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Abstract

Motivation: Parameter estimation methods for ordinary differential equation (ODE) models of bi-

ological processes can exploit gradients and Hessians of objective functions to achieve convergence and

computational efficiency. However, the computational complexity of established methods to evaluate the

Hessian scales linearly with the number of state variables and quadratically with the number of parame-

ters. This limits their application to low-dimensional problems.

Results: We introduce second order adjoint sensitivity analysis for the computation of Hessians and

a hybrid optimization-integration based approach for profile likelihood computation. Second order ad-

joint sensitivity analysis scales linearly with the number of parameters and state variables. The Hessians

are effectively exploited by the proposed profile likelihood computation approach. We evaluate our ap-

proaches on published biological models with real measurement data. Our study reveals an improved

computational efficiency and robustness of optimization compared to established approaches, when using

Hessians computed with adjoint sensitivity analysis. The hybrid computation method was more than

two-fold faster than the best competitor. Thus, the proposed methods and implemented algorithms allow

for the improvement of parameter estimation for medium and large scale ODE models.

Availability: The algorithms for second order adjoint sensitivity analysis are implemented in the Ad-

vance MATLAB Interface CVODES and IDAS (AMICI, https://github.com/ICB-DCM/AMICI/). The

algorithm for hybrid profile likelihood computation is implemented in the parameter estimation toolbox

(PESTO, https://github.com/ICB-DCM/PESTO/). Both toolboxes are freely available under the BSD

license.

Contact: jan.hasenauer@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In systems and computational biology, ordinary differential equation (ODE) models are used to gain a

holistic understanding of complex processes (Becker et al., 2010; Swameye et al., 2003). Unknown param-

eters of these ODE models, e.g., synthesis and degradation rates, have to be estimated from experimental

data. This is achieved by optimizing an objective function, i.e. the likelihood or posterior probability of

observing the given data (Raue et al., 2013a). This optimization problem can be solved using multi-start

local, global, or hybrid optimization methods (Raue et al., 2013a; Villaverde et al., 2015). Since exper-

imental data are noise-corrupted and in most cases, only a subset of the state variables is observable,

the inferred parameter estimates are subject to uncertainties. These uncertainties can be assessed using

profile likelihood calculation (Raue et al., 2009) and sampling (Girolami & Calderhead, 2011).

Many of the algorithms, which are applied in optimization or profile likelihood computation, exploit

the gradient and the Hessian of the objective function or approximations thereof. These quantities can be

used to determine search directions in optimization (Balsa-Canto et al., 2001; Vassiliadis et al., 1999) or

to update the vector field in integration-based profile calculation (Chen & Jennrich, 1996). However, the

evaluation of gradient and Hessian using standard approaches, i.e. finite differences or forward sensitivity

analysis, is computationally demanding for high-dimensional ODE models. To accelerate the calculation

of the objective function gradient, first order adjoint sensitivity analysis have been developed and applied

(see (Fröhlich et al., 2017a) and references therein). In engineering problems, similar concepts have been

proposed for the calculation of the Hessian (Cacuci, 2015), but until now, these methods were never

adapted to parameter estimation in biological applications.

In this manuscript, we provide a comprehensive formulation of second order adjoint sensitivity analysis

for ODE constrained parameter estimation problems with discrete-time measurements. We outline the

algorithmic evaluation of the Hessian and discuss the computational complexity. We include the function-

ality in the Advanced MATLAB Interface for CVODE and IDAS (AMICI). Furthermore, we introduce

a hybrid approach for the calculation of profile likelihoods, which combines the ideas the two currently

existing approaches and exploits the Hessian. We provide detailed comparisons of optimization and pro-

file likelihood calculation of the proposed approaches and state-of-the-art methods based on published

models of biological processes. Our analysis reveals that the robustness of optimization can be improved

using Hessians. Moreover, we find that the hybrid method outperforms existing approaches for profile
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likelihood computation in terms of accuracy and computational efficiency when combined with second

order adjoint sensitivity analysis.

2 Methods

2.1 Mathematical model

We consider ODE models of biological processes. The temporal evolution of a chemical concentration

vector x ∈ Rnx is given by a vector field f , depending on unknown parameters θ ∈ Rnθ and time

t ∈ [t0, tnt ]:

ẋ(t, θ) = f(x(t, θ), t, θ), x(t0, θ) = x0(θ). (1)

The initial state x0 may be parameter dependent. As in most applications not all states can be observed

directly, a set of observables y ∈ Rny is defined:

y(t, θ) = h(x(t, θ), t, θ) (2)

Measurements are usually noise-corrupted and this noise is modelled as normally distributed random

variables with standard deviation σij for observable i = 1, . . . , ny and time point j = 1, . . . , nt:

ȳij = yi(x(tj , θ), tj , θ) + εij , εij ∼ N (0, σ2
ij) (3)

If the noise is unknown, it can be modelled as parameter dependent σij = σij(θ) and inferred from the

data together with the other parameters. In the following, we will assume the σij to be known. All

derivations for parameter dependent σij can be found in Section 1 of the Supplementary Information.

2.2 Parameter optimization

To infer the unknown parameters θ, we maximize the likelihood of observing the data given the parameter

vector θ. Hence, the maximum likelihood estimate θ∗ is defined as:

θ∗ = argmaxθ∈Ω L(θ) (4)

L(θ) depends on the solution of the model and hence estimating θ∗ is an ODE-constrained optimization

problem. It must be solved numerically, since the considered ODEs rarely have closed form solutions. To

improve numerical stability, we use the negative logarithm of the likelihood function as objective function,

J (θ) = −L(θ), for minimization:

J (θ) =
1

2

nt∑
j=1

ny∑
i=1

(
log(2πσ2

ij) +
(ȳij − hi(x(tj , θ), t, θ))

2

σ2
ij

)
. (5)

Typically, the considered optimization problems are non-convex and possess multiple local optima.

In this study, we solve the optimization problems using multi-start local optimization, an approach

which has been shown to perform well in systems and computational biology (Raue et al., 2013b). Initial

points for local optimizations are drawn randomly from a biologically plausible region Ω ⊂ Rnθ of the

parameter space and the results of these optimizations are sorted by their final objective function value.

Local optimization is carried out using either least-squares algorithms such as the Gauss-Newton-type

methods combined with trust-region algorithms (Coleman & Li, 1996; Dennis et al., 1981), or constraint

optimization algorithms, which compute descent direction with (quasi-)Newton-type methods combined

with interior-point or trust-region algorithms (Byrd et al., 2000). Convergence of these methods can

usually be improved, if the computed derivatives are accurate (Raue et al., 2013b). Common least-

squares algorithms such as the MATLAB function lsqnonlin only use first order derivatives of the

residuals, whereas constraint optimization algorithms like the MATLAB function fmincon exploit first

and second order derivatives of the objective function.
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2.3 Profile likelihood calculation

Since experimental data are limited, parameter estimates are subject to uncertainties. Profile likelihoods

(hereafter called profiles), introduced in (Raue et al., 2009), are a common method to assess these uncer-

tainties (Kreutz et al., 2013). A profile is a maximum projection of the likelihood to a chosen parameter

axis: for θk, k ∈ {1, . . . , nθ}, the profile value at θk = c this given by

PLθk (c) = max
θk=c
θ∈Ω

L(D|θ) (6)

Profiles have to be computed separately for each parameter θk, k = 1, . . . , nθ, for which currently two

approaches exist.

The optimization-based approaches (as implemented in (Raue et al., 2015)) computes the profile for

θk via a sequence of optimization problems (Raue et al., 2009). In each step, all parameters besides θk
are optimized and θk is fixed to a value c. For each new step, c either increased or decreased (depending

on the profile calculation direction) and the new optimization is initialized based on the previously found

parameter values. As long as the function PLθk (c) is smooth, this initial point will be close to the

optimum and the optimization will converge within few iterations. Yet, as many optimizations have

to be performed to obtain a full profile and usually all profiles have to be computed, this process is

computationally demanding.

An efficient alternative to the optimization-based is the integration-based approach (Boiger et al.,

2016; Chen & Jennrich, 1996) (as implemented in (Kaschek et al., 2016)), which circumvents the re-

peated optimization by using a dynamical system which evolves along the optimal path of the constraint

optimization problem (6). For a constraint g(θ) = c, in which g : Ω −→ R is the constraint function (in

our case g(θ) = θk), the dynamical system is obtained by differentiating the optimality condition

∇θJ (θ) + λ∇θg(θ) = 0, (7)

with respect to the value of the constraint, c, where λ is a Lagrangian multiplier. This yields the

differential equation (
∇2
θJ +∇2

θg ∇θg
∇θg 0

)(
dθ
dc
dλ
dc

)
=

(
0

1

)
(8)

which can in principle be integrated with established differential equation solvers given the Hessian ∇2
θJ

or an approximation thereof (Chen & Jennrich, 2002). However, integrating the ODE in (8) is non-trivial,

as the matrix on the left hand side can degenerate and the profile path may have discontinuities. This

leads to small step sizes during ODE integration. Moreover, the trajectory of the ODE solver may deviate

from the true profile path of Equation (6) due to numerical errors or approximations being used.

In this study, we introduce a hybrid optimization- and integration-based approach to handle disconti-

nuities and to ensure optimality. Our hybrid approach employs by default the integration-based approach

using a high-order Adams-Bashforth scheme (Shampine & Reichelt, 1997). A pseudo-inverse is used if the

matrix in (8) is degenerated. If the step size falls below a previously defined threshold, integration will be

stopped and a few optimization-based steps are carried out to circumvent numerical integration problems

and to accelerate the calculation. Then, integration is reinitialized at the profile path. Moreover, the

remaining gradient is monitored during profile integration. If it exceeds a certain value, an optimization

will be started and integration reinitialized at the profile path.

2.4 Computation of objective function gradient and Hessian

Providing accurate derivative information is favourable for optimization and profile computation. Yet,

due to the high computational complexity, gradients are sometimes not computed and Hessians even less

frequently. In this section, we recapitulate available forward and adjoint sensitivity analysis methods

to, subsequently, introduce second order adjoint sensitivity analysis for the efficient computation of the

Hessian for ODE models. Remark: In the following, the dependencies of f, x, h and their derivatives on

t, θ, and x are not stated explicitly. For a detailed mathematical description of all approaches, we refer

to Supplementary Information, Section 1.
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Computation of the objective function gradient

Many state-of-the-art toolboxes compute objective function gradients using forward sensitivity analysis.

When differentiating Equation (5) with respect to θk, the gradient is obtained:

∂J
∂θk

=

ny∑
i=1

nt∑
j=1

ȳij − hi(tj)
σ2
ij

syik (9)

in which syk denotes the sensitivity of observable yi with respect to parameter θk. The observable sensi-

tivities are calculated from the state sensitivities sxk = ∂x
∂θk

as

syik = (∇xhi)sxk +
∂hi
∂θk

(10)

The state sensitivities need to be computed by integrating the corresponding ODE, which is obtained

from differentiating Equation (1):

ṡxk = (∇xf)sxk +
∂f

∂θk
(11)

In forward sensitivities analysis, the error in the state sensitivities can be controlled together with the

error of the state variables when integrating both ODEs (11) together, which makes it possible to obtain

accurate gradients (Fröhlich et al., 2017a). However, using this method for a system with nx state

variables and nθ parameters requires solving an ODE of the size nx(nθ+1). First order forward sensitivity

analysis hence scales linearly in the number of parameters and in the number of state variables, which is

computationally demanding for large nx and nθ.

Adjoint sensitivity analysis circumvents the integration of the state sensitivities. In this approach,

only the original ODE system (1) is integrated forward in time and subsequently the ODE for the adjoint

state p(t) is integrated backward in time, starting at tnt :

ṗ = −(∇xfT )p (12)

p(tnt) =

ny∑
i=1

∇xhi
ȳint − hi(tnt)

σ2
int

(13)

For time-discrete data, p(t) has to be reinitialized for each measurement:

p(tj) = lim
t→t+j

p(t) +

ny∑
i=1

∇xhi
ȳij − hi(x(tj , θ), tj)

σ2
ij

. (14)

In the end, the gradient can be computed as

∂J
∂θk

= −
ny∑
i=1

nt∑
j=1

ȳij − hi
σ2
ij

∂hi
∂θk
−

tnt∫
t0

pT
∂f

∂θk
dt− p(t0)T

∂x0

∂θk
. (15)

where nθ one dimensional quadratures have to be computed during the backward integration. In practice,

these quadratures are typically computationally less expensive, so the linear dependence of the computa-

tion time on nθ for adjoint sensitivity analysis can be considered to be weak, as pointed out in (Özyurt

& Barton, 2005). This yields the gradient for little more than the cost of integrating two differential

equations of the size nx. As these scaling properties were shown to also hold true in practice (Fröhlich

et al., 2017a), adjoint sensitivity analysis is so far probably the most efficient method for the computation

of gradients for large systems.

Computation and approximation of the objective function Hessian

In this study, we consider two approximations of the Hessian:

1. the Fisher Information Matrix (FIM) (Fisher, 1922)

2. the Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme (Goldfarb, 1970)
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and employ three approaches to compute the Hessian itself

3. central finite differences, based on gradients from adjoint sensitivities (Andrei, 2009)

4. second order forward sensitivity analysis (Vassiliadis et al., 1999)

5. second order adjoint sensitivity analysis

The FIM is related to the asymptotic covariance of maximum likelihood estimates (Swameye et al.,

2003) and provides an approximation to the Hessian of the negative log-likelihood function. The approx-

imation converges quadratically in the size of the residuals (ȳij −hi(tj))/σij (Raue, 2013). Although, the

FIM provides only an approximation, it is used in optimization, as it can be computed using first order

forward sensitivities:

FIMk,`(θ) =
∑
i=1

∑
j=1

1

σ2
ij

syik (tj)s
yi
k (tj)

T (16)

The BFGS scheme is an algorithm, which computes a positive-definite approximation to the Hessian

sequentially during an optimization process using gradients, which are computed in each optimization

step. Different variants of this algorithm are implemented in many state-of-the-art optimization toolboxes,

like e.g. (Wächter & Biegler, 2006).

Central finite differences compute the Hessian based on perturbations in each parameter direction by

a small step δ:

∂2J (θ)

∂θk∂θ`
≈

∂J (θ+δe`)
∂θk

− ∂J (θ−δe`)
∂θk

2δ
(17)

where e` is the unit vector with 1 at the `-th position. The accuracy of this method depends on the step

size δ. Good choices of δ depend in turn on the error tolerances of the ODE solver and are thus not easy

to determine (Hanke & Scherzer (2001) and the references therein).

Second order forward sensitivity analysis extends, similar to first order forward sensitivity analysis,

the considered ODE system, now including first order and second order derivatives of the state variables

(see Supplementary Information, Equation (9)). If the symmetry of the Hessian is exploited, This leads

to an ODE system of the size nθ(nθ+1)nx/2. Hence, the computational complexity of the problem scales

quadratically in the number of parameters and linearly in the number of state variables, which limits this

method to low-dimensional applications. Yet, second order forward sensitivity analysis yields accurate

Hessians, since the error of the second order state sensitivities can be controlled during ODE integration.

Second order adjoint sensitivity analysis has so far never been applied in the field of systems and

computational biology and we are not aware of any ready-to-use implementation thereof. Along the lines

of first order adjoint sensitivity analysis, second order adjoint sensitivity analysis gives Hessians with

better scaling properties than second order forward sensitivities. Again, the error of the Hessian can

be controlled during ODE integration, yielding as accurate results as those from second order forward

sensitivity analysis. To compute Hessians, the idea of the adjoint method is applied to (11) instead of (5).

In a first step, the system defined by (11) is integrated forward in time. Subsequently, the corresponding

adjoint system is integrated backwards in time, using the information from the forward simulation. This

system consists of the original adjoint system plus the nθ derivatives of p with respect to θk.

d

dt

(
∂p

∂θ`

)
=−

(
∇xfT

) ∂p

∂θ`
−∇x

(
∂f

∂θ`

)T
p−

(
(sx` )T ⊗ 11,nθ

)(
∇x ⊗∇xfT

)
p, (18)

∂p(tnt)

∂θ`
=

ny∑
i=1

(
ȳint − hi(tnt)

σ2
int

(
∇Tx∇xhi(tnt)s

x
` (tnt) +∇x

∂hi(tnt)

∂θ`

)

+
1

σ2
int

(
∇Tx hi(tnt)s

x
` (tnt) +

∂hi(tnt)

∂θ`

)
∇xhi(tnt)

)
(19)

Again, the system must be reinitialized at every data time point:

∂p(tj)

∂θ`
=

ny∑
i=1

ȳij − hi(tj)
σ2
ij

(
∇Tx∇xhi(tj)sx` (tj) +∇x

∂hi(tj)

∂θ`

)
+ lim
t→t+j

∂p(t)

∂θ`

+

ny∑
i=1

1

σ2
ij

(
∇Tx hi(tj)sx` (tj) +

∂hi(tj)

∂θ`

)
∇xhi(tj) (20)
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Table 1: Overview of considered ODE models and their properties
ID State var. Param. Time p. Cond. Data p. Modelled system Reference

M1 6 9 16 1 46 Epo receptor signalling Becker et al. (2010)

M2 3 28 7 3 72 RAF/MEK/ERK signalling Fiedler et al. (2016)

M3 9 16 16 1 46 JAK/STAT signalling Swameye et al. (2003)

M4 18 116 51 1 110 E.Coli carbon metabolism Chassagnole et al. (2002)

M5 26 86 16 10 960 EGF & TNF signalling MacNamara et al. (2012)

During this backward integration, n2
θ one-dimensional quadratures, which also depend on the forward

trajectories of the state variables and their sensitivities, have to be calculated. Finally, the Hessian

matrix can be assembled with the information coming from both ODE solves and these quadratures:

∂2J
∂θkθ`

=

nt∑
j=1

ny∑
i=1

(
1

σ2
ij

(
∇xhi(tj)sx` (tj) +

∂hi(tj)

∂θ`

)
∂hi(tj)

∂θk
− ȳij − hi(tj)

σ2
ij

(
∂∇xhi(tj)

∂θk
sx` (tj)

∂2hi(tj)

∂θ`∂θk

))

− ∂p(t0)T

∂θ`

∂x(t0)

∂θk
− p(t0)T

∂2x(t0)

∂θk∂θ`
−

tnt∫
t0

(
∂pT

∂θ`

∂f

∂θk
+ pT

∂2f

∂θ`∂θk
+ pT

∂∇Tx f
∂θk

sx`

)
dt. (21)

The computation of the Hessian by second order adjoint sensitivities requires solving two ODE systems

of size nx(1 + nθ) and n2
θ one dimensional quadratures. Again, these quadratures are fast to evaluate

compared with the ODE systems. Hence, the scaling behaviour is expected to be almost linear in the

number of state variables and the number of parameters.

3 Implementation and Results

To assess the potential of Hessian computation using second order adjoint sensitivities, we implemented

the approach and we compared accuracy and computation time of the computed Hessians to to those of

available methods. Furthermore, we evaluated parameter optimization and profile calculation methods

using exact Hessian information for published models.

3.1 Implementation

The presented algorithms for the computation of gradients and Hessians by first and second order forward

and adjoint sensitivity analysis were made applicable in the MATLAB and C++ based toolbox AMICI

(Advanced Matlab Interface to CVODES and IDAS, Fröhlich et al. (2017c)), which uses the ODE solver

CVODES (Serban & Hindmarsh, 2005) from the SUNDIALS package. The algorithm for hybrid profile

calculation was implemented in the MATLAB toolbox PESTO (Parameter EStimation TOolbox, Stapor

et al. (2017)).

3.2 Application examples

For the assessment of the methods, we considered five published models and corresponding datasets (M1

- M5). The models possess 3 to 26 state variables, 9 to 116 unknown parameters and a range of dataset

sizes and identifiability properties. Four models describe signal transduction processes in mammalian

cells, one describes the central carbon metabolism of E. Coli. An overview about the model properties is

provided in Table 1 and a detailed description is included in the supplementary material.

3.3 Scalability

To verify the theoretical scaling of the discussed methods, we evaluated the computation times for the

model with the largest number of state variables (M5). This evaluation revealed that the practical scaling

rates are close to their theoretical predictions. (Figure 1A). Second order adjoint sensitivities, Fisher

information matrix and finite differences based on first order adjoint sensitivities exhibited a roughly

linear scaling with respect to the parameters. Second order forward sensitivities exhibited the predicted
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Figure 1: Scaling of computation times of the four investigated methods to compute or approximate the

Hessian, (at global optimum for each model)including linear fits and their slopes. All reported computation

times were averaged over 10 runs. A) Model (M5) was taken and the number of parameters was fixed to

different values. B) The ratio of the computation times for Hessians or its approximation over the computation

time for solving the original ODE is given for the five models from Table 1.

quadratic scaling. The Fisher information matrix showed the lowest computation time for all models.

The proposed approach, second order adjoint sensitivity analysis, was the fastest method to compute the

exact Hessian, taking in average about 4 times as long to compute as the Fisher information matrix.

We also evaluated whether the same scaling holds across models (Figure 1B). Interestingly, we found

similar but slightly higher slopes for all considered methods, although the number of state variables

between models differs substantially. This suggests that in practice the number of parameters is indeed

a dominating factor. Overall, second order adjoint sensitivity analysis was the most efficient method for

the evaluation of the Hessian.

3.4 Accuracy

To assess the accuracy of Hessians and their approximations provided by the different methods, we com-

pared the results at the global optimum. In general, we observed a good agreement of Hessians computed

using second order adjoint and forward sensitivity analysis (Figure 2A). For the Hessian computed by

finite difference, we found – as expected – numerical errors (Figure 2 B), which depended non-trivially

on the combination of ODE solver accuracy and the step size of the finite differences. The Fisher infor-

mation matrix usually differed substantially from the Hessians, even though this approximation is often

considered to be good close to a local optimum (Figure 2 C).

In combination, our assessment of scaling and accuracy revealed that second order adjoint sensitivity

analysis provides the most scalable approach to obtain accurate Hessian information. Rough approxima-

tions of the Hessian in terms of the FIM could however be computed at a lower computational cost.

3.5 Optimization

As our results revealed an trade-off between accuracy and computation time for computation Hessians,

we investigated how this affects different optimization algorithms. To this end we compared Newton and

quasi-Newton variants of the interior point algorithm and the trust region algorithm:

• Residuals and their sensitivities were computed with first order forward sensitivity analysis and

provided to the least-squares algorithm lsqnonlin, which used the trust-region-reflective algorithm.

• Gradient and FIM were computed using first order forward sensitivity analysis and provided to

fmincon, which using the trust-region-reflective algorithm.

• Gradient and Hessian were computed with second order adjoint sensitivity analysis. A positive

definite transformation of the Hessian was provided to fmincon, using the trust-region-reflective

algorithm (which needs a positive definite Hessian to work).

• Gradients were calculated using first order forward sensitivity analysis and provided to fmincon,

using the interior-point algorithm with BFGS approximation the Hessian.
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Figure 2: Accuracy of different methods to compute or approximate the Hessian at the global optimum for

the models M2 and M3. Each point represents the numerical value of one Hessian entry as computed by two

different methods: A) second order forward analysis vs. second order adjoint analysis. B) finite differences

(different finite difference step sizes and ODE solver tolerances were considered) vs. second order adjoint

analysis. C) Fisher information matrix vs. second order adjoint analysis. All computations were carried

out with relative and absolute tolerances set to 10−11 and 10−14, respectively. For finite differences, lower

accuracies of 10−7 and 10−10 were tested, together with the step sizes 10−5 and 10−2.

• Gradient and FIM were computed with first order forward sensitivity analysis and provided to

fmincon, using the interior-point algorithm.

• Gradients and Hessians were calculated with second order adjoint sensitivity analysis and provided

to fmincon, using the interior-point algorithm.

The optimization study was carried out using the MATLAB toolbox PESTO for the models M2 and

M3. For each of these local optimization methods, we performed four multi-start local optimizations with

different initializations and 200 starting points each.

We considered the least-squares algorithm as gold standard for the considered problem class, as this

method has previously been shown to be very efficient (Raue et al., 2013b). Here, we studied the effect of

using exact Hessians on the optimization algorithms trust-region-reflective and interior-point implemented

in fmincon. As performance measure of the optimization methods, we considered the computation time

per converged start (i.e. starts which reached the global optimum), the total number of converged starts

and the number of optimization steps.

The least-square solver lsqnonlin outperformed, as expected, the constraint optimization method

fmincon (Figure 3 and supplementary Figure 1). Among the constraint optimization methods, the meth-

ods using exact Hessians computed using the second order adjoint method, performed equal or better than

the alternatives regarding overall computational efficiency (Figure 3 A). Indeed, the methods reached a
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Figure 3: Performance measures of different local optimization methods (lsqnonlin with trust-region algo-

rithm and fmincon with trust-region and interior-point algorithm, using either Hessians (H), Fisher infor-

mation matrix (FIM), or the BFGS scheme). The multi-start optimization was carried out multiple times

using different starting points for the local optimizations. Mean and standard deviation for A) the ratio of

computation time over converged optimization starts and B) the number of converged starts are shown. C)

Median and standard deviation of the number of steps over all optimization runs.

higher percentage of converged starts (Figure 3 B and supplementary Figure 1) than fmincon using the

FIM or the BFGS scheme. This is important, as convergence of the local optimizer is often the critical

property (Raue et al., 2013b). In addition, the number of necessary function evaluations was reduced

(Figure 3 C). Furthermore, we found differences in convergence and computational efficiency for fmincon,

depending on the chosen algorithm.

3.6 Profile Likelihood Calculation

To assess the benefits of Hessians in uncertainty analysis, we compared the performance of optimization-

and integration-based profile calculation methods for the models M2 and M3. For the optimization

based approach we employed the algorithm implemented in PESTO, which uses first order proposal

with adaptive step-length selection (Boiger et al., 2016). We compared the local optimization strategies

described in Section 3.5 (omitting the methods based on the FIM, due to their poor performance). For

the hybrid approach, we used MATLAB default tolerances for ODE integration. We compared the hybrid

scheme using Hessians and the FIM. All profiles were computed to a confidence level of 95%.

The comparison of the profile likelihoods calculated using different approaches revealed substantial dif-

ferences (Figure 4B and C). The optimization-based approaches worked fine for the JAK/STAT model but
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Figure 4: Profile likelihood computation using either the optimization-based method (lsqnonlin or fmincon

with trust-region (TR) or interior-point (IP) algorithm and Hessian or BFGS approximation), or the hybrid

method with either FIM or Hessian. A) Computation time for all profiles of the considered models. Three

methods failed to compute profiles for the RAF/MEK/ERK model. Thus, their computation times are not

depicted. B) A profile of the JAK/STAT model, all methods in good agreement with each other. C) A

profile of the RAF/MEK/ERK model, lsqnonlin failed to compute the profile. D) Another profile of the

RAF/MEK/ERK model, three methods in good agreement with each other.

mostly failed for the RAF/MEK/ERK model (Figure 4A). For the RAF/MEK/ERK model, only fmincon

with the trust-region-reflective algorithm and exact Hessians worked reliably among the optimization-

based methods. Even lsqnonlin yielded inaccurate results for 11 out of 28 parameter profiles. A poten-

tial reason is that the tolerances – which were previously also used for optimization – were not sufficiently

tight. Purely integration-based methods failed due to numerical problems, e.g. jumps in the profile paths.

Even extensive manual tuning and the use of different established ODE solvers (including ode113, ode45,

ode23, and ode15s) did not result in reasonable approximations for all profiles. In contrast, the hybrid

approach provided accurate profiles for all parameters and all models, when provided with exact Hessians.

When provided with the FIM, the hybrid approach failed, when it had to perform optimization, which

could not rely on Hessians in this case.

In addition to the accuracy, also the computation time of the methods differed substantially. The

hybrid method using exact Hessians was substantially faster than the remaining methods (see Figure

4A and Supplementary Information, Figure 6). The second fastest method was the optimization-based

approach using the Hessian for optimization. lsqnonlin was slightly and fmincon using the interior-point

algorithm substantially slower (for both, the BFGS scheme and Hessian), although they – as mention

above – did not provide accurate profiles.

Overall, the proposed hybrid approach using exact Hessians outperformed all other methods. Com-

pared to the best reliable competitor (optimization-based profile calculation using fmincon with the

trust-region algorithm and exact Hessians), the computation time was reduced by more than a factor of

two. This is substantial for such highly optimized routines and outlines the potential of exact Hessian

information for uncertainty analysis.

4 Discussion

Mechanistic ODE models in systems and computational biology rely on parameter values, which are

inferred from experimental data. In this manuscript, we showed that the efficiency of some of the most

common methods in parameter estimation can be improved by providing exact second order derivatives.

We presented second order adjoint sensitivity analysis, a method to compute accurate Hessians at low

computational cost, i.e. the method scales linearly in the number of model parameters and state variables.
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We also provide a ready-to-use implementation thereof in the freely available toolbox AMICI.

We showed that second order adjoint sensitivity analysis possesses better scaling properties than com-

mon methods to compute Hessians while yielding accurate results, rendering it a promising alternative

to existing techniques. Moreover, we demonstrated that state-of-the-art constraint optimization algo-

rithms yield more robust results when using exact Hessians. For the computation of profile likelihoods,

we demonstrated that Hessians can improve computation time and robustness of various state-of-the-

art methods. Furthermore, we presented a hybrid method for profile computation, which can efficiently

handle stiff and ill-conditioned problems. We also provided an implementation of this method in the

parameter estimation toolbox PESTO. Although being a reliable tool in uncertainty analysis (Fröhlich

et al., 2014), profile likelihoods are often disregarded due to their high computational effort. The pre-

sented hybrid method based on exact Hessians is an approach the tackle this problem, as already the

rudimentary implementation used in this study outperformed all established approaches.

The analysis of the optimizer performance revealed that least-squares algorithms (such as lsqnonlin),

which exploit the problem structure are difficult to outperform. Many parameter estimation problems

consider in systems biology do however not possess this structure. This is for instance the case for problems

with additional constraints or applications considering the chemical master equation (Fröhlich et al., 2016),

or ODE-constrained mixture models (Hasenauer et al., 2014). For these problem classes, the constraint

trust-region and interior-point optimization algorithms as implemented in fmincon are the state-of-the-

art methods. Additionally, new algorithms, which can exploit the additional curvature information,

available through exact Hessian computation, in novel ways are steadily developed (see Fröhlich et al.

(2017b)). Either directions of negative curvature can be used to escape saddle-points efficiently (Dauphin

et al., 2014), or third-order approximations of the objective functions are constructed iteratively from

the Hessians along the trajectory of optimization to improve the convergence order (Martinez & Raydan,

2017). These approaches might outperform current optimization strategies, which are not designed to

exploit directions of negative curvature that may be present in non-convex problems, and are therefore

interesting subjects of further studies using the methods for Hessian computation introduced here.

While this study focused on the efficient calculation of the Hessian, second order adjoint sensitivity

analysis can also be used to compute Hessian vector products. This information can be exploited by

optimization methods such as truncated Newton (Nash, 1984) or accelerated conjugate gradient (Andrei,

2009) algorithms, which are suited for large-scale optimization problems. These are a few examples to

illustrate how the presented results may pave the way for future improvements.
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(2017). PESTO: Parameter EStimation TOolbox. Bioinformatics, btx676 .

Swameye, I., Müller, T. G., Timmer, J., Sandra, O., & Klingmüller, U. (2003). Identification of nucleocytoplasmic cycling

as a remote sensor in cellular signaling by databased modeling. Proc. Natl. Acad. Sci. USA, 100(3), 1028–1033.

Vassiliadis, V. S., Canto, E. B., & Banga, J. R. (1999). Second-order sensitivities of general dynamic systems with

application to optimal control problems. Chem. Eng. Sci., 54(17), 3851–3860.

Villaverde, A. F., Henriques, D., Smallbone, K., Bongard, S., Schmid, J., Cicin-Sain, D., Crombach, A., Saez-Rodriguez,

J., Mauch, K., Balsa-Canto, E., Mendes, P., Jaeger, J., & Banga, J. R. (2015). BioPreDyn-bench: A suite of benchmark

problems for dynamic modelling in systems biology. BMC Syst. Biol., 9(8).
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