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ABSTRACT 
 Phosphorylation of proteins on serine, threonine, and tyrosine residues is a ubiquitous 

post-translational modification that plays a key part of essentially every cell signaling process. It 

is reasonable to assume that inter-individual variation in protein phosphorylation may underlie 

phenotypic differences, as has been observed for practically any other molecular regulatory 

phenotype. However, we do not know much about the extent of inter-individual variation in 

phosphorylation because it is quite challenging to perform a quantitative high throughput study 

to assess inter-individual variation in any post-translational modification. To test our ability to 

address this challenge with current technology, we quantified phosphorylation levels for three 

genotyped human cell lines within a nested experimental framework, and found that genetic 

background is the primary determinant of phosphoproteome variation. We uncovered multiple 

functional, biophysical, and genetic associations with germline driven phosphopeptide variation.  

Variants affecting protein levels or structure were among these associations, with the latter 

presenting, on average, a stronger effect. Interestingly, we found evidence that is consistent with 

a phosphopeptide variability buffering effect endowed from properties enriched within longer 

proteins. Because the small sample size in this ‘pilot’ study may limit the applicability of our 

genetic observations, we also undertook a thorough technical assessment of our experimental 

workflow to aid further efforts. Taken together, these results provide the foundation for future 

work to characterize inter-individual variation in post-translational modification levels and reveal 

novel insights into the nature of inter-individual variation in phosphorylation. 

 

INTRODUCTION 

Protein phosphorylation is a ubiquitous mediator of information flow in essentially all 

cellular processes [1-4], with a recent survey estimating that roughly 75% of the proteome can be 

phosphorylated [5]. Dysregulation of protein phosphorylation has long been recognized as a 

driver of disease [4, 6-8], and plays an important role in achieving and maintaining every 

‘hallmark’ of cancer [9]. While the proteins involved and mechanistic details of the major 

phosphorylation mediated signal transduction pathways are largely known [2], a growing body 

of research seeks to understand phosphorylation mediated information transfer as an integrated 

system using broad, quantitative, and unbiased surveys of the phosphoproteome combined with 

other ‘omic’ data [10-13]. Recent advances in liquid chromatography coupled to tandem mass 

spectrometry (LC-MS/MS) technology have enabled such surveys [5, 14, 15], and multiple 
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studies have reported the analysis of LC-MS/MS phosphoproteomic data together with genomic, 

transcriptomic, proteomic and metabolomic data [5, 16-21].  

In particular, integrative phosphoproteomic-genomic studies have provided further 

evidence of the importance of phosphorylation in evolution and disease. Previous studies have 

combined genomic data with phosphoproteomic data to provide evidence that phosphorylation 

sites are conserved across species [22, 23], are under evolutionary constraint in humans [24], and 

are over-represented in mutations that cause diseases in humans [24, 25]. Phosphoproteomic data 

has also been combined with genomic and protein-binding specificity data to develop models 

that predict mutations likely to alter phosphorylation signaling in cancer [26] or perturb specific 

kinases [27]. More recently, integrative phosphoproteomic-genomic studies have improved our 

understanding of how genetic alterations impact phosphorylation mediated signaling by 

combining LC-MS/MS derived quantitative phosphoproteomic and genomic data from the same 

samples. A recent integrative study identified signaling pathways that are differentially activated 

in breast cancer samples depending upon the mutation pattern of a frequently mutated gene [19]. 

In another example, phosphoproteomic data and exome sequence data collected from multiple 

ovarian cancer cell lines was used to assess the impact a subset of genetic variants have on a 

predicted phosphoprotein network state [28]. Despite this progress, we are not aware of any 

studies that have systematically characterized how genetic variation affects variation in 

phosphorylation levels across a set of commonly measured samples. Moreover, because many of 

the preceding in vivo studies were performed on cancer models, the contribution of heritable 

variation to naturally occurring inter-individual differences in protein phosphorylation levels 

remains unexplored. 

Quantitative trait locus (QTL) mapping is a powerful approach to analyze inter-individual 

variation in phosphorylation levels. When QTL mapping is applied to molecular phenotypes, 

such as mRNA or protein expression levels, these are treated as quantitative traits. The goal of 

regulatory QTL mapping is to identify associations between inter-individual variation in the 

molecular phenotypes and the corresponding genotypes from multiple individuals [29].  Recent 

progress cataloging QTLs associated with various molecular phenotypes using high throughput 

approaches has been rapid [30-40]. Yet, to date, there have been no quantitative studies with an 

aim to characterize inter-individual variation in post-translational modification (PTM) levels. To 

begin addressing this gap, we performed a pilot study to assess the feasibility of QTL mapping of 

PTM levels. We applied liquid chromatography coupled to tandem mass spectrometry (LC-

MS/MS) to derive quantitative phosphoproteomes from three HapMap [41] lymphoblastoid cell 

lines (LCLs) donated from Yoruba (Ibadan, Nigeria) individuals. Along with genomic 

information [42], other quantitative datasets, including transcriptomic [31] and proteomic [34], 

have been previously collected from these LCLs. We leveraged these previous data sets and the 

quality of our phosphoproteomic data to explicitly estimate phosphopeptide variance arising 

from the genetic background. We found that the genetic background drives the majority of the 

observed variance, and uncovered many novel relationships between germline genetically-driven 

phosphorylation variation and diverse molecular annotations. We also included a power analysis 

with varying levels of increasing technical variance to aid the design of future studies.  

 

RESULTS 

 

Nested deep quantitative phosphoproteome profiling  
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We applied a nested experimental design in order to characterize variation in protein 

phosphorylation between samples. We aimed to estimate the relative contributions from 

biological and technical sources to the observed variance in phosphopeptide quantification. We 

designed the study to specifically allow us to consider the contributions of genetic background, 

tissue culturing, and MS processing (Figure 1). We employed Stable Isotope Labeling by Amino 

Acids in Cell culture (SILAC) [43, 44] for relative quantitative comparisons of phosphopeptides 

using a common unlabeled reference LCL, and labeled sample LCLs (Supplemental Figure 1). 

The phosphoproteome data set contains 192 1.5 hr gradient LC-MS/MS experiments on a Q-

Exactive quadrupole orbitrap [45], employing higher energy collisional dissociation to fragment 

peptides. Using this experimental approach, combined with the MaxQuant [46] proteomic 

software suite and Andromeda [47] search engine, we identified over 22,000 phosphopeptides 

from 5,143 unique protein groups at an FDR of 1% (Table 1, Supplemental Table 1, 

Supplemental Figure 2). Ultimately, 17,774 phosphopeptides mapping to 4,584 protein groups 

produced spectra enabling confident localization of the site of phosphorylation and were 

assigned to SILAC pairs (‘Class 1’ quantifications, Table 1).  

 

Donor identity is the main biological source of phosphoproteome variation 

As a first step of our analysis, we used normalized values (median-adjusted and quantile-

normalized, see methods) to examine phosphopeptide variation prior to accounting for variation 

in protein expression levels. We applied principal component analysis (PCA) to this dataset and 

found that PC1 was associated with processing date, and PC2 was associated with donor identity 

(Supplemental Figure 3A). These results indicated that a processing date batch effect is 

associated with substantial technical variation in our measurements. Thus, we applied the 

empirical Bayes approach ComBat [48] to estimate and regress this batch effect from the data, 

applied PCA to the residuals, and visually determined that data across samples cluster by donor 

individual (Supplemental Figure 3B). Following these results, the batch-corrected, normalized 

values were applied throughout our analysis. 

To explicitly account for the confounding effect of variation in protein expression levels, 

we assigned relative protein levels to each phosphopeptide using SILAC ratios derived from a 

previously reported MS dataset collected from 60 Yoruba LCLs, which employed the same 

reference sample [34, 49]. We processed these data with MaxQuant, yielding 3,885 identified and 

quantified protein groups in each of the three LCLs (the intersection) that we used in the current 

study (at a peptide and protein FDR of 1%; see methods, Supplemental Table 2). Because these 

SDS-PAGE protein expression levels were derived separately from the phosphopeptide data, we 

had to perform a separate normalization step and batch effect correction. We thus adopted a 

strategy that is commonly used in regulatory QTL studies to maximize the accuracy of molecular 

measurements. Specifically, to account for noise within the protein expression data we leveraged 

the available genotypes of the 60 LCLs to detect protein QTLs. Given that power to detect QTLs 

depends on the accuracy of the measurements, and that genotype distributions across cis regulatory 

loci are mostly uncorrelated, it is reasonable to assume that the protein data matrix that produces 

the most protein QTLs contains the most accurate protein estimates (indeed, an assumption shared 

by most regulatory QTL studies [31, 34, 50, 51]). In order to identify this matrix, we iteratively 

applied PCA to the protein data and regressed unidentified confounders to maximize the number 

of protein QTLs identified across all 60 LCLs (see methods). Following the empirical correction 

of noise within the protein expression data, 1,181 protein groups were assigned to 3,257 
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phosphopeptides present in each of the three LCLs subjected to the phosphoproteomic work-up 

(Table 1).  

We used the corrected protein expression levels and the batch-effect corrected 

phosphopeptide values to estimate contributions to variance from the genetic background (the 

donor), culture replication (technical replication of the cell culture) and technical workup (protein 

sample processing and MS workflow). We fit a nested random effects model to each 

phosphopeptide with corrected protein expression levels as a covariate (see methods). We found 

that, for both absolute and relative phosphopeptide variance distributions, the genetic background 

dominates the observed variance (Figure 2A and 2B). We also fit our nested random effects model 

with normalized phosphopeptide measurements in order to assess the impact our batch-effect 

correction approach had on our estimates. After including both processing batch and corrected 

protein levels as fixed-effect covariates, we found that the dominant contribution of the genetic 

background to the observed variance did not change (Supplemental Figure 4). 

Next we considered differences in phosphorylation levels across the three LCLs. The 

study was not designed with a main aim to provide mechanistic insight into the specific 

pathways that drive inter-individual variation across LCL phosphoproteomes. Indeed, there is no 

specific stimulation response of interest and this is a small sample with which to attempt such 

analysis, just three individuals. Nevertheless, we hierarchically clustered the batch effect 

corrected and protein expression normalized phosphopeptide SILAC ratios and again found that 

the data cluster by donor (Figure 2C). To focus our analysis on phosphorylation levels, we 

modeled the batch effect corrected phosphopeptide data while accounting for protein expression 

levels (see methods). Using this approach, we classified 48% (1577 of 3257) of the 

phosphopeptides as differentially phosphorylated between individuals (omnibus F test; FDR of 

5%). We observed modest effect sizes (Supplemental Figure 5) and a varied complement of 

differentially phosphorylated peptides and enriched gene ontology categories across inter-

individual comparisons (Figure 2D, Supplemental Tables 3-5). We also observed a variety of 

differentially phosphorylated phosphopeptide sequences, with only two kinase motifs enriched at 

an FDR of 5% (Supplemental Table 6) and no single amino acid enriched at any sequence 

position across any inter-individual comparison (Supplemental Figure 6). These finding 

demonstrate that there is an extensive amount of modestly varying phosphorylation across three 

non-stimulated LCLs derived from genetically different, albeit closely related donors.  

 

Characterization of genetically-driven differential phosphorylation 

Understanding the nature of the genetic differences that putatively drive variation in 

protein phosphorylation between individuals is of fundamental interest and aids further 

experimentation. A key to this understanding is an assessment of the impact variants mapping to 

different functional categories have on inter-individual phosphopeptide variation. We undertook 

this assessment with an enrichment analysis.  

To begin our assessment, we used the genomic sequence information available from all 

three donors [42]. Genetic variants impact phosphopeptide levels by altering protein expression 

or function. The former were previously captured within this system as protein QTLs (pQTLs) 

[34], while the latter manifest via amino acid coding variants (non-synonymous SNPs and 

indels). We investigated all identified genetic differences between the three individuals in our 

study. In this case, though our sample size is small, the analysis relies on the large number of 

phosphopeptides we measured, and thus is not as underpowered as it may intuitively seem. 
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Specifically, we are able to consider 19,002 coding variants affecting 8,656 unique genes and 

181 pQTLs in these three individuals. 

Using the p-values derived from the inter-individual F-tests we described above, we 

calculated (in a threshold independent fashion) the Spearman’s correlation between various 

genetic annotations and phosphopeptide variation [34] (Table 2, see methods). A significant 

positive correlation between the presence of an annotation and phosphopeptide variability is 

indicative of an ‘enrichment’ of that annotation amongst proteins that contain phosphopeptides 

that are highly variable between individuals.  Given that the expression level of a protein may 

impact phosphorylation levels in cis through enzyme-substrate titration, we hypothesized that 

proteins with annotated pQTLs would be enriched amongst those proteins that contain highly 

variable phosphopeptides. Consistent with this, we observed a significant enrichment of proteins 

with a pQTL (p = 0.03, Table 2). We also hypothesized that coding variation within a protein 

would correlate positively with phosphopeptide variability (in cis). Indeed, we found that 

proteins containing at least one non-synonymous variant were enriched (strongly, relative to 

proteins with annotated pQTLs) amongst those proteins that contain highly variable 

phosphopeptides (p = 6.48 x 10-8, Table 2).  

As a control for our approach we also tested whether the number of coding variants 

within a protein is correlated with inter-individual variability in phosphorylation levels. This 

should not be the case because the functional and biophysical context of a variant within a 

protein should have a greater impact on phosphopeptide variation than the overall number of 

variants within a protein. We tested this hypothesis by limiting the background set of 

phosphopeptides analyzed to those that are within proteins containing nonsynonymous variants. 

Within this background, we found that proteins with multiple coding variants are indeed not 

significantly enriched amongst those proteins that contain more variable phosphopeptides (>1 

coding variant; n=1,332, p=0.11).  

Thus, we proceeded by investigating the relationship between the context of genetic 

variants and phosphopeptide variation. We considered variant placement within the dichotomy of 

structured globular domains or disordered protein segments. While protein domains are the 

modules that largely impart protein function [52, 53], disordered regions contain most of the 

phosphopeptides observed to date [54] (here 73%) and play critical roles in signal transduction 

and macromolecular assembly [55-57]. To supplement this dichotomy, we also categorized 

variants as likely or unlikely to impact protein function using PolyPhen-2 [58], which is an 

empirically trained prediction algorithm that considers multiple sequence and structure features. 

We limited the background set of phosphopeptides analyzed to those that are within proteins 

containing at least one nonsynonymous variant. Within this background, we found that both 

proteins with variants mapping to defined units of protein structure (domains) and proteins with 

variants likely to impact function (PolyPhen-2 [58] “deleterious” variants) are enriched amongst 

those that contain highly variable phosphopeptides (all p-values <= 1.56 x 10-3; Table 2). 

However, we found that proteins with variants mapping to disordered regions are neither 

enriched nor depleted among those that contain highly variable phosphopeptides (p = 0.751, 

Table 2).  

The function of a protein may also influence the likelihood that a variant impacts 

phosphorylation levels. Given their centrality within phosphorylation signaling networks, we 

investigated if proteins that regulate phosphorylation signaling are particularly impacted by 

genetic variation. Phosphorylation regulation proteins (PRPs) – kinases, phosphatases, and 

proteins containing non-catalytic phosphopeptide-recognition domains – alter phosphorylation 
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levels in cis directly via catalysis or indirectly via spatial organization and subsequent catalysis 

by interacting proteins [1, 59, 60]. Notably, we did not find an enrichment of PRPs amongst 

proteins that contain highly variable phosphopeptides (nonsynonymous variant background, p = 

0.82, Table 2). While a mutation within a PRP does not increase phosphopeptide variation 

relative to other proteins with mutations, it is possible that a targeted mutation within a kinase, 

phosphatase, or phosphopeptide-recognition domain is more likely to predispose such proteins 

toward increased phosphopeptide variability compared to mutations impacting other domains. To 

investigate this possibility, we limited the background set of phosphopeptides analyzed to those 

mapping to proteins that contain at least one variant in a domain. Within this background, we 

again did not find an enrichment of proteins with mutations in phosphopeptide regulation 

domains (p = 0.57, Table 2). Put together, these results indicate that the context of a mutation 

within a protein is the primary determinant of its ability to impact phosphopeptide levels in cis, 

regardless of any association that protein may have to phosphorylation regulation. 

Lastly, we investigated the contextual impact variants may have on peptide-motif 

mediated interactions. Motif mediated protein-protein interactions and catalysis are important 

signal transduction mechanisms [61]. Binding of short linear peptides and phosphopeptides by 

PRPs directs specific catalysis and the formation of transient protein-protein interactions during 

signal transduction [1, 61]. Motif defining amino acids are typically found within +/- 5 residues 

of the phosphorylation site [62-66], with other residues extending beyond the motif also playing 

an important role to ensure interaction specificity [67]. While we were not able to obtain a large 

enough sampling of variants that disrupt annotated motifs (here only 5) to perform enrichment 

analysis, we did observe increased phosphopeptide variability as the distance between the 

phosphorylated site and the closest variant (in cis) decreased (R = -0.11; p = 4.37 x 10-5, 

Supplemental Figure 7). This proximity effect is consistent with a signature of altered motif 

mediated protein-protein interactions.  

  

The putative functional impact of differences in phosphorylation 

 In order to further our understanding of differential phosphorylation we also analyzed the 

characteristics of the proteins and phosphopeptides associated with phosphorylation variation 

without explicit regard to coding variation. The characteristics we uncovered may not be specific 

to phosphopeptide variation driven by genetic differences, but generalizable to phosphopeptide 

differences driven by eg drug treatment. To do this, we carried out the same enrichment analysis 

approach outlined above but employed phosphopeptide or protein, rather than genetic, 

annotations.  

 Phosphorylation events may or may not result in changes to protein function [68, 69]. 

Indeed, while phosphorylated sites are more conserved than non-phosphorylated sites [8, 70, 71], 

this conservation is greatly increased when only considering phosphopeptides that have a known 

function [68, 72]. Following batch-effect correction, the majority of the phosphopeptide variance 

observed in our study is derived from the genetic background rather than noise sources (Figure 

2A and 2B). Therefore, we hypothesized that phosphopeptides that map to regions of annotated 

function would be enriched amongst highly variable phosphopeptides. Indeed, we observed an 

enrichment of phosphopeptides that map to functional protein segments (domains or annotated 

motifs) amongst highly variable phosphopeptides (p = 6.50 x 10-4
 (domains); p = 2.06 x 10-7 

(motifs), Supplemental Table 7). Next, we asked whether phosphopeptides that map to 

phosphopeptide-regulation domains have altered variability relative to phosphopeptides that map 

to other domains. To test this, we limited the background set of phosphopeptides to those within 
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domains. Within this background, we did not find an enrichment of phosphopeptides that map to 

phosphopeptide-regulation domains amongst highly variable phosphopeptides (p = 0.28, 

Supplemental Table 7). We also found no relationship between the functional association of a 

protein to phosphopeptide regulation and phosphopeptide variability (p = 0.06, n = 3257). These 

findings again support the notion that PRPs do not possess more variable phosphosites relative to 

other proteins and the context of a phosphopeptide within a protein is the primary indicator of its 

penchant for variability. 

 As noted above, phosphorylation sites are predominantly found within disordered regions 

between domains. Yet, we observed a depletion of phosphosites that reside within disordered 

segments amongst highly variable phosphopeptides (p = 6.00 x 10-3, Supplemental Table 7).  

This result was somewhat unexpected given that disordered regions are enriched in functional 

motifs [55, 73] and our observation above that phosphopeptides mapping to annotated motifs 

display (on average) increased variability relative to all phosphopeptides (Supplemental Table 

7). We therefore hypothesized that the functional properties of proteins at the systems level may 

contribute to this observation. The relative importance of proteins within an interaction network 

may impact phosphopeptide variability in cis. For example, proteins with a high degree of 

connectivity (hubs) are more likely than proteins with a low degree of connectivity to be 

essential [74]. Protein hubs tend to be long, highly modified, and enriched in regions of structural 

disorder [75, 76].  

Using externally derived annotations (see methods), we found that proteins with more 

interactions, more PTMs, and higher disordered residue content (captured by the percentage of 

disordered residues and the longest run-length of disordered residues within a protein) are 

depleted amongst those with highly variable phosphopeptides (all p-values <= 0.03; 

Supplemental Table 8). Consistent with these annotation-derived observations, we also 

observed a depletion of highly phosphorylated proteins amongst those with highly variable 

phosphopeptides (p = 4.27 x 10-6, Supplemental Table 8). These observations could be driven 

in part by multiple mechanisms to direct specific protein-protein interactions such as the 

coordination between multiple PTMs, domains, and linear motifs that may be more common for 

longer proteins [3, 55, 56, 77, 78]. Indeed, we found longer proteins are depleted amongst those 

with highly variable phosphopeptides (p = 2.04 x 10-5, Supplemental Table 8).  

The generally lower expression levels of longer proteins may also contribute to more 

“robust” phosphopeptide signaling due to mass action effects [79, 80]. According to this 

hypothesis, lowly expressed proteins are less susceptible to PTMs resulting from promiscuous 

moderate affinity interactions. Consistent with this, we found lowly expressed proteins are 

depleted amongst those with highly variable phosphopeptides (p = 5.88 x 10-6, Supplemental 

Table 8). Taken together, these results indicate that the systems-level properties of a protein 

significantly impact the likelihood that phosphorylation levels will be altered in cis. Our results 

are consistent with a model where longer, lowly expressed, highly connected, and highly 

modified proteins are “buffered” from phosphorylation variation in cis. 

 

DISCUSSION 

 

Technical assessment and recommendation for study design 

In our study we applied an LC-MS/MS approach capable of deeply and reproducibly 

profiling the phosphoproteome to capture germline genetically-driven differential 

phosphorylation. We applied the same SILAC LCL standard [81] that we used before [34, 49] in 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/271650doi: bioRxiv preprint 

https://doi.org/10.1101/271650
http://creativecommons.org/licenses/by/4.0/


8 

 

order to facilitate an integrative analysis. Critically, our application of a common SILAC 

standard allowed us to assess phosphorylation variation while controlling for variation in protein 

expression. This property of our study design also allowed us to address the systematic error 

produced from our multi-fraction technical workup (Supplemental Figure 1). For our cell 

system and experimental approach, the magnitude of the donor associated variance component 

was on average much greater than either nested variance component, resulting in reasonable 

power to detect extensive differential phosphorylation between individuals (Figure 2). As all our 

LCLs samples were of similar passage and were cultured in practically identical conditions, we 

assume that environmental impact on differences between individuals is minimal. In other words, 

we assume that inter-individual variation in phosphorylation in our study stems from genetically-

driven differences.  

Given our inference that the genetic background drives most of the observed 

phosphopeptide variation, a less precise but also less laborious and time-consuming approach 

may actually be feasible for future studies. Recent reports of label-free LC-MS/MS 

phosphoproteomic approaches demonstrate greatly improved phosphoproteome sampling depth 

over previous label-free methods [14, 15]. While a label-free approach is unlikely to achieve the 

same phosphoproteome coverage as our multi-fraction protocol, label-free approaches have other 

benefits, such as an independence from the requirement to quantify peptides from a common 

standard. This independence would enable the quantification of phosphopeptides that are not 

found in a common standard but may be prevalent in other samples. Given that our results can 

inform future LC-MS/MS methodology choices, we performed simulations to assess the impact 

technical variance has on power (see methods). It is important to note that while this power 

analysis was performed without explicit regard to variation in DNA sequence, the effect sizes 

used are directly relevant for future phosphorylation QTL mapping studies where the aim is to 

identify relationships between coding variants and phosphorylation levels in cis. We found 

(Supplemental Figure 8) that for our design (2 technical replicates), the power lost by 

increasing the technical variance up to 5-fold is almost completely compensated for by doubling 

the number of technical replicates. For our system (LCLs), this would be a welcome trade 

considering that this translates into less than half our currently required protein input and 1/8 of 

the instrument time (assuming 1 mg input and 1.5 hr gradients as in [14]).  

 

Functional associations with phosphopeptide variation 

We uncovered multiple intriguing correlations between putatively genetically-driven 

phosphopeptide variation and functional annotations of polymorphisms and proteins. Of note is 

the apparently greater impact coding variants (especially those mapping to domains or those 

predicted to have functional consequences) have on phosphopeptide variation in cis relative to 

variants known to impact protein expression levels (Table 2). This observation implies that 

information relay via phosphorylation is more robust to variation in substrate protein levels than 

variation in substrate protein structure.  This dichotomy may also portend a lack of concordance 

between pQTLs and phosQTLs (similar to that recently reported between eQTL and pQTL [34]) 

and relatively greater concordance between splicing QTLs and phosQTLs [40]. Future work 

employing additional samples is required to explore this property further.  

We also uncovered novel aspects of phosphopeptide variation. For example, we observed 

an enrichment of phosphopeptides that map to functional protein segments (domains or 

annotated motifs) amongst highly variable phosphopeptides. We also consistently observed that 

PRPs such as kinases and phosphatases do not, on average, possess more variable 
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phosphopeptides. From a systems perspective, we uncovered that the interaction count, PTM 

count, and disorder content of a protein correlate negatively with phosphopeptide variation in cis. 

Increased levels of these systems-relevant annotations are characteristic of longer, lowly 

expressed and tightly regulated proteins that are of amplified importance within interaction 

networks [74, 79, 80]. Intriguingly, the decreased variability of phosphopeptides mapping to 

such proteins may protect the cell from adopting unfavorable signaling states. We also observed 

increased inter-individual variability for phosphopeptides mapping to highly expressed proteins. 

This may result from random encounters with kinases and phosphatases and would therefore 

imply a lack of function [69]. Indeed, recent reports have found that highly expressed proteins 

are enriched in low stoichiometry phosphorylation sites with conservation rates similar to those 

of their non-phosphorylated counterparts [69] and estimate that 80% of cellular ATP is 

consumed by only 20% of the (putatively functional) phosphorylation sites [5]. Future work will 

benefit from the application of these insights to prioritize phosphorylation events for further 

mechanistic characterization. 

 

Conclusions and Future Directions 

We characterized inter-individual variation in PTM levels at substantial sampling depth 

with genotyped human cell lines. We provided evidence that variants affecting either protein 

structure or protein expression are associated with inter-individual phosphorylation variation. 

Our observations suggest that protein length, connectivity, and/or expression level may serve as 

a functional buffer against inter-individual phosphorylation variation. The generality of these 

results with respect to cell type, stimulation conditions, and sample size is currently unknown 

and requires further study. Lastly, our study demonstrates that current phosphoproteomic LC-

MS/MS protocols are sufficient to capture germline driven PTM variation and provides a context 

for further technical development toward this end. 

 

 

MATERIALS AND METHODS 

 

Cell culturing and SILAC labeling 

Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs) derived from 

Yoruba individuals in Ibadan, Nigeria (YRI from Coriell, NIGMS Human Genetic Cell 

Repository) were cultured under identical conditions of 37°C and 5% CO2. Each of the three 

lines (GM18486, GM19160, and GM18862) were grown in Lys/Arg depleted RPMI and 15% 

dialyzed FBS supplemented with 2 mM L-glutamate, 100 IU/ml penicillin, 100 µg/ml 

streptomycin and L-13C6
15N4-Arg (Arg-10) and L-13C6

15N2-Lys (Lys-8) (Cambridge Isotopes, 

Andover, USA). Each line was cultured to ~200 x 106 cells over at least six doublings. Culture 

replicates were awoken from the same frozen pellet and cultured in parallel. Label incorporation 

was verified by analyzing the protein lysate from the labeled LCLs alone by high-resolution LC-

MS/MS. The internal (unlabeled) standard line (GM19238) was expanded to 20 x 109 cells in 

roller bottles using RPMI media with 15% FBS and 2 mM L-glutamate by the Coriell Institute 

for Medical Research. 

 

Genotype data 

The genotypes for the three YRI individuals were collected as part of the International 

HapMap Project [42]. Additional SNPs from the 1000 Genomes Phase1 integrated version 3 
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reference panel [82] were imputed using IMPUTE2 [83], as previously described [36]. SnpEff 

[84] and SnpSift [85] were used to identify all SNPs which had an effect on the amino acid 

sequence of a protein annotated in Ensembl GRCh37 release 75. PolyPhen2 [58] predictions 

were sourced from dbNSFP [86] via SNPSift. A variant was included for analysis if it was 

observed in at least one allele in at least one of the LCLs except in the case where each LCL has 

the variant with the same genotype. 

 

Quantitative, high-resolution mass spectrometry 

Cell pellets were washed twice with 500µL 25mM ammonium bicarbonate and centrifuged 

at 5000 x g for 2 minutes.  Washes were discarded.  Cell lysis was performed with 3mL of urea 

lysis buffer (8M urea, 50mM Tris.HCl pH8, 100mM NaCl) using 3 applications of a Qsonica Q125 

sonic probe with a 30 second pulse and 80% amplitude.  The cell lysate was centrifuged at 10,000g 

for 10 minutes at 25°C.  The protein concentration of the cleared lysate was determined with a 

Qubit protein assay (Invitrogen).  For each experiment 4.5mg of light and 4.5mg heavy protein 

were combined and digested with the following protocol: Reduction with 10mM dithiothreitol at 

25°C for 30 minutes followed by alkylation with 20mM iodoacetamide at 25°C for 45 minutes.  

Proteins were digested with 200µg sequencing grade trypsin (Promega) at 37°C overnight.  The 

final digest volume was 25mL adjusted with 25mM ammonium bicarbonate.  The digestion was 

cooled to room temperature and terminated with 5µL of formic acid.  The digest was centrifuged 

at 10,000g for 10 minutes.  Peptides were desalted with 500mg Sep-Pak (Waters) and dried using 

vacuum centrifugation in a SpeedVac.  Dried peptides were dissolved in 7 mM KH2PO4, pH 2.65, 

30% ACN and protein quantitation performed with a 280nm protein assay.  Peptides were 

fractionated on an Agilent 1100 equipped with a 500 uL sample loop operating at 2 mL/min, 

detector set at 220-280 nm wavelengths.  5mg of peptide was loaded on polySULFOETHYL A, 

4.6 mm ID x 200 mm length, 5 um particle size, 200 Å pore size (polyLC, from the Nest group).  

A total of 48 fractions were collected at 1 min intervals.  In batches of 3, adjacent SCX fractions 

were pooled and processed by solid phase extraction (SPE) using a Waters SEP-PAK 50mg C18 

cartridge per the vendor protocol and dried overnight in a lyophilizer.  Phosphopeptides were 

enriched using Titansphere TiO2 tips from GL sciences using the vendor protocol.  

Phosphopeptides were eluted from the tips using two eluents: 50µL 5% NH4OH in water and 50µL 

5% Pyrrolidine in water.  The eluents were combined and neutralized with 50% acetic acid and 

dried.  Dry samples were reconstituted in 100µL 0.1% trifluoroacetic (TFA) acid.  Each enriched 

sample was desalted using a Stage Tip (ThermoFisher P/N SP301) per the vendor protocol.  

Peptides were dried and reconstituted in 70µL of 0.1% TFA prior to analysis. 

Half of each enriched sample was analyzed by nano LC-MS/MS with a Waters 

NanoAcquity HPLC system interfaced to a ThermoFisher Q Exactive mass spectrometer.  Peptides 

were loaded on a trapping column and eluted over a 75µm analytical column at 350nL/min using 

a 2hr reverse phase gradient; both columns were packed with Jupiter Proteo resin (Phenomenex). 

The injection volume was 30µL. The mass spectrometer was operated in data-dependent mode, 

with the Orbitrap operating at 60,000 FWHM and 17,500 FWHM for MS and MS/MS respectively. 

The fifteen most abundant ions were selected for MS/MS. 

 

Computational analysis of mass spectrometry data 

MS data was analyzed with MaxQuant [46] 1.5.0.30 and the Adromeda [47] search 

engine. Proteins were identified using a protein sequence database containing 35,585 consensus 

coding sequences (CCDS) [87] translated from GRCh37/hg19 gene models using Ensembl 
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release 75 annotations. Only translations of genes/transcripts of status ‘known’ or ‘novel’ and 

biotype ‘protein coding’ were used. Each sequence has a unique protein identifier (ENSP ID) 

that allows for mapping between gene and transcript IDs. Carbamidomethylation of cysteine was 

allowed as a fixed modification. N-terminal acetylation and oxidation of methionine as variable 

modifications were included for all searches, while phosphorylation of S/T/Y was included for 

the phosphorylation data. Up to three missed cleavages were allowed for phosphoproteomic data 

and two missed cleavages were allowed for proteomic data. A ‘first search’ tolerance of 40 ppm 

with a score threshold of 75 was used for time-dependent recalibration followed by a main 

search MS1 tolerance of 6 ppm and an MS2 tolerance of 20 ppm. The ‘re-quantify’ option was 

used to aid the assignment of isotopic patterns to labeling pairs. The ‘match between runs’ option 

was enabled to match identifications across samples using a matching time window of 42 

seconds and an alignment time window of 30 min for phosphoproteomic data and 20 min for 

proteomic data. Peptide and protein false discovery rates were set to 1%. Quantitative analysis of 

phosphorylated peptides was limited to ‘class 1’ sites with median localization probability of .99 

and minimum localization probability of .75. Protein group quantifications were taken as the 

median log2(sample/standard) ratio for all groups containing at least two independent unique or 

‘razor’ peptide quantifications (including multiple measurements of the same peptide in different 

fractions) without a modified peptide counterpart. For the purposes of protein level 

normalization, a custom R script was used to assign phosphopeptides to protein groups based on 

the presence of the peptide within the sequences of the protein group proteins. In the rare cases 

where multiple protein groups contain proteins that match a phosphopeptide, the protein group 

with the most peptide identifications is assigned to the phoshpopeptide. For enrichment analyses, 

members of the protein group were parsed such that each member contained the given 

phosphopeptide sequence.  

 

Normalization and batch correction 

 Log-transformed phosphopeptide SILAC ratios were normalized in two steps. First, 

within each sample, we centered the log intensity ratios by subtracting the sample-specific 

median log intensity ratio. Second, we applied quantile normalization to account for between 

sample variation in log intensity ratios with the limma [88] function ‘normalizeQuantiles’. We 

used ComBat [48] to estimate and adjust for sample variation in the log intensity ratios 

attributable to processing date (with the swamp [89] function ‘combat’).  

 

Variance component analysis 

 To assess the relative contributions of individual (donor identify), culture (technical 

replication of the cell culture), and technical workup (protein sample processing and MS 

workflow) variation to the observed logged SILAC intensity ratios of phosphopeptides, we fit a 

linear mixed model for each phosphopeptide on the quantile-normalized, batch effect-corrected 

data. The model estimates variance components due to the random effect of individual, culture, 

and technical workup as follows:  

 

𝑌𝑖𝑗𝑘 = 𝑎𝑖 + 𝑏𝑗(𝑖) + 𝛽𝑖
𝑝𝑟𝑜𝑡𝑒𝑖𝑛 ∗ 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖 +  𝜀𝑘(𝑖𝑗) 

 

where 𝑌𝑖𝑗𝑘 denotes the observed logged intensity ratio of individual i, derived from the k-th 

technical workup of the j-th culture replicate, with i = GM18486, GM19160, GM18862, j = 1, 2, 

and k = 1, 2. 𝑎𝑖 denotes random effects of individual, 𝑏𝑗(𝑖) estimates the random effect of j-th 
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culture replicate for individual i, and 𝜀𝑘(𝑖𝑗) denotes the random effect of k-th technical workup in 

j-th culture replicate for individual i. Protein expression levels 𝛽𝑖
𝑝𝑟𝑜𝑡𝑒𝑖𝑛

 in individual i are 

included as fixed covariates to account for the confounding effect of variation in protein 

expression levels. The protein expression measurements for each phosphopeptide were derived 

from SILAC protein expression ratios previously reported in an MS dataset collected from 60 

Yoruba LCLs [49]. These protein data were processed as described under our Results section 

entitled Characterization of genetically-driven differential phosphorylation. The random effects 

of individual sample 𝑎𝑖, culture replicate 𝑏𝑗(𝑖), and technical workup 𝜀𝑘(𝑖𝑗) are assumed to be 

independent and follow normal distributions with zero mean and variance components 

𝜎𝑎
2, 𝜎𝑏

2, 𝜎𝜀
2, respectively.  The R package MCMCglmm [90] was used to estimate the variance 

components associated with the random effects. A similar analysis was performed for 

Supplemental Figure 4 using normalized phosphopeptide data and processing date batch as a 

covariate. 

 

Differential phosphorylation analysis 

 To quantify individual differences for each phosphopeptide in the observed logged 

SILAC intensity ratios, we fit a linear mixed effect model on the quantile-normalized, batch 

effect-corrected data: including individual as a fixed effect, culture replication as a random effect 

and logged protein SILAC intensity ratios as a fixed covariate. Our approach is based on limma – 

a popular linear-model based approach for differential abundance analysis in genome-wide 

expression studies. In our model, we also include weights for each phosphopeptide to account for 

the relationship between the model residuals of SILAC intensity ratios and the average log 

intensity of the phosphopeptides. Specifically, the model residuals of SILAC intensity ratios are 

negatively correlated with log intensity of the phosphopeptides. We computed observation-level 

weights of the model residuals using the voom approach [91]. A similar approach was used in 

previous work on modeling differential abundance in label-free LC-MS/MS proteomic 

experiments [92].  

 

Furthermore, we explicitly accounted for noise in the protein level estimates by a 

commonly used strategy for maximizing the accuracy of molecular measurements in regulatory 

eQTL studies [34] (see Results section for more details).  Briefly, we serially regressed PCs from 

the full protein data matrix derived from 60 LCLs [34] and identified pQTLs from the resulting 

residual matrix. The residual matrix with the first 13 PCs regressed produced the maximum 

pQTL count and was therefore employed here. The Benjamini and Hochberg [93] procedure was 

used to compute false discovery rates (FDR) via the ‘p.adjust’ function from the R package stats 

[94]. Significant individual variation in the phosphopeptide intensity ratio was identified at 5% 

FDR. 

 

Power analysis 

We investigated the power of our differential phosphorylation analysis to detect 

significant individual variation. Specifically, we estimated the number of technical replicates 

required (per culture replicate) to reach 80% power, given varying levels of sampling noise from 

technical workup. The power calculation proceeds as follows: 

 

1. Identify phosphopeptides with significant individual variation, and among these, choose the 

one phosphopeptide with the largest p-value and compute its effect size (F-statistic).  
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2. Based on the choice of phosphopeptide, extract all parameter estimates in the differential 

phosphorylation analysis, including the effect sizes of individual variation (F-statistic) and 

protein expression covariate, and the variance components of culture replicate and technical 

workup.  

3. Simulate 1,000 peptides under the model assumptions of differential phosphorylation analysis. 

Use parameter estimates from Step 2. Fix the effect sizes of individual variation and protein 

expression levels, and the variance component of culture replicate. Vary the number of technical 

replicates and variance components of technical workup. 

4. Given the settings in Step 2, we compute power as the probability of detecting significant 

individual variation in each simulation at FDR 5%.   

 

Protein, domain and phosphosite annotation 

Pfam [95] domain assignment and boundary definition was accomplished using 

InterProScan [96] and Ensembl 75 CCDS FASTAs. Kinases, phosphatases, and modular 

phosphopeptide binding domains with the following Pfam family identifiers were considered 

functionally relevant for phosphorylation mediated signaling: PF00498, PF01846, PF03166, 

PF10401, PF00244, PF00533, PF00400, PF00659, PF00397, PF00782, PF06602, PF04273, 

PF14566, PF14671, PF04179, PF05706, PF00069, PF01636, PF03109, PF03881, PF06293, 

PF01163, PF01633, PF10707, PF06176, PF02958, PF04655, PF10009, PF12260, PF16474, 

PF07914, PF14531, PF06734, PF05445, PF07387. Gene Ontology [97] IDs were sourced using 

biomaRt [98]. PTM site datasets were sourced from PhosphoSitePlus [99] on 9/8/15. Human 

physical protein-protein interaction data was sourced from BioGRID [100] v3.4.127 on 8/25/15. 

Eukaryotic Linear Motif (ELM) [61] instances were sourced on 10/7/15 and mapped to proteins 

and phosphosites using custom R scripts. Kinase motifs were sourced from the Human Protein 

Reference Database (HPRD) [101] via MaxQuant’s Perseus module. Protein level disorder was 

predicted using the RAPID [102] algorithm and webserver on 8/28/15. Amino acid disorder was 

predicted with IUPred [103]. Scores ≥ .5 were considered disordered. 

   

Enrichment analyses 
 We assessed gene ontology enrichment on phosphopeptides categorized as differentially 

expressed (5 % FDR) across each contrast using one-sided Fisher’s exact tests. Adjusted p-

values were derived using the approach of Benjamini and Hochberg [93] via the ‘p.adjust’ 

function from the ‘stats’ R package [94]. Distributions of nominal p-values derived from limma 

omnibus F-tests were used to assess the enrichment of annotations as outlined previously [34]. 

For each test, we calculated Spearman’s correlations between a vector of negative log-

transformed limma F-test p-values and a binary vector designating assignment of the protein 

containing the phosphopeptide, or the phosphopeptide itself to an annotation. The p-value for the 

Spearman’s correlation was computed with the R function ‘cor.test’ with the option ‘exact = 

FALSE’. Amino acid position specific enrichments were produced with ‘pLogo’ [104]. 

 

Code and data availability 

 The custom R [94] scripts used in this study are available from 

https://github.com/bengalengel/Phospilot. The mass spectrometry proteomics data have been 

deposited to the ProteomeXchange Consortium via the PRIDE [105] partner repository with the 

dataset identifier PXD008002. SILAC protein estimates are available from proteomeXchange; 

identifier PXD001406. pQTL data are available from 
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http://www.sciencemag.org/content/suppl/2014/12/17/science.1260793.DC1/1260793_DatafileS

1.xlsx. Genotype data are available from 

http://eqtl.uchicago.edu/jointLCL/genotypesYRI.gen.txt.gz  
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FIGURE LEGENDS 

 

Figure 1. Nested experimental design. HapMap LCLs derived from three Yoruba males in 

Ibadan, Nigeria were repeatedly cultured and repeatedly subjected to a multistep mass 

spectrometry workflow (see Supplementary Figure 1). Dotted vs un-dotted circles represent the 

two different processing batches.  

 

Figure 2. Genetically-driven phosphoproteomic variation. Violin plots of (A) absolute and 

(B) standardized phosphopeptide variance components derived from each layer of the 

hierarchical design after accounting for protein levels. (C) Heatmap of protein normalized 

phosphopeptide SILAC ratios. (D) Venn diagram of differential phosphorylation results across 

all three pairwise inter-individual comparisons (FDR 5%). 

 

TABLES
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Table 1. Phosphopeptide level MS summary. All sites identified at an FDR of 1%           

                        

Identified Quantified Class 1† quantified 

Class 1† quantified in 

each* LCL 

Class 1† quantified in 

each* culture replicate 

Class 1†  quantified and 

protein normalized in 

each* culture replicate 

Phospho 

peptides Proteins 

Phospho 

peptides Proteins 

Phospho 

peptides Proteins 

Phospho 

peptides Proteins 

Phospho 

peptides Proteins 

Phospho 

peptides Proteins 

22766 5143 21944 4845 17774 4584 11117 3514 4742 2073 3257 1181 

†Refers to subset of phosphorylation sites with median localization probability of .99 and min .75     

*Refers to the intersection          

 

 

Table 2. SNP categorical enrichment analysis       

        

Annotation (Protein) N (phosphopeptides) Background p-value 

At least one coding variant 3257 Phosphopeptides subjected to F-Test  6.48 x 10-8 

pQTL 3257 Phosphopeptides subjected to F-Test  2.67  x 10-2 

At least one variant within a Pfam domain 1332 

Phosphopeptides within proteins that have at least one 

coding variant  9.83 x 10-6 

At least one variant within a disordered region 1332 

Phosphopeptides within proteins that have at least one 

coding variant  7.51 x 10-1 

At least one PolyPhen HVAR Deleterious variant 1332 

Phosphopeptides within proteins that have at least one 

coding variant  6.08 x 10-6 

At least one PolyPhen HDIV Deleterious variant 1332 

Phosphopeptides within proteins that have at least one 

coding variant  1.56 x 10-3 

Phosphorylation regulation 1332 

Phosphopeptides within proteins that have at least one 

coding variant  8.22 x 10-1 

At least one variant within phosphorylation regulation 

domain 273 

Phosphopeptides within proteins that have at least one 

coding variant in a Pfam domain  5.75 x 10-1 
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