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Abstract 
Interpreting genomic data to identify temperature adaptations is challenging due to limited            
accessibility of growth temperature data. In this work I mine public culture collection websites to               
obtain growth temperature data for 21,498 organisms. Leveraging this unique dataset I identify             
319 enzyme activities that either increase or decrease in abundance with temperature. This is a               
striking result showing that up to 9% of enzyme activities may represent metabolic changes              
important for adapting to growth at differing temperatures in microbes. Eight metabolic pathways             
were statistically enriched for these enzyme activities, further highlighting specific areas of            
metabolism that may be particularly important for such adaptations. Furthermore, I establish a             
correlation between 33 domains of unknown function (DUFs) with growth temperature in            
microbes, four of which (DUF438, DUF1524, DUF1957 and DUF3458_C) were significant in            
both archaea and bacteria. These DUFs may represent novel, as yet undiscovered, functions             
relating to temperature adaptation.  
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Introduction 
The physiology and evolutionary adaptations of living organisms are shaped by the            
environmental factors that define the habitat in which they live, but availability of metadata              
describing the environment of each habitat is limited. This is true for such properties as growth                
temperature, pH, salinity and many more. Several projects addressing aspects of this limitation             
have been published in recent years. The most comprehensive of these is BacDive (Söhngen et               
al. 2014, 2015) which was created by digitizing and mining analog records containing microbial              
metadata (Reimer et al. 2017). Other resources include MediaDB, which offers a hand-curated             
database for microbial growth conditions (Richards et al. 2014). Records regarding the            
phenotypic and environmental tolerance for over 5,000 species has also been made available             
(Barberán et al. 2017). One recent approach leveraged text mining to infer a large number of                
phenotypic traits from the scientific literature and the World Wide Web (Brbić et al. 2016). 

Among environmental factors temperature is unique in that it crosses physical barriers.            
As a result, organisms cannot efficiently shield themselves from temperature in the way they              
can shield themselves from extreme external pH or salinity by maintaining steep concentration             
gradients over biological membranes. Instead, each biomolecule inside microorganisms must          
be adapted to the temperatures in which they grow. This makes proteins and metabolites from               
microbes growing at hot temperatures particularly interesting for biotechnological and industrial           
applications (Mehta et al. 2016). Organisms can be generally categorized based on the             
temperature range of their optimal growth. No consensus has been reached regarding the exact              
temperature range of each category, here I make use of the following: psychrophiles (< 15 °C),                
mesophiles (15-50 °C), thermophiles (50-80 °C) and hyperthermophiles (> 80 °C).  

A range of specific adaptations to high temperatures are known, with many studies             
focusing on characteristics of thermophilic genomes or molecules such as proteins and lipids             
(Wang, Cen, and Zhao 2015; Stetter 1996). Stability of thermophilic proteins is attributed to their               
hydrophobic cores, increased numbers of charged residues and disulphide bonds (Wang, Cen,            
and Zhao 2015; Boutz et al. 2007; Bezsudnova et al. 2012). Cell membranes in thermophiles               
are characterised by high permeability barrier and capacity to maintain the liquid crystalline             
phase , due to presence of saturated fatty acids in bacteria, and ether lipids in archaea (Koga                
2012). Adaptations on the DNA level are also known. For example, genomes of thermophiles              
are generally smaller than those of mesophiles, with reduced number of some protein family              
members (van Noort et al. 2013; Burra, Kalmar, and Tompa 2010; Sabath et al. 2013).               
Horizontal gene transfer is thought to be important driving force for thermophilic adaptation. For              
instance, reverse gyrase, which was shown to have heat-protective DNA chaperone activity            
(Kampmann and Stock 2004), is considered to be transferred from archaea to bacteria (Forterre              
et al. 2000; Aravind et al. 1998).  

Metabolism varies widely among thermophiles and general trends are hard to discern as             
it is extremely difficult to distinguish between the effect of speciation versus adjustment to              
extreme environments. For example, three main glycolytic pathways are used by bacteria in             
general: the traditional Embden-Meyerhof (EM) glycolysis, the Entner-Doudoroff pathway, and          
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the pentose phosphate pathway; all three can also be found in different thermophilic bacteria              
(Counts et al. 2017; Swarup et al. 2014; Brumm et al. 2015; Selig et al. 1997). In archaea,                  
however, only modified variants of classical sugar degradation pathways were identified (Brasen            
et al. 2014; Selig et al. 1997). For example, Pyrococcus furiosus contains a nontraditional              
variation of EM glycolysis, in which ADP-dependent kinases are involved and           
glyceraldehyde-3-phosphate is converted directly to 3-phosphoglycerate, with no thermolabile         
1,3-biphosphoglycerate intermediate present as in traditional glycolysis (Kengen et al. 1994;           
Ettema et al. 2008). Even within the same taxonomic domain, sets of used pathways may vary.                
Flux analysis of three extremely thermophilic bacteria indicated that the metabolisms of the             
studied thermophiles were highly distinct, with differences in such pathways as amino acid or              
NADPH metabolism (Cordova et al. 2017). However, a communality is that all three strains              
relied heavily on glycolysis and the TCA cycle. Studies on Thermus thermophilus, possibly the              
most well-studied thermophile, revealed alternative pathways of amino acids synthesis, with           
lysine being synthesized by alpha-aminoadipate pathway instead of diaminopimelate pathway          
(Kosuge and Hoshino 1998) and homocysteine produced from an alternative precursor,           
O-acetyl-L-homoserine (Lee et al. 2014). T. thermophilus is also known to produce a variety of               
polyamines, the most common ones, spermidine and spermine, are synthesised using a distinct             
pathway from L-arginine via aminopropyl agmatine (Oshima 2007). Analysis of complete           
thermophilic genomes is a widely used method of finding both novel metabolic pathway, as well               
as enzymes of potential biotechnological use (Henne et al. 2004; Schäfers et al. 2017; Wu et al.                 
2009). An alternative pathway of menaquinone (MK) synthesis was discovered when no genes             
from the classical pathway were found in genomes of some MK-producing microorganism            
(Hiratsuka et al. 2008). Genes involved in the novel MK synthesis pathway are present in a                
range of thermophilic microorganisms, which may play a role in adaptation to growth at high               
temperatures, as one of the intermediates in the classical pathway, isochorismate, is known to              
be thermolabile (Fang, Langman, and Palmer 2010). 

Several studies avoid the limitations associated with comparing a small number of            
thermophilic versus mesophilic species, thereby identifying more general trends, by performing           
metagenomic analysis of environmental samples from extreme habitats (DeCastro,         
Rodríguez-Belmonte, and González-Siso 2016; Cowan et al. 2015). A study comparing           
metagenomes obtained from cold and hot deserts found thermophiles having a higher number             
of genes involved in metabolism and transport of carbohydrates and secondary metabolites (Le             
et al. 2016). Similar results were found in other studies of metagenomes from hot springs in                
India, where abundance of KEGG (Ogata et al. 1999; Kanehisa et al. 2017) pathways was               
investigated (Badhai, Ghosh, and Das 2015; Saxena et al. 2016).  

In this work I investigate metabolic trends in adapting to thermophilicity by comparing the              
presence of metabolic enzymes over many thousands of organisms, growing at various            
temperatures. I identify 319 individual enzymatic reactions that are preferentially present at            
either low or high temperatures, indicating metabolic adaptations. We identify eight pathways            
which are over-represented in metabolic changes. These may represent parts of metabolism            
that are particularly important for the adaptation to growth at different temperatures. Finally, I              
show that 33 protein domains of unknown function (DUFs) likewise correlate with growth             
temperature, a result that may provide important clues to their function. Enabling this approach              
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is a unique dataset of 21,498 organisms with their growth temperatures, which I obtained              
through data mining of publicly available organism culturing protocols from major culture            
collection centers. I make this data available to enable researchers to gain additional insights              
into evolutionary temperature-dependent adaptations. 
 
 

Results 
Culture collection center websites are a rich source for growth          
temperature data 
The hypothesis underlying this project is that, given a sufficiently large dataset with organism              
growth temperatures, meaningful correlations between growth temperatures and biological         
adaptations can be made. I reasoned that publicly available culturing protocols from            
microorganisms in major stock collection centers may form a resource that could be mined for               
such growth temperatures. Custom software in Python (http://www.python.org) was designed to           
systematically download all of the public web pages containing organism information from four             
stock collection centers: ATCC (http://www.lgcstandards-atcc.org), DSMZ (http://www.dsmz.de),       
NCTC (http://www.phe-culturecollections.org.uk) and NIES (http://www.shigen.nig.ac.jp). Each      
of these pages were then mined for the organism name and the growth temperature (Figure               
1A). A fifth stock center, the Institute Pasteur stock collection          
(http://www.research.pasteur.fr/en/team/biological-resources-center/) provided an excel table     
with organism names and growth temperatures upon request. Finally, organism growth           
temperatures from the BacDive database (Söhngen et al. 2014, 2015) were collected using             
scripts interfacing with the public API.  

Organism names were collapsed to the species level (ignoring strain designations) and            
the number of organisms in each of the databases was compared (Figure 1B). A total of 21,498                 
unique organism names combined with their growth temperature were obtained. ATCC and            
BacDive had the greatest number of unique organisms that were not present in any other               
database, with 6,852 and 2,211 respectively. In order, DSMZ, NCTC, NIES and Pasteur had              
854, 44, 749 and 415 organisms that were uniquely present in each of the databases. 

Each organism name in the dataset was mapped to a taxonomic identifier using the              
NBCI taxonomy resource (https://www.ncbi.nlm.nih.gov/taxonomy). The data from all databases         
were combined into one non-redundant dataset, which is referred to as the growth temperature              
dataset. The majority of organisms in the dataset (62%) is made up of bacteria (Figure 1C).                
Most of these are psychrophiles and mesophiles. Only a small number are thermophiles.             
Archaea make up 36% of all organisms in the dataset, with a more even distribution between                
mesophiles, thermophiles and hyperthermophiles. Eukaryotes, mainly comprising fungi and         
protists, make up only 2% of the dataset and encompass both psychrophiles and mesophiles. In               
general the dataset contains many more psychrophiles and mesophiles than thermophiles and            
hyperthermophiles (Figure 1C). The growth temperature dataset is made available for re-use by             
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other researchers as a tab-delimited file as well as in the xml format on Zenodo               
(https://zenodo.org/; doi: 10.5281/zenodo.1175609). 

Growth temperatures correlate strongly with mean enzyme optima 
The growth temperature dataset was validated by investigating the correlation between the            
growth temperature of each organism and the temperature optima of enzymes from that             
organism. For this validation all experimentally determined enzyme temperature optima were           
extracted from the BRENDA enzyme database (Schomburg et al. 2017),          
https://www.brenda-enzymes.org). The resulting data contained experimentally determined       
temperature optima for 31,826 enzymes, sourced from 3,421 organisms. This dataset is referred             
to as the enzyme temperature dataset. The overall distribution of growth temperatures (Figure             
2A) differ compared to the overall distribution of enzyme temperature optima (Figure 2B). The              
majority (88%) of growth temperatures fall in the range between 20 °C and 40 °C, with an abrupt                  
drop in the number of organisms grown at temperatures over 40 °C. In comparison, the majority                
of enzyme temperature optima also fall in the range between 20 °C and 40 °C (64%), but their                  
distribution decreases much less drastically above this temperature range.  

To be able to correlate growth temperatures with enzyme optima, organisms present in             
both datasets were identified (Figure 2C). Of the 21,498 organisms with growth temperatures             
and the 3,421 organisms with enzyme temperature optima only 1,811 were present in both              
datasets. From these the experimentally determined temperature optima for 18,135 enzymes           
were available. A simple distance score was computed by subtracting each organisms growth             
temperature from each individual enzymes temperature optimum (Figure 2D). Enzymes with           
optima exactly at the growth temperature have a distance score of 0 °C. Those which have an                 
optimum higher than the growth temperature have a positive distance score, with a magnitude              
equal to the temperature difference. Enzymes with an optimum lower than the growth             
temperature have a negative distance score. Enzymes with optima between 20-100 °C could be              
found throughout the entire growth temperature range, indicating that not all enzymes match the              
organism growth temperatures (Figure 2D). Despite these deviations from the expected, half            
(51%) of the enzyme measurements were in fact within ± 10 °C of the growth temperature and                 
67% were within ± 15 °C of the growth temperature, showing that growth temperature may be a                 
good indicator for the majority of enzyme optima.  

This correlation was further investigated by comparing each organisms growth          
temperature with average enzyme optima calculated with an increasing number of averaged            
enzymes from that organism, ranging from 1 to 100 (Figure 2E). There is a clear trend for                 
stronger correlation between growth and enzyme temperatures when increasing the number of            
averaged enzymes. This result shows that a single randomly chosen enzyme is an imprecise              
predictor of growth temperature (Figure 2E, bottommost circle). However, the mean optimum of             
at least five enzymes does display a Pearson correlation coefficient greater than 0.75. It is               
expected that the optimal catalytic temperature of enzymes follows growth temperature, the high             
correlation seen between these two variables is therefore a validation of the growth temperature              
dataset. 
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Many enzyme activities correlate with temperature 
A range of biological questions might be investigated by correlating biological properties with the              
collected organism growth temperatures. These could include genomic, transcriptomic,         
proteomic, metabolomic, phenotypic or taxonomic properties. To test this idea, I correlated            
enzyme activities, classified by Enzyme Commission numbers (EC numbers), with growth           
temperatures in an effort to identify temperature-dependent metabolic adaptations. A limitation           
in this approach is that it only focuses on known enzyme activities and novel ones cannot be                 
directly identified. Missing annotations as well as mis-annotations also introduce noise in this             
analysis. Furthermore, it is important to consider that the presence of an enzyme coding              
sequence in a dataset does not mean it is expressed and functional in a given organism.  

To obtain a set of enzyme activities for analysis all 88.6 million protein records from the                
UniProt database (UniProt Consortium 2015 ; https://www.uniprot.org/) were downloaded. Of         
these, 43% (38.3 million) could be annotated with the growth temperature of the organism from               
which they came - using the growth temperature dataset. EC numbers, were subsequently             
obtained for each of the matched records, where present, using the UniProt ID mapping tool               
(https://www.uniprot.org/uploadlists/). This resulted in the mapping of 3,551 unique EC          
numbers, which is approximately half of those currently listed in the BRENDA database. For the               
subsequent analysis Eukaryotes were excluded due to their limited range of growth            
temperatures in the dataset.  

The growth temperature dataset is highly skewed toward organisms growing between 20            
°C and 40 °C (Figure 1C). This skewing of the data would interfere with a correlation analysis.                 
Therefore, for each individual EC number, the ratio of organisms having at least one protein               
carrying that annotation - versus those organisms that do not - was calculated to obtain a single                 
value at each growth temperature. This results in a distribution of ratios over the analyzed               
temperatures for each individual EC number. A cutoff was set, including in the calculations only               
organisms with at least 1,000 protein records, as determined by a sensitivity plot (Figure 3A).               
This cutoff was used to remove noise caused by organisms with very few entries in UniProt. The                 
proportion of proteins annotated as enzymes remained approximately constant across growth           
temperatures in both archaea and bacteria (Figure 3B).  

In the growth temperature dataset there are proportionally more bacteria at low growth             
temperatures and proportionally more archaea at high growth temperatures (Figure S1).           
Correlating EC numbers and growth temperatures for the entire dataset may therefore highlight             
those that differ between these two domains of life, instead of those representing a true signal                
for temperature adaptation. bacteria and archaea were therefore analyzed separately. The           
Spearman correlation coefficient between the growth temperature and the enzyme occurrence           
ratios was calculated for each EC number and corrected p-values obtained (Figure S2). A              
concern in this analysis is that it may result in false positives representing enzyme activities only                
present in closely related organisms with a limited growth temperature distribution. To remove             
such false positives - and retain only those that may represent a general strategy of temperature                
adaptation - a filtering step based on phylogenetic distance was performed. Enzyme activities             
with significant correlation (corrected p-value below 0.01) were thus filtered to retain only those              
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with a wide phylogenetic distribution, indicated by a phylogenetic distance score of at least six               
(see Methods for details).  

From the 3,551 mapped EC numbers a total of 319 unique EC numbers remaining after               
filtering (340 total instances when accounting for recurring EC numbers), nine show statistically             
significant positive correlation in archaea and 55 in bacteria (Figure 3C and D, top panels;               
Supplemental file S1). Conversely, 86 enzymes from archaea show negative correlation with            
temperature and 190 in bacteria (Figure 3C and D, bottom panel; Supplemental file S1). 14 EC                
numbers recur in both the archaeal and bacterial dataset with the same correlation and 7 EC                
numbers show opposite correlation in archaea compared to bacteria. Together, these 319 EC             
numbers may shed light on metabolic adaptations important for growth at different            
temperatures. 

Certain metabolic pathways are enriched for the correlated        
enzyme activities 
To take the analysis one step further I investigated whether any part of metabolism was               
enriched for the enzyme activities identified in the previous step. Such enrichment would             
implicate specific metabolic pathways, or sets of related pathways, in the process of adapting to               
differing growth temperatures. The enzyme activities were mapped onto KEGG          
(http://www.genome.jp/kegg) pathways and a hypergeometric test was applied to test for           
enrichment. Eight out of 155 KEGG pathways were statistically enriched for the enzyme             
activities. These were: TCA cycle (KEGG pathway map00020), ubiquinone and other           
terpenoid-quinone biosynthesis (KEGG pathway map00130), purine metabolism (KEGG        
pathway map00230), cysteine and methionine metabolism (KEGG pathway map00270),         
pyruvate metabolism (KEGG pathway map00620), one carbon pool by folate (KEGG pathway            
map00670), methane metabolism (KEGG pathway map00680), carbon fixation pathways in          
prokaryotes (KEGG pathway map00720). To highlight one of these pathways a portion of the              
"ubiquinone and other terpenoid-quinone biosynthesis pathway" is presented in Figure 4A with            
data from bacteria. The ubiquinone synthesis pathway contains three enzymes that show            
negative correlation with growth temperature (Figure 4B). Two different metabolic pathways           
lead to synthesis of menaquinone from chorismate. The first, so-called futalosine pathway,            
contains three enzymes that show positive correlation with temperature (Figure 4C). The second             
pathway of menaquinone biosynthesis contains five enzymes that show negative correlation           
with growth temperature and are not present at high temperatures (Figure 4D). These data              
suggest that an evolutionary adaptation to growth at high temperatures in many bacteria is to               
biosynthesize menaquinone via the futalosine pathway.  

Domains of unknown function correlate with temperature 
The EC correlation analysis is limited in that it can only leverage enzyme activities that have                
been characterized. Unknown activities are “hidden” and cannot be correlated. To address this             
limitation I performed a final analysis where domains of unknown function (DUFs) were             
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correlated with temperature in the same manner as the EC numbers. DUFs are domains that               
show a conserved pattern in protein primary sequences, but for which the function of proteins in                
which they occur is not known. These are advantageous for the analysis insofar as they can be                 
identified from sequence data alone and one is therefore not limited what is known through               
experimentation. Out of 3,918 total DUFs, 98 were were significantly correlated with            
temperature (Figure S3), 33 of which also had a wide phylogenetic distribution (Figure 5, Table               
S1). Four of the 33 were positively correlated in archaea, and eight were negatively correlated               
(Figure 5A). Eight were positively correlated in bacteria and seventeen were negatively            
correlated (Figure 5B). Two of these, DUF438 (PF04282) and DUF1957 (PF09210), were            
positively correlated in both archaea and bacteria. Also for negative correlation two domains,             
DUF3458_C (PF17432) and DUF1524 (PF07510), appeared in both archaea and bacteria. 
 

Discussion 
In this research project a dataset of 21,498 organism names and growth temperatures has been               
assembled by mining publicly available data from culture collection centers. This is the largest              
such collection of data published to date. Several other resources provide similar data, but with               
a more limited scope. For example; BacDive (Söhngen et al. 2014, 2015) contains growth              
temperatures for ~10,000 species, MediaDB (Richards et al. 2014) for less than 200 species              
and finally, the IJSEM phenotypic database provide the growth temperature for 4,365 strains,             
with the number of represented species being fewer (Barberán et al. 2017). There is a very high                 
proportion of mesophilic organisms compared to thermophilic ones in the collected dataset            
(Figure 1C). The sharp drop in growth temperatures above 40 °C closely matches that seen by                
Barberan and collegues (Barberán et al. 2017). To what extent this reflects a true distribution of                
growth temperatures of naturally occurring organisms, and to what extent this is a bias              
introduced by what researchers have chosen to study is unclear. 

For individual enzymes I found many with optima strongly differing from the growth             
temperature, regardless of the growth temperature of the organism from which they come             
(Figure 2D). The trend for mesophilic proteins to be catalytically active at higher temperatures              
than expected matches the observation made by Dehouck and colleagues (Dehouck, Folch,            
and Rooman 2008). Conversely, enzymes from thermophiles and hyperthermophiles may rely           
on external factors for their stability - in addition to adaptations in protein sequence and fold.                
This could include the action of compatible solutes (da Costa, Santos, and Galinski 1998) such               
as diglycerol phosphate (Lamosa et al. 2000), di-myo-inositol-phosphate (Martins et al. 1996),            
through increased action by chaperones, or higher protein turnover rates. Together, the            
unexpectedly high stability of many enzymes coming from mesophilic organisms, and the            
unexpectedly low stability of many of the enzymes from thermophilic and hyperthermophilic            
organisms likely explains the smoothing above 40 °C of the enzyme temperature histogram             
(Figure 2B), as compared to the growth temperature histogram (Figure 2A).  

The weak correlation between single enzyme optima and growth temperature has been            
shown previously, albeit with a smaller dataset (Dehouck, Folch, and Rooman 2008). However,             
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a novel insight gained in this work is that the average catalytic optimum of at least five enzymes                  
correlates strongly with growth temperature throughout the organisms analyzed here (Figure 2E            
and F). This provides an important validation of the accuracy of the growth temperature dataset.  

For both archaea and bacteria there are several times more enzymes that are negatively              
correlated with temperature (more present at low growth temperatures) than there are positively             
correlated ones (Figure 3C and D; Supplemental file S1). Specifically, there were 64 enzyme              
activities that were positively correlated with temperature and 276 that were negatively            
correlated. I speculate that this difference is a direct result of mesophiles having been studied to                
a higher degree than thermophiles and hyperthermophiles, resulting in a greater number of             
known enzyme activities important for growth at mesophilic temperatures. In a logical extension             
of this argument I propose that a large number of enzyme activities likely remain to be                
discovered in thermophilic organisms. Each of the 319 enzymes here shown to be differentially              
present at various growth temperatures highlight important targets for future hypothesis           
generation and experimental investigation. In particular, further study is needed to determine            
whether the correlation reflects true causality. 

Of the eight KEGG pathways - with significant over-representation of enzymes changing            
with temperature - four were previously identified as over-represented in metagenomic studies            
of high temperature habitats (Badhai, Ghosh, and Das 2015; Saxena et al. 2016): carbon              
fixation pathway in prokaryotes, pyruvate metabolism, methane metabolism and purine          
metabolism. The TCA cycle, another enriched KEGG pathway, is known to be extensively             
utilized in three thermophilic bacteria (Cordova et al. 2017). In my approach, by identifying              
pathways with enzymes whose occurrence strongly correlates with growth temperatures, I           
strengthen the argument that these pathways are under evolutionary pressure in temperature            
adaptation. It therefore represents a clear advancement over comparing small numbers of            
mesophilic and thermophilic organisms and highlights the parts of metabolism under higher            
evolutionary pressure to change with temperature.  

One of the enriched pathways identified here contains enzymes of quinone metabolism.            
A minority of bacteria synthesise ubiquinone (Collins and Jones 1981; Hiraishi 1999). The             
results obtained in this study show that among these that do synthesise it, the occurrence of                
ubiquinone biosynthesis genes decrease with temperature (Figure 4A and B). Menaquinone           
synthesis occurs via two pathways, classical and futalosine, and genes involved in the             
futalosine pathway are present in a range of thermophilic microorganisms (Hiratsuka et al.             
2008). Here, I provide evidence that the futalosine pathway is not only present in thermophilic               
organisms, but is in fact the prevailing one at high growth temperatures in bacteria. I speculate                
that this may be an evolutionary adaptation reflecting the fact that the classical pathway              
contains the termolabile intermediate isochorismate (Fang, Langman, and Palmer 2010). 

To expand my analysis to protein functions that have not been determined I correlated              
the occurrence of domains of unknown function (DUFs) with temperature. The 33 significant             
domains identified (Figure 5, Table S1) may represent functions important to adaptation to             
growth at diverse temperatures. Using computational approaches to gain insights regarding the            
function of DUFs has been done previously. For example, a list of 238 essential DUFs (eDUFS),                
were identified based on their presence in essential proteins in bacteria (Goodacre, Gerloff, and              
Uetz 2013). Another approach made use of remote similarity detection to establish            
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structure-function relationships for 614 DUF families, thus providing clues to their function            
(Mudgal et al. 2015). Experimental approaches, notably that of structural genomics, has also             
been employed to gain additional information on DUFs (Jaroszewski et al. 2009). To my              
knowledge the approach outlined here is the first to provide evidence connecting DUFs with              
putative temperature adaptations in bacteria and archaea. As such, these 33 domains provide             
important starting points for future studies. 

In this study I collected a growth temperature dataset and used it to highlight metabolic-               
and domain-level adaptations to growth at different temperatures. I believe that the dataset will              
find additional, important, uses in correlating genomic, transcriptomic, proteomic, metabolomic,          
phenotypic or taxonomic properties with temperature in future studies. 
 
 

Methods 

Obtaining the growth temperature dataset 
Organism growth condition data was downloaded from the four culture collection centers ATCC,             
DSMZ, NCTC and NIES in the form of html files. For each organism record the scientific name                 
and growth temperature was extracted using custom scripts in Python. Data relating to             
organism names and growth temperatures from the Pasteur institute was obtained as an Excel              
file. Data from the BacDive database was obtained using custom scripts in Python by interfacing               
with the public application programming interface (API). Records from ATCC, DSMZ and            
BacDive reflect those available in July of 2017. Records from Pasteur, NCTC and NIES reflect               
those available in the first months of 2015. Subspecies names or strain designations were              
removed from all organisms and the reported growth temperatures for records with the same              
species name were averaged and rounded to the closest integer. Organism names were further              
matched to taxonomic identifiers (TaxId) using the NCBI taxonomic database from July 2017;             
organisms for which none could be obtained were removed from the dataset. The taxonomic              
lineage for each organism was subsequently obtained by querying the NCBI database with the              
TaxIds and using the eutils resource (https://www.ncbi.nlm.nih.gov/). All growth temperatures          
were validated to ensure that they fall in the range of -5 to 130 °C. 

Obtaining the enzyme temperature dataset 
All available experimentally determined enzyme temperature optima were extracted from the           
BRENDA enzyme database release 2017.2 (July 2017) with Python scripts using the Zolera             
SOAP package (https://pypi.python.org/pypi/ZSI/) interacting with the public BRENDA API. To          
de-duplicate data coming from the same enzyme the temperature optima from enzymes with the              
same EC number were averaged within each organism and rounded to the closest integer.              
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TaxId was obtained for each organism using the NCBI eutils resource. Organisms for which no               
TaxId could be found were removed from the dataset. 

Comparing the growth- and enzyme temperature datasets 
For each organism the collected growth temperatures were compared with enzyme temperature            
optima. The organisms present in both datasets were identified through simple matching of             
species names. A simple distance score was computed by subtracting each organisms growth             
temperature from each individual enzymes temperature optimum. Positive distance scores          
represent enzymes that have catalytic optima higher than the growth temperature. Negative            
scores represent enzymes that have optima lower than the organism growth temperature.  

To compare the mean enzyme temperature optima with growth temperatures the           
following steps were followed: For each of the 1,811 organisms present in both the growth               
temperature and enzyme temperature datasets n enzyme optima, for each n is in the range 1 to                 
100, enzymes were sampled at random without replacement and the mean temperature            
calculated. In each iteration any organism having fewer than n reported enzyme optima were              
excluded from the calculations. The Pearson correlation between these mean enzyme           
temperature optima and the organism growth temperatures were subsequently calculated. The           
calculation was repeated 1,000 times for each n and the mean of these calculations is reported. 

The mean enzyme temperature optima used in Figure 2F were calculated through            
simple averaging of all reported enzyme optima from each organism. Organisms having fewer             
than five enzyme optima were excluded. A locally weighted polynomial regression (LOESS) was             
calculated using the loess() function in R.  

Obtaining and filtering UniProt data 
SwissProt and TrEMBL protein sequences were downloaded as fasta files from UniProt release             
2017_07. A series of data matching and filtering steps were performed, as outlined below, to               
obtain a set of EC numbers and Pfam domains to analyze. The fasta files from both resources                 
were parsed to extract the species name belonging to each UniProt sequence identifier. Where              
possible, each of these species were assigned a growth temperature through name matching             
with the growth temperature dataset. UniProt identifiers belonging to organisms with no            
assigned growth temperature were removed from further analysis. Additionally, identifiers          
belonging to organisms with fewer than 1,000 sequences in the resource were discarded. For              
the remaining UniProt identifiers EC annotations and Pfam domains, where available, were            
obtained using the UniProt ID mapping tool (https://www.uniprot.org/uploadlists/). For the EC           
dataset UniProt identifiers not annotated with an EC number and those with incomplete EC              
numbers (for example 1.14.-.-) were discarded. For the Pfam domain dataset UniProt identifiers             
not annotated with a Pfam domain were discarded. The remaining UniProt identifiers, all             
annotated with a species name, growth temperature, and either an EC number or Pfam domain               
were each subjected to correlation analysis with growth temperature.  
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EC correlation analysis 
The filtered UniProt EC dataset described above is skewed, disproportionately containing           
identifiers annotated with growth temperatures in the range 20 to 40 °C. To remove this skewing                
the ratio between the number of organisms carrying a protein with a specific EC annotation               
versus the number of organisms that do not was calculated - separately at each growth               
temperature. This results in a dataset where the occurrence of each EC number is represented               
by a single ratio, between 0.0 and 1.0, at each growth temperature. The Spearman correlation               
between this ratio and the growth temperature was subsequently calculated for each EC             
number. In this analysis identifiers from bacteria and archaea were treated separately. This was              
done since the growth temperature distribution of archaea and bacteria differ, with more             
archaea growing high temperatures and more bacteria growing at low temperatures. Analyzing            
the identifiers from these domains together may thus result in the identification of EC numbers               
that differ between bacteria and archaea. The resulting p-values were corrected for multiple             
testing using false detection rate (FDR). This analysis ultimately generates a set of EC numbers               
either significantly positively or negatively correlated with temperature. In a final step, EC             
numbers with a narrow phylogenetic distribution were removed. Organism relatedness was           
calculated from the KEGG taxonomy (http://www.genome.jp/kegg/genome.html). Organisms       
were treated as leaves in a rooted tree. A phylogenetic distance score that represents the               
amount of nodes that two leaves (organisms) are separated by was calculated. The distance will               
be zero for two organisms that share the same taxonomic levels but just differ on the organism                 
name level. The maximum score in this scheme is eight. The significant EC numbers were               
filtered such that only those present in at least two organisms with a maximum distance of six or                  
more were retained.  

Domain correlation analysis 
The filtered UniProt Pfam domain dataset described above was filtered to retain only those              
corresponding to DUFs. The ratio between the number of organisms carrying a protein with a               
specific domain annotation versus the number of organisms that do not was calculated as              
described above. Calculation of the correlation of these ratios with temperature, p-value            
correction, and filtering for phylogenetic diversity was likewise performed as described above. 

Identifying metabolic pathways with significantly over-represented      
temperature-correlated enzyme activities 
To identify metabolic pathways, or collection of such pathways, with statistically significant            
over-representation of temperature-correlated EC numbers the following steps were         
undertaken: All available KEGG pathway data was downloaded as xml files using the KEGG              
representational state transfer (REST) API (http://www.kegg.jp/kegg/rest/keggapi.html). The EC        
numbers listed in each of these pathways were extracted using a Python script. The occurrence               
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of EC numbers in each of these pathways were matched against the EC numbers that               
significantly correlate with temperature to find the overlap. Finally, a Fischer hypergeometric test             
was performed, using the phyper() function from the stats package in R, to test for enrichment of                 
temperature-correlated EC numbers in these pathways. The resulting p-values were adjusted           
for multiple testing using FDR and those pathways with a p-value smaller than 0.05 reported. 
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Figures 
  

 
Figure 1 | Culture collection centers represents a rich source for growth temperature data. (A) An                
overview schematic showing how the growth temperature dataset was obtained. (B) A database             
comparison showing which provided the largest number of unique organisms not present in the others.               
Total in resource shows the total number of organisms in each database, unique to resource shows how                 
many organisms in that database were unique. (C) A violin-plot showing the growth distribution of growth                
temperatures in the dataset for each of the three domains of life. The white dot represents the median.                  
The broad black bar represents the upper and lower quartile, which contain 50% of the data points. The                  
thin black lines represent the upper and lower adjacent values. The outer plot shape is a kernel density                  
plot that visualizes the probability distribution of the data.  
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Figure 2 | Growth temperatures correlate strongly with mean enzyme optima. (A) The distribution of               
growth temperatures for all organisms in the growth temperature dataset. (B) The distribution of              
experimentally determined optima for the 31,826 enzymes obtained from the BRENDA database. (C) A              
Venn diagram showing the number of organisms present in each of the growth temperature dataset, the                
enzyme temperature dataset, as well as the number of organisms present in both. (D) Distance score of                 
individual enzyme temperature optima with growth temperature. The horizontal gray line indicates perfect             
agreement between the two values. The two diagonal dashed lines indicate absolute enzyme temperature              
optima of 0 °C and 100 °C. The colors indicate the spot density with brighter and more green colors                   
indicating higher density. (E) A sensitivity plot showing the Pearson correlation coefficient between             
enzyme temperature optima and growth temperatures. Each data point represents the correlation            
coefficient obtained between the mean temperature optimum of n sampled enzymes in the range 1 <= n                 
<= 100 and growth temperature. The average of five enzymes or more achieves a correlation coefficient                
above 0.75. (F) A scatterplot comparing the growth temperature of organisms organisms with more than               
five reported enzyme temperature optima with the mean temperature optimum of all enzymes reported for               
that organism. The diagonal gray line indicates perfect positive correlation. The thick black line represents               
a locally weighted polynomial regression. The Pearson correlation coefficient is given. 
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Figure 3 | Many enzyme activities correlate with temperature. (A) A sensitivity plot showing the               
number of significant EC numbers (corrected p-value < 0.01) obtained at different cutoffs for minimum               
number of UniProt entries per organism. The gray dashed line indicates the selected cutoff. (B) Enzyme                
annotations as a proportion of the proteome. Each point represents the mean for all organisms growing a                 
given temperature. The means for archaea and bacteria were calculated separately. (C) Heat-maps             
showing how the occurrence of significant EC numbers change with growth temperatures in archaea.              
Each row represents a different EC number and each column a different growth temperature. All included                
EC numbers are statistically correlated (corrected p-value < 0.01) either positively (red) or negatively              
(blue) with growth temperature and a minimum phylogenetic distance score of six (see Methods for               
details). For each reported growth temperature, the ratio of organisms containing each specific EC              
annotation is shown by the intensity of the color. Gray indicates temperatures for which no growth                
temperatures are available in the dataset. (D) Analysis and color scale as in C, but performed with data                  
from bacteria.  
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Figure 4 | Certain metabolic pathways are enriched for the correlated enzyme activities. (A) A               
pathway diagram showing part of the KEGG pathway "ubiquinone and other terpenoid-quinone            
biosynthesis pathway" (map00130). Enzymes whose occurrence are significantly correlated with growth           
temperature (corrected p-value < 0.01) are shown in red (positive correlation) or blue (negative              
correlation). (B) The presence of enzymes participating in the biosynthesis of Ubiquinone changes with              
temperature. Each point indicates the occurrence of the EC number as a ratio of its presence in all                  
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organisms growing at a specific temperature. The line represents locally weighted polynomial regression             
with a 95% confidence band for the regression line indicated in gray. r indicates Spearman's correlation                
coefficient. (C) The presence of enzymes participating in the biosynthesis of menaquinone via the              
futalosine pathway changes with temperature. (D) The presence of enzymes participating in the             
biosynthesis of menaquinone via the classical pathway changes with temperature. 
 
 
 
 

 
Figure 5 | Domains of unknown function correlate with temperature. (A) Heat-maps showing how the               
occurrence of significant DUFs change with growth temperatures in archaea. Each row represents a              
different DUF and each column a different growth temperature. All included DUFs are statistically              
correlated (corrected p-value < 0.01) either positively (red) or negatively (blue) with growth temperature              
and a minimum phylogenetic distribution score of six (see Methods for details). For each reported growth                
temperature, the ratio of organisms containing each specific DUF annotation is shown by the intensity of                
the color. Gray indicates temperatures for which no growth temperatures are available in the dataset. (B)                
Analysis and color scale as in A, but performed with data from bacteria. 
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Supplementary figures 
 

 
Figure S1 | The abundance of archaeal species compared to bacterial species changes             
with temperature. Each point indicates the ratio of bacterial and archaeal species as a              
proportion of the total number of species for each of the growth temperatures in the dataset.  
  
 
 

 
Figure S2 | EC numbers both negatively and positively correlated with growth            
temperature can be identified. (A) The correlation between the occurrence of unique EC             
number annotations in species and their growth temperature is shown in archaea. Each point              
indicates the Spearman correlation coefficient and the corrected p-value (adjusted by false            
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discovery rate) for a single EC number. Significant EC numbers (corrected p-value < 0.01) with               
positive correlation are colored red, those with negative correlation are colored blue. (B) The              
correlation between the occurrence of unique EC number annotations in species and their             
growth temperature is shown in bacteria Analysis and color scale as in B.  
 
 
 

 
Figure S3 | Domains of unknown function (DUFs) both negatively and positively            
correlated with growth temperature can be identified. (A) The correlation between the            
occurrence of unique DUFs in species and their growth temperature is shown in archaea. Each               
point indicates the Spearman correlation coefficient and the corrected p-value (adjusted by false             
discovery rate) for a single EC number. Significant EC numbers (corrected p-value < 0.01) with               
positive correlation are colored red, those with negative correlation are colored blue. (B) The              
correlation between the occurrence of unique DUFs in species and their growth temperature is              
shown in bacteria Analysis and color scale as in B.  
 
 
 
Table S1 | List of significant DUFs. A total of 33 unique DUFs are significantly correlated with                 
temperature in archaea or bacteria. The table indicates the Spearman correlation coefficient and             
the corrected p-value (adjusted by false discovery rate). Only DUFs with a p-value less than or                
equal to 0.01 are included. 
 
Domain Pfam ID DUF ID Spearman r p-value

Archaea PF01345 DUF11 -0.74 1.70E-07 
Bacteria PF01935 DUF87 0.4 0.0035
Archaea PF01995 DUF128 -0.62 7.00E-05 
Bacteria PF03008 DUF234 0.42 0.0016
Archaea PF03235 DUF262 -0.49 0.0031
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Archaea PF04282 DUF438 0.49 0.0038
Bacteria PF04282 DUF438 0.43 0.001 
Archaea PF05598 DUF772 -0.49 0.0033
Bacteria PF05670 DUF814 0.8 1.40E-14 
Bacteria PF05872 DUF853 -0.44 0.0008
Bacteria PF06155 DUF971 -0.56 7.60E-06 
Bacteria PF06863 DUF1254 -0.5 7.90E-05 
Bacteria PF07364 DUF1485 -0.44 0.00076 
Archaea PF07510 DUF1524 -0.52 0.0014
Bacteria PF07510 DUF1524 -0.41 0.0022
Archaea PF08349 DUF1722 -0.67 7.00E-06 
Bacteria PF08719 DUF1768 -0.47 0.00025 
Archaea PF09094 DUF1925 0.45 0.0097
Archaea PF09095 DUF1926 0.45 0.0097
Bacteria PF09210 DUF1957 0.44 0.00091 
Archaea PF09210 DUF1957 0.48 0.004 
Bacteria PF09314 DUF1972 -0.45 0.00069 
Bacteria PF09317 DUF1974 -0.69 2.10E-09 
Bacteria PF09664 DUF2399 0.42 0.0018
Archaea PF09924 DUF2156 -0.54 0.00083 
Bacteria PF09989 DUF2229 0.68 3.40E-09 
Bacteria PF10077 DUF2314 -0.36 0.0097
Bacteria PF10370 DUF2437 0.48 0.00022 
Bacteria PF11074 DUF2779 -0.38 0.0051
Bacteria PF11852 DUF3372 -0.53 2.50E-05 
Bacteria PF11954 DUF3471 -0.61 4.50E-07 
Bacteria PF13271 DUF4062 -0.5 8.20E-05 
Bacteria PF13700 DUF4158 -0.49 0.00016 
Bacteria PF13761 DUF4166 -0.42 0.0016
Bacteria PF16313 DUF4953 -0.67 6.60E-09 
Bacteria PF17432 DUF3458_C -0.81 2.90E-15 
Archaea PF17432 DUF3458_C -0.63 4.50E-05 
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