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Abstract

Oxygen plays a central role in cellular metabolism, in both healthy and tumour tissue.
The presence and concentration of molecular oxygen in tumours has a substantial effect
on both radiotherapy response and tumour evolution, and as a result the oxygen
micro-environment is an area of intense research interest. Multicellular tumour
spheroids closely mimic real avascular tumours, and in particular they exhibit
physiologically relevant heterogeneous oxygen distribution. This property has made
them a vital part of in vitro experimentation. For ideal spheroids, their heterogeneous
oxygen distributions can be predicted from theory, allowing determination of cellular
oxygen consumption rate (OCR) and anoxic extent. However, experimental tumour
spheroids often depart markedly from perfect sphericity. There has been little
consideration of this reality. To date, the question of how far an ellipsoid can diverge
from perfect sphericity before spherical assumptions breakdown remains unanswered. In
this work we derive equations governing oxygen distribution (and more generally,
nutrient and drug distribution) in both prolate and oblate tumour ellipsoids, and
quantify the theoretical limits of the assumption that the spheroid is a perfect sphere.
Results of this analysis yield new methods for quantifying OCR in ellipsoidal spheroids,
and how this can be applied to markedly increase experimental throughput and quality.

Author summary

Multicellular tumour spheroids (MCTS) are an increasingly important tool in cancer
research, exhibiting non-homogeneous oxygen distributions and central necrosis. These
are more similar to in situ avascular tumours than conventional 2D biology, rendering
them exceptionally useful experimental models. Analysis of spheroids can yield vital
information about cellular oxygen consumption rates, and the heterogeneous oxygen
contribution. However, such analysis pivots on the assumption of perfect sphericity,
when in reality spheroids often depart from such an ideal. In this work, we construct a
theoretical oxygen diffusion model for ellipsoidal tumour spheroids in both prolate and
oblate geometries. With these models established, we quantify the limits of the spherical
assumption, and illustrate the effect of this assumption breaking down. Methods of
circumventing this breakdown are also presented, and the analysis here suggests new
methods for expanding experimental throughput to also include ellipsoidal data.
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Introduction 1

Oxygen plays a seminal role in cancer treatment and patient prognosis. The presence of 2

molecular oxygen in a tumour markedly increases radio-sensitivity, with well-oxygenated 3

regions responding to radiotherapy up to a factor of three relative to anoxic 4

sub-volumes [1, 2]. This oxygen enhancement ratio is also seen in emerging modalities 5

such as proton therapy [3, 4], raising the tantalizing prospect of dose-painting, where 6

dose is selectively boosted to hypoxic regions to boost therapy response [5]. The basic 7

idea underpinning dose-painting has been discussed for over a decade, but application 8

has been hampered by difficulty in non-invasive hypoxia imaging. Methods such as 9

F-MISO PET ( fluoromisonidazole positron emission tomography) have a maximum 10

resolution in the millimetre regime, while oxygenation varies over a micron scale. As a 11

consequence, mathematical modeling is vital for bridging the resolution gap [6]. 12

13

Aside from therapeutic considerations, oxygen has a marked impact on patient 14

prognosis. The pioneering work of Gray and colleagues in the early 1950s established 15

that tumour oxygen concentration was correlated with prognosis, and extensive hypoxia 16

was a negative prognostic marker [7]. This finding has been well replicated to present 17

day [8–10] and is not solely due to hypoxia-induced treatment resistance. Under severe 18

hypoxia, tumour cells can respond to such pressure by activating oxygen-sensitive 19

signaling pathways [11,12]. Current biological thinking suggests these signalling 20

pathways act to alter gene expression to promote cell survival under adverse conditions. 21

Hypoxia is also a major driver of angiogenesis, giving rise to new routes for cells to 22

travel along [13,14], endowed with the ability to metastasize [15]. 23

24

The extraordinary importance of oxygen in cancer treatment and evolution has made it 25

an important avenue of study, with an urgent need for further research. Despite the 26

fundamental importance of molecular oxygen in tumours, investigations have been 27

complicated by the significant experimental difficulty in ascertaining oxygen 28

concentration in situ [6]. Real tumours have highly heterogeneous oxygen supply and 29

complex tortured vasculature, and even well-oxygenated regions are frequently 30

inter-spaced with pockets of anoxia [14, 16]. Standard 2D monolayers of cells are not an 31

ideal experimental model, typically exhibiting an unrealistically homogeneous oxygen 32

contribution. There is however a more realistic experimental option in the form of 33

tumour spheroids. These clusters of cancer cells grow in approximately spherical 3D 34

aggregates, and exhibit signalling and metabolic profiles more similar to real tumours 35

than is observed in monolayer approaches [17–19]. 36

37

Like monolayers, spheroids are relatively easy to culture, and growing interest has seen 38

them used for a variety of purposes, including radiobiological application as a means to 39

test fractionation [20–23], as a model for drug delivery [24–28], for investigation of the 40

stem-cell hypothesis [29] and for exploring FDG-PET (Fludeoxyglucose positron 41

emission tomography) dynamics [30] for hypoxia in solid tumours. Crucially, the non 42

homogeneous oxygen distributions in tumour spheroids have been well studied [31–33]. 43

Research to date shows cellular oxygen consumption rate (OCR) has a known influence 44

on the oxygen concentration throughout a spheroid, and directly influences the extent of 45

central anoxia, and the viable rim thickness by known mathematical relationships [32], 46

and thus measuring these aspects allows an experimenter to determine OCR with 47

relative ease compared to other methods [28]. 48

49

Such methods and the underlying theory are exceptionally important to understanding 50

the factors that influence tumour oxygen distribution, yet all these methods rely on an 51

implicit assumption of perfect sphericity. There is a clear rationale behind this, as 52
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symmetry considerations simplify the problem greatly. Yet in experimental conditions, 53

imperfect spheroids are common, frequently growing as extended ellipsoids. When the 54

eccentricity of these shapes is extreme, an experimenter may reasonably choose to 55

discard them from analysis. But this prompts a question; quite how extreme do such 56

deformations have to be before a spherical assumption breaks down? Presumably small 57

departures from sphericity should not impact analysis, whereas highly eccentric 58

ellipsoids could reasonably be presumed to violate the underlying theoretical 59

assumptions. The question of how such eccentricities might skew analysis of spheroids, 60

and how trustworthy results of such analysis might be has not yet been considered in 61

the literature, despite its obvious practical importance. 62

63

These questions are as of yet unanswered, and are of paramount importance given the 64

growing adoption of spheroids for cancer research, and their utility in estimating 65

OCR [31,32]. Knowing the acceptable limits of eccentricity for spheroid analysis would 66

be of considerable benefit to experimenters, providing error estimates and limits of 67

reliability. A full analytic expression for “ellipsoidals” (analogous to the spherical case) 68

would also be of substantial benefit, allowing the analysis of eccentric shapes and 69

potentially increasing experimental throughput. In this work, we seek to address these 70

issues by deriving an expression for oxygen diffusion in both prolate and oblate 71

geometries. This is contrasted to the spherical case to determine the limits of validity 72

for experimental data, and the implications of this are discussed. A schematic of this is 73

depicted in Figure 1. 74

Fig 1. Schematic analysis in this work. Below a calculated threshold for eccentricity,
spheroids can be treated as having perfect sphericity without introducing unacceptable
error, and their OCR and oxygen distribution established by previously published
methods [32]. At greater eccentricities however, a spherical assumption is no longer
valid. If the inner and outer sections are concentric ellipses, these can be analyzed by
the methods outlined in this work to ascertain OCR and oxygen distribution. If
eccentricity is higher than a threshold value, and inner and outer ellipses are not
concentric, this suggests the spheroid is severely warped or the section is off the central
axis, and should be discarded from analysis. See text for details.
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Fig 2. (a) Prolate spheroid (b) Oblate spheroid. The anoxic central core in both cases
(e = 0.75) is depicted in gray, and the hypoxic extent in red, whilst well oxygenated cells
are shown in green. Both ellipsoids have the same volume necrotic core, but their
resultant oxygen distributions are slightly different. See text for discussion.

Spheroids and Ellipsoids 75

The general equation of an ellipsoid is given by

x2

a2
+
y2

b2
+
z2

c2
= 1 (1)

76

where a, b and c are the major axes’ lengths. For an ellipsoid with azimuthal symmetry, 77

a = b. Where all axis are equal (a = b = c), the result is a perfect sphere. To date, this 78

is the only case which has been well-studied from a theoretical standpoint [31–33]. 79

Whilst the mathematical treatments to date have assumed spheroids are perfect spheres, 80

the nomenclature ‘spheroid’ still applies to the more general case, including prolate and 81

oblate spheroids. In this work we broaden the mathematical framework to be applicable 82

to ellipsoids without full spherical symmetry, which are namely 83

1. Prolate spheroids: In the case where c > a, the resulting ellipsoid is an ellipse 84

rotated around its major axis, the line joining its foci. This yields a rugby ball 85

type shape. 86

2. Oblate spheroids: where a > c, an oblate spheroid results, equivalent to an ellipse 87

rotated around its minor axes. The resulting shape is discus-like. 88

Examples of these ellipsoids are shown in Figure 2. To avoid confusion, we use the term 89

spheroid to refer to an ellipsoidal collection of cells, although we do not limit this to 90

perfect spheres, qualifying with terms ’prolate’ or ’oblate’ as appropriate. We use the 91

term ellipsoid to refer to surfaces of iso-concentration of oxygen. 92
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Fig 3. Geometry of a spheroid with outer semi-major axis length ro and inner
semi-major axis length rn. On the surface σn, both partial pressure and oxygen flux are
zero. On outer surface p(σo) = po. In spherical co-ordinates, a point p is specified by a
radial distance from centre r and an angle θ. The focal length of the inner spheroid is f .

Model derivation 93

The full mathematical derivation for oxygen partial pressure in prolate and oblate
spheroids is rather involved, and here we shall confine ourselves to stating results with a
cursory outline of how they derived. A full mathematical outline is provided in
appendix S1. Essentially, we are concerned with solving a steady-state
reaction-diffusion problem for oxygen field P of the form

D∇2P = aΩ (2)

94

where D is the oxygen diffusion constant in water (typically D = 2× 10−9 m2/s) and 95

aΩ is oxygen consumption rate in mmHg/s. This must be solved subject to two crucial 96

boundary conditions, namely that the surface flux and oxygen partial pressure at the 97

anoxic boundary must both be zero. For simple geometries such as perfectly spherical 98

spheroids and cylindrical vessels, symmetry can be exploited to readily yield analytical 99

solutions [33]. In elliptical geometry, the problem is more involved but the basic premise 100

remains the same, and is outlined below. The geometry of the problem is illustrated in 101

Figure 3. 102

Prolate spheroids 103

In a prolate spherical geometry, we employ the prolate spherical coordinate system, 104

using a geometrically intuitive definition where curves of constant σ are prolate 105

spheroids, whilst curves of constant τ correspond to hyperboloids of revolution [34]. 106

This is outlined in detail in supplementary text S1. This yields an analytical solution, 107
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which can be converted directly into spherical co-ordinates to yield 108

109

PP (r, θ) =
aΩ

6D

(
r2 − r2n + f2 sin2 θ + f2 log

(
r2 − f2 cos2 θ

r2n − f2

)
+(

r3n
f

)
log

(
(f +

√
r2 + f2 sin2 θ)(f − rn)

(f −
√
r2 + f2 sin2 θ)(f + rn)

))
(3)

110

where f = ern, the distance from ellipse centre to foci. 111

Oblate spheroids 112

In oblate spherical geometry, a similar geometrical definition exists [35] and can be
solved through similar methods, also outlined in supplementary material S1. The full
solution in spherical co-ordinates is

PO(r, θ) =
aΩ

6D

(
r2 − r2n + f2 sin2 θ + 2f2 log

(
r2 + f2 sin2 θ

r2n

)
+

2(r2n + 2f2)(
√
r2n − f2)

f

(
arctan

(
f√

r2 − f2 cos2 θ

)
− arctan

(
f√

r2n − f2

)))
. (4)

113

Both the prolate and oblate form can be alternatively cast in terms of ro, the outer 114

semi-major axis length if preferable. These forms are also given in S1. 115

Ellipsoidal confocality 116

Analogous to the perfect spherical case, confocal elliptical surfaces in a spheroid are at
the same oxygen partial pressure. For confocal ellipsoidal shells, focal length is constant,
related to the eccentricity ec and semi-major axis of the shell rc by

f = ecrc. (5)

117

It follows that the innermost (anoxic) and outermost ellipsoidal shells are confocal, thus 118

for a true spheroid eoro = enrn. Within the bounds of acceptable experimental error, 119

this relationship can be used to determine whether a given spheroid displaying apparent 120

eccentricity is a ellipsoidal or not. This is important from an experimental perspective, 121

as sectioning can introduce serious distortions in fixed spheroid sections, or can miss the 122

central axis of the spheroid [32]. In these cases, an ostensible ellipsoidal shape might be 123

observed, but may in fact be a sectioning distortion or off-centre cut. Testing for 124

confocality thus determines the underlying reality. 125
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OCR estimation in spheroids 126

In the perfectly spherical case, OCR (in mmHg/s) is related to the anxoic radius rn and
outer radius ro [28, 32] by

aΩ =
6Dpo

r2o +
2r3n
ro
− 3r2n

.. (6)

For a prolate tumour spheroid, it is possible to estimate OCR in a manner analogous to
the spherical case by re-arranging the equations for PP to yield

aΩ = 6Dpo

(
r2o − r2n + f2 log

(
r2o − f2

r2n − f2

)
+

(
r3n
f

)
log

(
(f + ro)(f − rn)

(f − ro)(f + rn)

))
−1. (7)

Similarly for oblate spheroids, OCR is given by re-arrangement of PO to arrive at

aΩ = 6Dpo

(
r2o − r2n + 4f2 log

(
ro
rn

)
+

2(r2n + 2f2)(
√
r2n − f2)

f

(
arctan

(
f√

r2o − f2

)
− arctan

(
f√

r2n − f2

)))
−1. (8)

One complication that may arise is that it may be impossible to ascertain whether an
ellipsoidal spheroid is prolate or oblate. In that case, one can produce a ‘combined’
expression for average OCR by taking the average of equations 3 and 4, re-arranging to
arrive at

aΩ = 6Dpo

(
r2o − r2n + f2 log

(
r2o
√
r2o − f2

r2n
√
r2n − f2

)
+
r3n
2f

log

(
(f + ro)(f − rn)

(f − ro)(f + rn)

)
+

(r2n + 2f2)(
√
r2n − f2)

f

(
arctan

(
f√

r2o − f2

)
− arctan

(
f√

r2n − f2

)))
−1. (9)

127

An example of the implementation of these forms including error analysis is included in 128

the code included in supplementary material S2. 129

Spherical error metrics 130

It is worthwhile to introduce metrics to quantify how divergent the estimated
oxygen-profile in a given ellipsoidal spheroid is from a related perfectly symmetric
spheroid. A perfect spheroid has radial symmetry, and thus P (ro) = po at all points.
Consider related prolate and oblate spheroids both with semi-major axis ro and
eccentricity e, nested inside a sphere of radius ro. We can define the root mean square
error (RMSE) by contrasting the expected outer-shell partial pressure po with what
would be measured for spheroids at PP (ro, θ) and PO(ro, θ) respectively. The RMSE
error for prolate and oblate spheroids respectively is
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RMSEP =

√
1

2π

∫ 2π

0

(PP (ro, θ)− po)2 dθ, (10)

RMSEO =

√
1

2π

∫ 2π

0

(PO(ro, θ)− po)2 dθ. (11)

These equations can readily be solved by numerical integration methods, and solutions
are demonstrated in supplementary code S2. Percentage error is simply
100(RMSE/po), and thus the variation in RMSE with eccentricity can be readily
calculated. The other instance when deviation from spherical assumptions must be
quantified is in OCR calculation. For example, when the OCR in an spheroid is
calculated assuming the perfectly spherical form in equation 6 rather than a more
appropriate prolate or oblate form. This might occur when eccentricity is low and the
spheroid appears to be entirely symmetric to a first approximation. The distance from
the centroid of an spheroid with semi-major axis r and focal length f to a point on the
spheroid at an angle θ is given by r

√
1− e2sin2θ, and thus the average value for outer

radius ro and anoxic radius rn are given by integrating this over a full revolution,
yielding

〈ro〉 =
2ro
π
Em

(
f2

r2o

)
, (12)

〈rn〉 =
2rn
π
Em

(
f2

r2n

)
(13)

where Em is the complete elliptic integral of the second kind. Analogous to the discrete
standard deviation, the distance function can be integrated over a full rotation

(∆r =

√
(1/2π)

∫ 2π

0
(r
√

1− e2 sin2 θ − 〈r〉)2dθ) to yield an expression for standard
deviation across these spheroids of

∆ro = ro

√(
1− f2

2r2o

)
− 4

π2
E2
m

(
f2

r2o

)
=

√
r2o −

f2

2
− 〈ro〉2, (14)

∆rn = rn

√(
1− f2

2r2n

)
− 4

π2
E2
m

(
f2

r2n

)
=

√
r2n −

f2

2
− 〈rn〉2. (15)

Applying the form in equation 6 for spherical OCR yields a approximation (which is
incorrect when e > 0) of

aΩW =
6Dpo〈ro〉

〈ro〉3 + 2〈rn〉3 − 3〈ro〉〈rn〉2
. (16)

The uncertainty calculation associated with this can be calculated with the variance
formula, in this case given by

∆aΩW =

√(
∂(aΩ)

∂ro

)2

∆r2o +

(
∂(aΩ)

∂rn

)2

∆r2n. (17)

131

This is analytically tractable, and is given in supplementary material S1. An 132

implementation in several code languages is also provided in supplementary S2. 133
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Methods 134

Spheroid oxygen profiles 135

The models derived in this work were used to create oxygen profiles for spheroids of 136

both prolate and oblate classes, which were contrasted to conventional perfectly 137

spherical profiles. 138

Quantifying differences between prolate and oblate cases 139

Prolate and oblate forms have some mathematical differences as can be seen inspection 140

of equations 3 and 4. Whether this difference is experimentally significant is an 141

important question; from a single projection of a tumour spheroid it might be 142

impossible to ascertain whether an experimenter is dealing with a prolate or oblate case. 143

As an experimentalist might not be able to determine whether a given spheroid is 144

prolate or oblate from a single section, quantifying differences in measured OCR under 145

each assumption is an important goal of this work. This was simulated by producing 146

prolate and oblate spheroids with properties as outlined in table 1, and observing the 147

differences in their profiles. In addition, OCR estimates under the ‘wrong’ assumptions 148

were also calculated and inspected. Specifically, the ‘wrong’ assumption occurs when 149

one either applies oblate equations for a prolate spheroid or vice versa. OCR was also 150

calculated with the combined assumption (equation 9) which can also be used when 151

underlying form is unknown. These spheroids were produced with physical properties as 152

per Table 1, with OCR given by equations 6 - 9. 153

Comparisons with the spherical case 154

As OCR from spheroids is estimated assuming spherical symmetry, a major aspect of 155

this work was quantifying precisely how close to perfect sphericity spheroids must be so 156

that such an assumption holds, and how departures from sphericity impact estimates of 157

OCR and oxygen profiles. To study this, spheroids with known OCR and varying 158

eccentricity were simulated, and analysed with equations 10-17. 159

Experimental proof of concept 160

To date, non-spherical tumour spheroids have been somewhat neglected, frequently 161

discarded from analysis due to their inherent uncertainty. It is thus difficult to find 162

non-spherical tumour spheroid data. A potential example was taken from a previously 163

analyzed set of sectioned DLD-1 tumour spheroids [32], dual-stained with proliferation 164

marker Ki-67 and EF5. Spheroids from this set were experimentally determined to have 165

an OCR of 22.10 ± 4.24 mmHg/s. The sample spheroid was excluded from prior 166

analysis because of its high eccentricity (external eccentricity e ≈ 0.66). This was then 167

analyzed using methods outlined in this work as a proof of concept to determine OCR, 168

contrasting it to known values and spherical estimates. 169
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Results 170

Oxygen distributions in spheroids 171

Eccentric spheroids were simulated with properties shown in Table 1. Unlike the 172

spherical case, oxygen profiles here are not radially symmetric, so profiles were plotted 173

along both the semi-major and semi-minor axis for clarity. Examples of these profiles 174

are depicted in Figure 4. Oxygen gradients through spheroids are simulated in Figure 5, 175

for both prolate and oblate cases with increasing eccentricity. 176

Table 1. Simulation parameters

Parameter Simulation value
Semi-major axis 500 µm

Oxygen consumption rate (a) 20 mmHg/s
External partial pressure (po) 100 mmHg

320 340 360 380 400 420 440 460 480 500

Radial distance (  m)

0

20

40

60

80

100

P
a
rt

ia
l 
p
re

s
s
u
re

 (
m

m
H

g
)

(a) Oxygen profiles (e = 0.25)
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(b) Oxygen profiles (e = 0.90)
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Fig 4. Oxygen profiles for both prolate and oblate spheroids along the semi-major and
semi-minor axis for (a) Spheroid with inner eccentricity e = 0.25. There is relatively
littler difference between prolate and oblate cases and profiles largely overlap, being
close to spherical case (b) Spheroid with inner eccentricity e = 0.90. Small differences
between prolate and oblate cases can be readily seen, and very large divergence from
perfectly spherical case is apparent.
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Fig 5. (a) - (f) - Contour oxygen maps for prolate and oblate spheroids with increasing
eccentricity with semi-major axis 500µm and OCR of 20 mmHg/s. Prolate and oblate
have broadly similar oxygen maps, with divergence manifesting as e→ 1
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Fig 6. Variation of anoxic radii with eccentricity of outer shell from equations 3 and 4
for spheroid with properties as per Table 2. Differences between radii in prolate and
oblate case are generally very small up to high eccentricity.
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Fig 7. OCR estimates under ‘wrong’ assumptions for increasing inner eccentricity,
calculated from equations 7 - 9. Combined OCR estimate yields smaller errors in all
cases. True OCR is 20 mmHg/s.

Quantification of differences in prolate and oblate spheroids 177

From 2D sectioning or imagining alone, it can be experimentally difficult to ascertain 178

whether a given spheroid is either prolate or oblate. It is thus important to quantify 179

differences between the ellipsoids. Figures 4 and 5 suggest that prolate and oblate 180

spheroids have broadly similar oxygen profiles until eccentricity approaches unity. 181

Figure 6 depicts internal anoxic radii with eccentricity. These differ only slightly, 182

typically ≤ 1% for both major and minor axis for 0 < e < 0.9. More interesting perhaps 183

is the variation in OCR estimate with eccentricity under the ‘wrong’ assumption 184

(namely assuming oblate form when actual entity is prolate or vice versa) shown in 185
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Figure 7. This suggests strongly that OCR estimates arrived at under the ‘wrong’ 186

assumption are still accurate up until high eccentricity. Even at very high eccentricity, 187

an average value of both incorrect OCRs was extremely close to true OCR. This 188

suggests that incorrectly specifying the type of spheroid should not greatly impact OCR 189

estimates. For improved accuracy, employing the combined estimate in equation 9 yields 190

even smaller errors, suggesting this could readily be used by experimentalists without 191

introducing major error even when the underlying form is unknown. 192

Comparisons with spherical case 193

Table 2 depicts the impact of assuming perfect sphericity on derived OCR estimates for 194

properties in Table 1. At low e (typically e ≤ 0.3), treating spheroids as perfect spheres 195

yields acceptable accuracy for both OCR estimates. However, as e→ 1, the reliability of 196

OCR estimates rapidly break-down, and errors become increasingly large and unreliable. 197

Table 2. RMSE error and OCR estimates assuming sphericity for spheroids of varying
eccentricity e

e RMSE RMSE Prolate OCR Oblate OCR
(Prolate) (Oblate) (mmHg/s) (mmHg/s)

0 0 % 0 % 20.00 ± 0.00 20.00 ± 0.00
0.1 0.82 % 0.82 % 20.13 ± 0.37 20.14 ± 0.37
0.2 3.32 % 3.33 % 20.54 ± 1.53 20.60 ± 1.54
0.3 7.77 % 7.78 % 21.27 ± 3.73 21.42 ± 3.78
0.4 14.57 % 14.60 % 22.44 ± 7.47 22.75 ± 7.68
0.5 24.45 % 24.55 % 24.26 ± 13.91 24.84 ± 14.56
0.6 38.67 % 38.94 % 27.16 ± 25.76 28.25 ± 27.76
0.7 59.51 % 60.17 % 32.25 ± 51.07 34.41 ± 57.82
0.8 91.53 % 93.12 % 43.16 ± 124.77 48.58 ± 156.72
0.9 146.17 % 150.33 % 85.56 ± 660.92 120.52 ± 1291.81

Experimental proof of concept 198

For this work, a simple image analysis algorithm was written for the spheroid image, 199

which found the ellipsoid centre and cast best fit ellipses from this position. The 200

analysis algorithm was broadly similar to previously described methods [32], yielding an 201

estimates of e ≈ 0.66, ro = 488.5µm and rn = 400.15µmm. This analysis suggested the 202

best-fit inner and outer ellipses were approximately confocal to within experimental 203

error as required by confocality condition in equation 5 (eoro ≈ enrn to within an error 204

of 1.13%). Uncertainty on the lengths of ro rn were taken from this to be 5.53µm and 205

4.52µm respectively. Results of this analysis is depicted in Figure 8 and Table 3, suggest 206

values in agreement to those previously measured when considered as an prolate / 207

oblate spheroid, and unrealistic values if presumed perfectly spherical. 208
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Fig 8. (a) Eccentric DLD-1 spheroid (contrast enhanced for clarity) (b) Demonstration
of analysis in with a spheroid image-analysis algorithm detecting best-fit ellipses (blue
ellipse best-fit to outer boundary, red to inner). Calculated focal lengths from both are
checked for confocality from equation 5 and OCR estimated. See text for details.

Table 3. OCR estimates for sample spheroid

Assumption Estimated OCR (mmHg/s)
Previously measured for DLD-1 cell-line 22.10± 4.24

Assumption of perfect sphericity (true spheroid) 42.74± 51.98
Assuming prolate tumour spheroid 29.25± 4.25
Assuming oblate tumour spheroid 27.27± 4.11

Discussion 209

Analysis of spheroids to date tends to pivot on the presumption of sphericity, as 210

symmetry arguments reduce the complexity required. However, real spheroids tend to 211

depart from perfect sphericity to varying extents. In this work, we provide a metric for 212

determining how reliable the simpler spherical assumption will be as eccentricity 213

increases, as outlined in Table 2.The methods outlined in this work can be employed to 214

generate reliable estimates of OCR and oxygen distribution. Another major benefit of 215

this work is that it allows an experimenter to determine OCR even in non-spherical 216

cases when high eccentricity might otherwise render the spheroids in question ill-suited 217

for analysis. Provided the inner and outer ellipses are suitably confocal, the analysis 218

outlined in this work can be employed, and thus should help increase experimental 219

throughput. 220

221

As depicted in the Table 2, presuming sphericity with eccentric sections yields 222

acceptable accuracy when eccentricity is small, but rapidly begins to produce 223

completely unrealistic results for OCR and massive uncertainty. When analysed as 224

either prolate or oblate spheroids however, OCR estimates are in agreement with the 225

previously measured values. This suggests strongly that for eccentricity greater than 226

approximately e = 0.3, spherical assumptions for OCR cease to be appropriate and 227
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(c)ro(c)rn

ro

rn

Sheared spheroid

Fig 9. The eccentricity of a sheared spheroid is the same for both anoxic and outer

ellipsoids (e =

√
1− 1

c

2
) and thus not confocal as f is not constant. Sheared spheroids

are not true spheroids, as confocality condition is not met.

ellipsoidal analysis must be employed. While data for this is currently sparse, we were 228

able to demonstrate the principle on the highly eccentric spheroid illustrated in Figure 229

8, determined by image analysis to have f = 318.89± 2.57µm. When analysed as a 230

spheroid, OCR estimates were completely unrealistic with huge uncertainty, as seen in 231

Table 3. However, when considered as either a prolate or oblate spheroid, OCR 232

measurements were within previously measured values. This is promising, but as only a 233

single data point is available, this should be interpreted solely as a proof of concept. 234

235

It’s worth noting that from single section images or microscopy, there is no obvious way 236

to ascertain whether a spheroid is prolate or oblate. As the mathematical forms for 237

these are slightly different, this adds an extra uncertainty and prompts the question 238

about which form is preferable to employ. The analysis in this work (Figures 6 and 7) 239

indicate that even if one incorrectly assumes the wrong form, OCR estimates are still 240

very good, with only minimal errors introduced. This holds with only negligible errors 241

until very high eccentricity. The combined OCR form in equation 9 yields only 242

negligible error even when the underlying form is unknown. Thus an experimenter 243

should opt to use this form for OCR estimation when they have no other information on 244

whether the specimen is prolate or oblate, as this does not introduce large errors even at 245

high eccentricity. 246

247

While modelling of elliptical oxygen diffusion has the potential to greatly extend 248

experimental throughput, there are a number of scenarios where an ostensible eccentric 249

spheroid might not be what it appears. For fixed and sectioned spheroids, the act of 250

sectioning itself can be enough to induce substantial deformations, stretching it along a 251

particular axis. Ostensibly, the resultant shape might appear ellipsoidal, but is in reality 252

a warped spheroid, and cannot be reliably analysed with the methods outlined. Such an 253

example is show in figure 9, for a spherical spheroid sheared along an axis. From the 254

mathematics established in this work, we can distinguish between true spheroids and 255

warped spheroids - if the inner and outer ellipses are not confocal (eoro 6= enrn), then 256

the shape is a warped spheroid, and should be discounted from analysis, as per Figure 1. 257

Crucially, Figure 9 demonstrates that warped spheroids can only satisfy the ellipsoidal 258

confocality condition under two circumstances; either when its eccentricity is 0 (a 259

perfect sphere), or the non-physical situation where ro = rn. Thus a sheared spheroid in 260

one direction will never come close to satisfying the ellipsoidal confocality condition. In 261

practice, all experimental work comes with inherent uncertainty, so eoro ≈ enrn within 262
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the bounds of image analysis uncertainty is sufficient to determine whether a spheroid 263

can be treated as an ellipsoidal case . 264

265

There is a more subtle issue with sectioned spheroids, which becomes even more crucial 266

with sectioned eccentric spheroids. Analysis relies on a section through the central axis 267

of the spheroid. In the perfectly spherical case, if the section is off-centre, the net result 268

will be two concentric circles but with a misleading ratio, rendering any OCR 269

calculation derived from this suspect. By contrast, any plane through an ellipsoid 270

produces an ellipse, but if these cuts are off the central axis, then the inner and outer 271

ellipses will not longer have a common centre, and will not be confocal. In this regard, 272

determining an off-centre ellipsoid section is relatively straight-forward. A proof of this 273

is provided in supplementary S1. 274

275

The theoretical analysis outlined here presents biological investigators with new 276

methods for extending spheroid analysis, and means to interpret data which departs 277

from sphericity. It also establishes uncertainty bounds on existing spherical analysis 278

techniques, and methods for determining OCR and oxygen distribution in tumour 279

ellipsoids. The findings of this work will increase experimental confidence with tumour 280

spheroids, and have the potential to substantially increase experimental throughput, 281

improving our insights on everything from tumour hypoxia to drug delivery. Such an 282

approach is imperative if we are to fully exploit this unique experimental tool, and 283

ultimately marshal the new insights obtained towards better cancer treatment and 284

diagnostics. 285
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