits in both cases. Healthy volunteers and patients also both 

showed an excess of power, primarily along the vertical axis, of approximately a factor of three at the 

highest spatial frequencies. Simulated FLAIR images with 7% noise added (lower row of Figures 6 and 7) 
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had a similar spectral slope as the MRI images.  They also showed anisotropy to a similar degree, but (in 

contrast to the database images) a greater anisotropy along the horizontal axis than the vertical axis.  

3.2 Local Image Statistics 

We now characterize the local image statistics of MRI images.  In brief (see Methods, Figure 2, 

and [7]), the approach consists of whitening the images followed by binarization, and then tabulating the 

configurations in 2x2 neighborhoods of pixels within each ROI.  This tabulation is carried out in terms of 

a 9-parameter set of descriptors (see Figure 3), which are independent, and stratify the analysis into 

statistics involving two points ( _ , | , / , and \ ), three points ( , ,  , and  ), and four points 

(the statistic  ) .  Thus, the local statistical analysis is complementary to the characterization via power 

spectra – both because it focuses on the features in small neighborhoods of pixels, and also, because it is 

carried out after a whitening step that removes the overall correlations that shape the power spectrum.  

Because of this whitening step, any differences between the local image statistics of MRI images and 

those of natural images cannot be attributed to differences in their overall spatial frequency content. 

We consider both the mean and standard deviations of these local statistics measured in each ROI. 

The mean values capture the average characteristics of all ROIs within a database, and thus focus on 

overall differences between the databases.  The standard deviations describe the characteristics of the 

ROIs that distinguish them from each other, and thus focus on characteristics that are useful for analyzing 

individual MRI images. To enable a direct comparison to natural images, we accompany the analysis by a 

parallel analysis of natural images (recomputed from the raw data of [7], provided by Ann Hermundstad).  

Following Hermundstad [7], natural images were only analyzed after twofold downsampling 

( 2, 32N R  ), to avoid possible camera-related artifacts. 

Figure 8 shows the mean values of the image statistics for images analyzed at full resolution 

(Panel A), and after twofold downsampling (Panel B).  At both scales, there were substantial differences 

in database characteristics:  For example, at native resolution, vertical two-point correlations (
| ) were 
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zero or positive for the T1 databases but negative for the FLAIR databases, while horizontal two-point 

correlations ( _ ) were negative for the T1 databases but positive for the FLAIR databases. Other 

differences were present for three- and four-point correlations at native resolution, and for many of the 

statistics after twofold downsampling.  In the latter analysis, there were also differences between the two 

T1 databases across all local image statistics.  For the simulated MRI images, many of the mean values 

differ from mean values obtained from actual MRI images, for both sequence types and at both scales.  

This complex pattern of variations is not surprising, as the means of these statistics will be affected by the 

MRI intensity histogram, which will vary across sequence types as a consequence of the physics of signal 

generation and, possibly, differences in the reconstruction process. Thus, the means of the image statistics 

are affected by many sequence-dependent factors in addition to brain morphology at the MRI scale. For 

completeness, Fig. 8B also shows the mean values of local image statistics obtained from natural images.   

In contrast, the standard deviations of these image statistics – which quantify their ability to 

distinguish one ROI from another -- show a simpler and more consistent pattern (Fig. 9).  Two-point 

statistics in the vertical and horizontal directions have the largest standard deviations, followed by two-

point statistics in the oblique directions.  Three- and four-point statistics have smaller but comparable 

standard deviations.  This pattern is seen for images at full resolution (Fig. 9A) and after 2x2 

downsampling (Fig. 9B), and also for the simulated T1 and FLAIR MRI images. The pattern is also 

consistent between images obtained from normal volunteers and patients within the TNS database. 

While these statistical characteristics are common to images from all the MRI databases and the 

simulated images, they differ from natural images (Fig. 9B). Specifically, in comparison to natural images, 

horizontal and vertical two-point statistics are less variable across patches (
|  and 

_  of Fig. 9B): in all 

cases, the standard deviations of the MRI statistics are below the values for natural images. The opposite 

pattern is present for three-point statistics (the  ’s of Fig. 9B): standard deviations for the MRI statistics 

are above the corresponding values for natural images.  These differences are consistent across real and 
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simulated MRI images, and are substantially in excess of the confidence limits. That is, two-point 

correlations are relatively more stereotyped for MRI images than for natural images, while three-point 

correlations are relatively more stereotyped for natural images than for MRI. Consequently, the relative 

importance of two- and three-point local image statistics for distinguishing among patches of MRI images 

differs from their relative importance in natural images. 

For completeness, Figure 10 shows the covariances of the image statistics, normalized to their 

corresponding standard deviations described above.  With this normalization, there are few differences 

between the MRI images, or between them and the corresponding statistics of natural images.  

4 Discussion   

  Drawing inferences from medical images is the end result of a processing pipeline, whose stages 

include not only the process of image formation but also visual analysis by human observers. The ability 

of humans to interpret images is the result of evolutionary pressures in the natural environment. It is 

therefore shaped by, and tuned to, the statistical properties of natural images, including both their global 

correlation properties as captured by their power spectrum [16], and their local image statistics [7], [8]. 

These statistical properties arise from the physics of image formation and the characteristics of the natural 

environment.  Medical images are formed by different physical processes – and this raises the possibility 

that medical images form a category of images whose statistics differ from those that our visual systems 

are adapted to process.  

 We found that brain MRI’s are a category of images whose statistics differ from those of natural 

images in several ways. With regard to global correlation properties, the spectral slope of MRI images is 

in the range of -2.2 to -3, steeper than the slope of -1.8 to -2.2 characteristic of natural images [15]–[17].  

A spectral slope of -2 – the middle of the range found for natural images -- corresponds to scale 

invariance, which follows from the notion that an observer’s viewpoint is chosen at random with respect 
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to the environment.  MRI images do not have this characteristic, and are more heavily weighted towards 

low spatial frequencies (Figs. 4-7). 

 The statistics of local features of natural images are less well-studied, but these too have 

consistent characteristics to which the human visual system is tuned.  We focus on the local features that 

are important in distinguishing one image patch from another, i.e., the extent to which image statistics 

vary across ROI’s (Fig. 9) For natural images, two-point correlations are the most informative; 

correlations in cardinal directions (vertical and horizontal) are substantially more important than 

correlations in oblique directions; this corresponds to their perceptual salience [7], [8]. In contrast, for 

MRI images, cardinal and oblique correlations are more nearly equal in variance, and hence, in 

importance for distinguishing among patches (Fig. 9B). With regard to higher-order statistics, three-point 

statistics are less important than four-point statistics in natural images, but these are comparable for MRI. 

(Fig. 9B).  Note that the local statistical features are analyzed after a whitening step, and thus, are 

independent of the differences in spectral characteristics. 

 Each MRI sequence has its own tradeoffs between bandwidth, noise, contrast and artifacts, and, a 

priori, any of these could have had a role in determining the statistics of resulting images.  Interestingly, 

we found consistency across three databases representing two sequence types (T1 weighted and pre-

contrast FLAIR) as well as simulated MRI images.  Based on this consistency, we infer that these 

statistical characteristics presented here are not due to the physics specific to each kind of MRI sequence, 

or filtering and artifacts that might arise in the process of data acquisition or reconstruction, but rather 

reflect the 3D geometry of the brain and its sectioning into 2D slices at the resolution of MRI. That our 

results are consistent not only across two MRI modalities and but also across simulations suggests that 

our results are not driven by steps in the acquisition process. This logic also suggests that other medical 

image categories – such as transmission X-rays, light micrographs, and electron micrographs – will also 

have their own characteristic statistical fingerprints. 
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 These observations have a number of implications. First, the fact that human brains are attuned 

evolutionarily to process natural images whose statistics differ from that of brain MRIs suggests that the 

human visual system is not ideally matched to the challenges of reading MR exams. For example, three-

point and four-point statistics are similarly important for distinguishing the among MRI regions, while in 

natural images, four-point statistics are substantially more important (Figure 9B).  Human observers [7], 

[8] allocate their computational resources in a way that is matched to the characteristics of natural images:  

they are more sensitive to four-point statistics than three-point statistics. However, there are modest inter-

individual differences in sensitivity to local image statistics [8], [14]; one may speculate that the 

individuals with relatively greater sensitivity to the third-order statistics that are informative in MRI 

images will more readily develop neuroradiographic expertise.  Conversely, the development of such 

expertise through training may be associated with increased visual sensitivity to the characteristic 

statistical features of MRI.  Of note, visual expertise is well-recognized in many domains, including 

identifying distinguishing features in plain radiographs [18], [19], cytological images [19], and fingerprint 

identification [20].  Here we raise the possibility that such expertise is related to distinctive statistical 

characteristics of the image set. 

These observations also may be useful in developing improved methods of MRI analysis.  We 

recognize that it is very nontrivial to go from a characterization of image statistics to an image-processing 

algorithm that exploits these characteristics – but several possibilities naturally arise. (i) Because MRI 

images have a distinctive and stereotyped statistical structure, deviations of an acquired image from these 

norms is a potential strategy for artifact detection and quality control. (ii) Super-resolution methods are 

applied to enhance a reconstructed image, but, because of the ill-posed nature of the problem, 

regularization methods are typically required [21].  Incorporating the distinctive statistical characteristics 

of brain MRI into a prior may be a way to develop more effective statistical regularization methods.  In 

these two applications, a cost function for image patches, parameterized by their local image statistics, 
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could be constructed as a log likelihood based on the multidimensional Gaussian that yields the means, 

variances, and covariances of these statistics in MRI datasets. 

Finally, (iii) it may be possible to improve the interpretability of MRI images by local 

transformations that make their textural features more visible to human observers.  In this regard, two 

recent studies are notable:  a study that demonstrated the utility of second-order statistics in distinguishing 

T2 MRI images of normals and patients with Alzheimer’s disease [22](though local and long-range 

statistics were not distinguished in that study), and a study that demonstrated superiority of machine 

analysis of MRI images to human analysis in distinguishing tumor from radionecrosis [23][24].  While 

neither of these studies made use of the specific image statistics studied here, they support the notion that 

textural features other than those computed by the human visual system are important for MRI 

interpretation. 
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7	Figure	and	Table	Legends	

Figure	1.  
The processing pipeline for spectral analysis.  Images of each sagittal plane were processed by (a) 

removal of the skull, (b) identification of the convex hull of the resulting image, (c) selection of the 

largest rectangle, and (d), selection of a random 64 x 64 pixel square ROI within this convex hull.  The 

power spectrum was then computed from the mean of the squared amplitudes of the Fourier components 

obtained from these ROI’s. Optionally, the image was then downsampled by averaging within 2x2 blocks 

prior to Fourier transformation. 
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Figure	2.	
The processing pipeline for analysis of local image statistics.  The ROI’s extracted for spectral 

analysis (Figure 1) were whitened by a linear filter whose amplitude is given by the square root of the 

power spectrum for that dataset.  The resulting images were then binarized at the median value of the 

whitened images.  Local image statistics were determined by tabulating the configurations of black and 

white checks within 2x2 neighborhoods. 

Figure	3.	
 

The parameterization of local image statistics used in this analysis. Each local statistic ( , | , 



︳

, \ ,  ,  ,  ,  , and  ) describes a specific kind of correlation between one or more pixels 

that form a template within a 2x2 neighborhood. Values of each statistic range from -1 to +1, with 0 

indicating randomness.  The strip above each template shows this gamut.  Statistics are defined as follows.  

The one-point statistic   is the difference between the probability that a check is white, vs. black: +1 

means all white, -1 means all black. The two-point statistics | , 

︳

, \ , and /   specify the probability 

that two nearby pixels match, minus the probability that they do not match: +1means that they always 

match; -1 means that they always mismatch.  The three-point statistics  ,  ,  , and   specify the 

difference between the fraction of L-shaped regions that contain an odd number of white pixels, and the 

fraction containing an even number: +1 produces an excess of white regions, while -1 produces an excess 

of black regions. The four-point statistic   specifies the difference between the probability that the 

number of white pixels in a 2x2 block is even, vs. odd:  +1 means that 2x2 blocks always contain an even 

number of white pixels, -1 means that 2x2 blocks always contain an odd number of white pixels. Since 

the present analysis was carried out after binarization of at the median,   was always close to zero, and 

not analyzed; it is shown for completeness.  Adapted from Figure 1 of [8], with permission of the 

copyright holder, Elsevier B.V. 
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Figure	4.	
Power spectra of T1 MRI images, log-log plot.  The simulated T1 images were constructed with 3% 

added noise; for further details, see text. Spectral estimates along the horizontal axis are shown in red, 

vertical in green, and oblique in magenta. The regression line, and the frequency range used to determine 

the regression, is shown for the full-resolution images in cyan, and for the 2x2 downsampled images in 

blue (with the latter superimposed on the full-resolution analysis for comparison purposes).  

Figure	5.	
Power spectra of T1 MRI images (data of Figure 4), as a heatmap.  Note that the color scale is 

logarithmic, and that the spatial frequency axes are expanded for the downsampled images (right column).  

Figure	6.	
Power spectra of FLAIR MRI images, log-log plot.  The simulated FLAIR images were 

constructed with 7% added noise; for further details, see text. Plotting conventions as in Figure 4. 

Figure	7.	
Power spectra of FLAIR MRI images (data of Figure 6), as a heatmap.  Note that the color scale 

is logarithmic, and that the spatial frequency axes are expanded for the downsampled images (right 

column).  

Figure	8.	
 Means of local image statistics for real (solid symbols) and simulated (open symbol) MRI images.  

Panel A:  full resolution ( ( , ) (64,1)R N  ); panel B: after 2x2 downsampling ( ( , ) (32, 2)R N  ). In B, 

values for the natural image database of [7] are shown (shaded symbols). For MRI images, error bars 

indicate 95% confidence intervals, computed via bootstrap. 

Figure	9.	
 Standard deviations of local image statistics for real (solid symbols) and simulated (open symbol) 

MRI images.  Panel A:  full resolution ( ( , ) (64,1)R N  ); panel B: after 2x2 downsampling 

( ( , ) (32, 2)R N  ). Other details as in Figure 8. 
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Figure	10.	
Covariances of local image statistics.  Covariances for each pair of local image statistics are 

represented by their precision matrix, rendered as an ellipse scaled to maximally fill each portion of the 

grid. Ellipses that are nearly circular indicate that the statistics are independent. Elongation of the ellipse 

along an axis indicates that the corresponding linear combination of statistics is “precise”, i.e., has a value 

that varies little across ROI’s.  

Table	1.	
Characteristics of the MRI databases used in this study.  AD: Alzheimer’s Disease.  MS: multiple 

sclerosis. 

Table	2.	
Spectral slopes of MRI images and simulated images.  Slopes were determined by regression of 

log(power) vs. log(spatial frequency) from 2 cycles per ROI to 90% of the Nyquist frequency (28.8 cycles 

per ROI for images processed at full resolution, 14.4 cycles per ROI for the downsampled images); this 

range is shown by the vertical blue and cyan lines in in Figures 4 and 6. Confidence limits (95%) were 

determined via t statistics, as implemented by Matlab’s regress.m routine. 
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8	Tables	

 

Table	1:	Characteristics	of	the	databases	
 

          number number mean 
  ………..age………..    field of of ROI’s per 
 Database min max mean stdv gender diagnosis sequence strength brains ROI’s brain 
 

 OASIS 18 96   M+F various T1 1.5T 380 28951 76.2 

 ADNI 55 90   M+F AD T1 3T 119 9500 79.8 
              
TNS healthy 20 64 36.3 12.5 M+F healthy FLAIR 3T 39 4289 110.0 
 
 TNS patient 18 83 48.2 12.5 M+F MS FLAIR 3T 255 25168 98.7 
             
 total         793 67908 85.6 
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Table	2:	Spectral	slopes	of	brain	MRI	images	
 

   Full Resolution   Downsampled  
 
  slope confidence limits slope confidence limits 
 
 T1 images 
 
 OASIS -2.61 -2.67 -2.56 -2.88 -3.00 -2.75 
 ADNI -3.09 -3.15 -3.03 -3.11 -3.24 -2.97 
        
 simulated, no noise -3.86 -3.98 -3.73 -3.27 -3.45 -3.09 
 simulated, 3% noise -3.03 -3.11 -2.94 -3.18 -3.36 -3.01 
 simulated, 5% noise -2.16 -2.22 -2.09 -2.87 -3.02 -2.73 
 simulated, 7% noise -1.86 -1.92 -1.81 -2.70 -2.82 -2.58 
 
 FLAIR images 
 
 TNS healthy -2.82 -2.92 -2.71 -2.25 -2.43 -2.07 
 TNS patient -2.85 -2.96 -2.75 -2.21 -2.36 -2.05 
        
 simulated, no noise -3.64 -3.74 -3.55 -2.56 -2.67 -2.46 
 simulated, 3% noise -3.39 -3.47 -3.31 -2.55 -2.66 -2.44 
 simulated, 5% noise -3.12 -3.18 -3.06 -2.53 -2.63 -2.42 
 simulated, 7% noise -2.84 -2.89 -2.79 -2.49 -2.60 -2.39 
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