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Abstract 21 

Amino acids are a critical component of plant growth and development, as well as human 22 

and animal nutrition. A better understanding of the genetic architecture of amino acid traits, 23 

especially in seeds, will enable researchers to use this information for plant breeding and biological 24 

discovery. Despite a collection of successfully mapped genes, a fundamental understanding of the 25 

types of genes and biological processes underlying amino acid related traits in seeds remains 26 

unresolved. In this study, we used genomic prediction with SNPs partitioned by metabolic 27 

pathways to quantify the contribution of primary, specialized, and protein metabolic processes to 28 

free amino acid (FAA) homeostasis in dry Arabidopsis seeds.  First, we demonstrate that standard 29 

genomic prediction is effective for FAA traits. Next, we show that genomic partitioning by 30 

metabolic pathway annotations explains significant genetic variation and improves prediction 31 

accuracy for many FAA traits, including many trait-pathway associations that have not been 32 

previously reported. Surprisingly, SNPs related to amino acid and primary metabolism had limited 33 

effects on prediction accuracy for most FAA traits, with the largest effects observed for branched 34 

chain amino acids (BCAAs). In contrast, SNPs related to secondary and protein metabolism had a 35 

more extensive effect on prediction accuracy.  The use of a genomic partitioning approach also 36 

revealed specific patterns across biochemical families, in which protein related annotations were 37 

the only category influencing serine-derived FAAs and primary and specialized metabolic 38 

pathways were the only categories contributing to aromatic FAAs. Based on these findings, we 39 

used pathway-guided association analysis to identify novel SNP associations for traits related to 40 

methionine, threonine, histidine, arginine, glycine, phenylalanine, and BCAAs. Taken together, 41 

these findings provide evidence that genomic partitioning is a viable strategy to uncover the 42 

complexity of FAA homeostasis and to identify candidate genes for future functional validation.    43 
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Author summary 44 

Plant growth, development, and nutritional quality depends upon the regulation of amino 45 

acid homeostasis, especially in seeds. However, our understanding of the underlying genetics 46 

influencing amino acid content and composition remains limited, with only a few candidate genes 47 

and quantitative trait loci identified to date. As an alternative approach, we implemented 48 

multikernel genomic prediction to test whether or not genomic regions related to specific metabolic 49 

pathways contribute to free amino acid (FAA) variation in seeds of the model plant Arabidopsis 50 

thaliana. Importantly, this method successfully identifies pathways containing known variants for 51 

FAA traits, in addition to identifying new pathway associations. For several traits, the 52 

incorporation of prior biological knowledge provided substantial improvements in prediction 53 

accuracy. We present this approach as a promising framework to guide hypothesis testing and 54 

narrow the search space for candidate genes. 55 

 56 

Introduction 57 

Amino acids play a central role in plant growth and development. In addition to serving as 58 

the building blocks for proteins, amino acids are involved in essential biological processes that 59 

include nitrogen assimilation, specialized metabolism, osmotic adjustment, alternative energy, and 60 

signaling [1–5]. The homeostasis for absolute levels and relative composition of the free amino 61 

acid (FAA) pool is complex, depending on various factors such as allosteric regulation, feedback 62 

loops of key synthetic metabolic enzymes in amino acid metabolic pathways, and the rate of amino 63 

acid degradation [6–10]. In addition, FAA homeostasis can be influenced by protein metabolism. 64 

For example, the consistently observed significant increase in FAAs under many abiotic stresses 65 

is suggested to result from autophagy and protein turnover [7,8,11–13]. Specific FAAs, such as 66 

proline, may serve as either an osmoprotectant under stress or an energy source during 67 

development, with their elevation resulting mostly from active synthesis rather than protein 68 

degradation [14,15]. Studies have also demonstrated that the composition of the FAA pool is 69 

affected when either primary or specialized metabolism is altered. For example, perturbation of 70 

the glucosinolate pathway in Arabidopsis plants caused a significant elevation of multiple FAAs 71 

[16], while alteration of the interconversion of pyruvate and malate in tomato fruits caused 72 
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reduction in aspartate family related FAAs [17]. Therefore, FAA homeostasis is most likely 73 

determined by orchestration of multiple processes, but it remains challenging to pinpoint the main 74 

processes that are associated with homeostasis at various developmental stages.  75 

Dry seeds, despite their metabolically dormant state, maintain a tightly regulated FAA 76 

pool, which contributes to proper desiccation, longevity, germination, and seed vigor [5,18]. This 77 

pool comprises 1-10% of total seed amino acid content in maize [6,19] and ~7% in Arabidopsis 78 

thaliana [6,20]. Fait et al. [21] showed that in Arabidopsis, several FAAs are actively synthesized 79 

during late seed desiccation to provide the necessary precursors for early germination. Other 80 

studies further demonstrated that the natural variation of histidine and branched-chain amino acid 81 

(BCAA) levels in dry Arabidopsis seeds are associated with amino acid catabolism or transport 82 

[22,23]. Protein metabolism has also been implicated in determining the homeostasis of FAAs in 83 

dry seeds.  For instance, the opaque2 null mutant, which results in reduction of the most abundant 84 

seed storage proteins in maize, had significant elevation of many FAAs despite an unchanged 85 

composition of protein-bound amino acids [24,25]. The goal of engineering mutants like opaque2 86 

is to increase accumulation of essential amino acids that are deficient in crop seeds, such as lysine. 87 

However, these mutations have negative effects on key agronomic traits such as disease resistance, 88 

germination rate, and seedling vigor [26], suggesting a tight integration of AA metabolism with 89 

both primary and specialized metabolism.  90 

Like many other primary metabolites in dry seeds, FAAs are complex traits with extensive 91 

variability and high heritability across natural populations. Several genome-wide association 92 

studies (GWAS) have been performed on FAAs, which resulted in the successful identification of 93 

candidate loci for amino acid traits, both independently [27] and in conjunction with QTL studies 94 

[22,23]. However, the number and effect size of loci detected so far explained only a fraction of 95 

the observed phenotypic variation for these traits, with some traits proving harder to dissect than 96 

others. For example, [22,23] found the strongest associations for traits related to histidine and 97 

BCAAs, but weak signals for most other FAA traits. In addition, GWAS has limited power to 98 

reliably identify variants that are rare and/or of small effect [28]. In an attempt to uncover more of 99 

the genetic basis for FAA composition, subsequent investigations used integrated analyses that 100 

combined GWAS, linkage mapping, and metabolic correlation networks to identify new candidate 101 

loci related to FAA levels in both seeds and leaves of Arabidopsis [23,29]. Several metabolic 102 
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studies have also integrated prior information on biological relationships to specify metabolic 103 

ratios, which can uncover novel or more significant associations compared to absolute levels of 104 

metabolites [22,23,30–36]. 105 

The consistent finding that amino acid traits frequently have several associated loci, 106 

coupled with the difficulty of GWAS to explain a large proportion of the genetic variation for these 107 

traits, suggests that amino acid traits may have a highly polygenic architecture with many loci of 108 

small effect. While linkage mapping and GWAS are typically underpowered to map loci 109 

contributing to polygenic traits, genomic prediction methods excel at providing information when 110 

traits are highly complex [37–39]. Genomic prediction allows researchers to predict an individual’s 111 

breeding value, or the additive component of their genetic variation, based only on genotypic data 112 

[37,40]. The efficacy of genomic prediction results from its simultaneous use of all genotyped 113 

markers and indifference to the statistical significance of individual markers, in contrast to 114 

analyzing markers one-at-a-time for significance as is done for linkage mapping and GWAS [40]. 115 

This allows the inclusion of information from all loci to make predictions, instead of basing 116 

conclusions only on loci that achieve genome-wide significance, and therefore captures more of 117 

the additive genetic variance. 118 

Genomic best linear unbiased prediction (GBLUP) [37], which assumes that all SNPs share 119 

a common effect size distribution, is one of the most widely used methods for prediction of 120 

complex traits. Extensions of the GBLUP model, such as MultiBLUP [41], genomic feature BLUP 121 

(GFBLUP) [42–45], and the Bayesian method BayesRC [46] incorporate genomic partitions as 122 

multiple random effects, allowing effect size weightings to vary across different categories of 123 

variants. These partitions can be derived from prior biological information, such as physical 124 

position, genic/nongenic regions, pathway annotations, and gene ontologies. Models that 125 

incorporate genomic partitioning have allowed researchers to determine the influence of genomic 126 

features (e.g. chromosome segments, exons) and/or biological pathways on variance explained for 127 

complex traits in humans [47,48], cattle [42,45,49], Duroc pigs [44], fruit flies [42,50], and maize 128 

[51]. Notably, when genomic partitions are enriched for previously identified candidate genes, 129 

these models demonstrably improve prediction accuracy [42,44–46,49]. Evidence also suggests 130 

that, although many genetic markers may contribute to the overall genetic variation, many of these 131 

markers are preferentially located in genes that are connected to a biological pathway(s) [52]. 132 
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In this study, we used the framework of genomic partitioning, coupled with prior 133 

knowledge and annotations of metabolic pathways, to evaluate which biological processes and 134 

regions of the genome are disproportionately influencing FAA content and composition in seeds 135 

of a diverse Arabidopsis panel. The primary goal was to identify the relative importance of 136 

previously implicated metabolic pathways (i.e. amino acid, primary, specialized, and protein 137 

metabolism) in relation to FAA content and composition in dry seeds. To this end, we demonstrate 138 

that specific pathways explain more variation than expected by chance for several FAA traits and 139 

improve prediction accuracy when using genomic partitioning. Findings suggest that specialized 140 

and protein metabolism are associated with many FAAs, while amino acid metabolism is 141 

associated with a very limited number. We then used these results to apply pathway-level 142 

association mapping (e.g. [34]), which uncovered additional novel loci associated with FAA levels 143 

in Arabidopsis seeds. By identifying genes in metabolic pathways that explain significant genetic 144 

variation and improve prediction accuracy, we can form a more comprehensive understanding of 145 

which pathways underlie FAA homeostasis in seeds. When compared to previous GWAS results, 146 

this approach adds additional information on the orchestrated regulation of FAAs in seeds, which 147 

will help expand our understanding of complex metabolic networks in plants.  148 

 149 

 150 

Results 151 

 152 

Genomic prediction is most effective for absolute levels of free amino acids 153 

Using the GBLUP model, we observed low to moderate prediction accuracy for the amino 154 

acid traits measured (see S1 Table for trait descriptions). Of the 65 traits measured, 26 had 155 

prediction accuracy > 0.3 (Fig 1, Table 1). In general, prediction was effective for a greater number 156 

of absolute level FAA traits (68% > 0.3) compared to relative levels (29%) and family-derived 157 

ratios (17%). The aromatic family composite trait (ShikFam, combined absolute levels of 158 

phenylalanine, tryptophan, and tyrosine) had the highest prediction accuracy (r = 0.43), while the 159 

absolute level of threonine had the lowest prediction accuracy (r = 0.11) (Table 1).   160 
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Table 1. Genomic prediction results for amino acid traits using a GBLUP model.  161 

   accuracy reliability bias  

Trait type Metabolic family Trait mean SE mean SE intercept slope MSE 

absolute 

aspartate 

asp 0.286 0.024 0.115 0.014 4.64E-04 0.936 3.57E-05 
met 0.321 0.024 0.214 0.025 5.75E-06 1.051 1.14E-05 
thr 0.105 0.023 0.079 0.014 -1.23E-05 0.756 5.56E-06 
AspFam 0.235 0.023 0.123 0.017 2.64E-04 1.042 2.28E-05 

BCAA_pyruvate 

ala 0.299 0.024 0.177 0.023 5.33E-04 1.119 6.69E-04 
ile 0.326 0.022 0.182 0.022 2.38E-04 1.046 1.19E-04 
leu 0.342 0.022 0.185 0.019 7.55E-04 1.035 2.13E-04 
lys 0.246 0.026 0.128 0.018 -1.74E-03 0.921 1.58E-03 
val 0.409 0.020 0.187 0.017 5.06E-04 1.027 1.18E-04 
BCAA 0.392 0.020 0.199 0.019 5.40E-04 1.042 1.65E-04 
PyrFam 0.361 0.023 0.208 0.022 4.02E-04 1.108 1.87E-04 

glutamate 

arg 0.228 0.023 0.145 0.020 -1.75E-04 0.923 2.85E-05 
gln 0.193 0.024 0.149 0.024 5.11E-04 1.032 2.47E-03 
glu 0.339 0.023 0.182 0.019 2.95E-05 0.990 1.10E-06 
his 0.356 0.021 0.148 0.014 6.14E-03 0.880 6.57E-03 
pro 0.372 0.021 0.194 0.019 -4.68E-04 1.010 1.02E-03 
GluFam 0.322 0.024 0.133 0.014 -5.26E-06 0.916 1.06E-05 

serine 
gly 0.363 0.023 0.252 0.027 -6.57E-05 1.072 9.49E-05 
ser 0.225 0.022 0.147 0.019 6.55E-04 1.078 7.65E-04 
SerFam 0.323 0.023 0.192 0.020 9.76E-05 1.030 6.76E-04 

aromatic 

phe 0.307 0.022 0.172 0.021 2.73E-05 1.084 1.84E-06 
trp 0.348 0.019 0.223 0.022 -1.73E-04 1.019 1.23E-05 
tyr 0.344 0.026 0.202 0.024 -2.49E-04 1.046 8.96E-06 
ShikFam 0.431 0.018 0.245 0.018 6.43E-05 1.023 1.09E-06 

  Total 0.395 0.024 0.183 0.017 5.43E-05 1.015 5.11E-06 

relative 

aspartate 
asp_t 0.392 0.023 0.178 0.017 1.51E-02 0.933 5.61E-02 
met_t 0.328 0.022 0.181 0.018 -8.14E-05 1.021 2.99E-05 

BCAA_pyruvate 

ala_t 0.205 0.025 0.184 0.030 2.98E-05 1.239 1.97E-05 
ile_t 0.233 0.022 0.137 0.021 -1.33E-04 1.085 3.72E-05 
leu_t 0.263 0.023 0.137 0.018 9.09E-05 1.093 2.64E-05 
lys_t 0.224 0.023 0.159 0.020 -2.12E-04 1.112 3.35E-05 
val_t 0.306 0.024 0.242 0.028 -1.96E-04 1.106 9.94E-06 

glutamate 

arg_t 0.193 0.025 0.154 0.023 -1.17E-04 1.056 2.07E-05 
gln_t 0.108 0.023 0.236 0.039 1.14E-04 1.322 1.77E-04 
glu_t 0.260 0.021 0.179 0.021 2.00E-02 1.008 2.78E-01 
his_t 0.262 0.026 0.160 0.019 1.22E-03 1.076 3.24E-04 
pro_t 0.342 0.020 0.172 0.016 4.54E-05 1.022 4.72E-05 

serine 
gly_t 0.276 0.025 0.290 0.038 -8.77E-04 1.127 1.37E-03 
ser_t 0.156 0.023 0.143 0.024 4.44E-04 1.452 9.95E-05 

aromatic 
phe_t 0.341 0.017 0.174 0.016 -3.19E-04 1.047 2.49E-04 
trp_t 0.221 0.023 0.145 0.020 -2.27E-04 0.940 2.62E-05 
tyr_t 0.151 0.027 0.169 0.023 -2.51E-04 1.112 3.68E-05 
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   accuracy reliability bias  
Trait type Metabolic family Trait mean SE mean SE intercept slope MSE 

family 

aspartate 

asp_AspFam 0.159 0.025 0.159 0.026 -2.32E-04 1.309 1.27E-04 
ile_AspFam 0.339 0.022 0.218 0.022 -6.30E-05 1.197 2.05E-05 
lys_AspFam 0.179 0.024 0.125 0.019 -9.62E-05 0.933 4.47E-06 
met_AspFam 0.296 0.023 0.219 0.025 7.92E-05 1.060 1.62E-05 
thr_AspFam 0.211 0.023 0.132 0.017 -4.73E-05 1.049 1.11E-06 
AspFam_Asp 0.235 0.023 0.123 0.017 2.64E-04 1.042 2.28E-05 

BCAA_pyruvate 

ala_PyrFam 0.272 0.019 0.091 0.010 1.37E-04 0.905 5.62E-05 
ile_BCAA 0.169 0.020 0.065 0.010 7.60E-05 0.914 9.26E-06 
leu_BCAA 0.196 0.020 0.107 0.017 8.24E-05 1.076 4.84E-06 
leu_PyrFam 0.274 0.020 0.106 0.013 -3.02E-05 0.975 5.50E-06 
val_BCAA 0.172 0.019 0.066 0.010 -8.61E-05 0.848 1.85E-05 
val_PyrFam 0.227 0.019 0.070 0.009 7.23E-05 0.858 4.20E-06 

glutamate 

arg_GluFam 0.134 0.027 0.174 0.032 -1.15E-04 1.243 3.93E-06 
gln_GluFam 0.135 0.022 0.197 0.030 3.23E-03 1.076 2.38E-02 
glu_GluFam 0.229 0.028 0.184 0.025 1.47E-04 0.992 3.74E-05 
GluFam_glu 0.270 0.027 0.144 0.020 8.87E-04 0.881 1.51E-04 
his_GluFam 0.195 0.023 0.127 0.019 5.48E-02 1.012 4.98E+00 
pro_GluFam 0.349 0.025 0.209 0.019 1.51E-04 1.004 1.68E-05 

serine 
gly_SerFam 0.314 0.024 0.283 0.036 2.54E-05 1.172 2.47E-05 
ser_SerFam 0.313 0.024 0.286 0.037 -2.44E-05 1.179 1.32E-05 

aromatic 
phe_ShikFam 0.223 0.029 0.188 0.027 2.19E-04 1.097 1.38E-05 
trp_ShikFam 0.217 0.024 0.162 0.023 -8.03E-05 1.028 5.66E-06 
tyr_ShikFam 0.168 0.024 0.114 0.019 -5.18E-05 0.945 1.52E-06 

SE, standard error; MSE, mean squared error.  
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Fig 1. Genomic prediction performed well for a higher proportion of absolute traits 162 

compared to relative and family-based ratio traits.  163 

Boxplots show free amino acid traits with prediction accuracy (r) > 0.3 based on genomic best 164 

linear unbiased prediction (GBLUP). For absolute traits, 68% had r > 0.3 compared to relative 165 

traits (29%) and family-based ratio traits (17%). Black triangles indicate the genomic heritability 166 

for each trait. Each point represents an individual cross-validation.  167 

 168 

Annotations of biological pathways explain variation and improve prediction accuracy for 169 

free amino acid traits in seeds 170 

The pathway annotations listed in Table 2 were used to subset SNPs and spanned amino 171 

acid, primary, specialized, and protein metabolism. When partitioning these pathways in the 172 

MultiBLUP model, 44 trait-pathway combinations were flagged as putatively related based on 173 

comparison to a null distribution (Fig 2, Table 3). Results for the null distribution of each trait, 174 

including how many random gene groups passed filtering criteria, are reported in S2 Table and S2 175 

Fig. The observation that specific pathways improve model fit based on likelihood ratio (LR) and 176 

explain a significant proportion of genomic heritability suggests that these pathway annotations 177 

may have biological relevance for FAA traits.  178 
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Table 2. Summary of selected biological pathways.  179 

Pathway 
Number of 

genesa 
Number of 

SNPsa 
MapMan 

BINCODE 
Amino Acid Metabolism       

amino acid synthesis 376 2084 13.1 

amino acid degradation 160 1094 13.2 

amino acid transport 144 939 34.3 

Primary Metabolism    

glycolysis 148 858 4 

TCA cycle 167 926 8 

ATP synthesis (alternative oxidase) 10 66 9.4 

Specialized Metabolism    

isoprenoids 269 1788 16.1 

phenylpropanoids 161 845 16.2 

nitrogen containing 39 229 16.4 

sulfur containing 113 733 16.5 

flavonoids 171 1062 16.8 

Protein Metabolism    

amino acid activation 203 1231 29.1 

protein synthesis 1383 7290 29.2 

protein targeting 624 3689 29.3 

protein posttranslational modification 1407 8794 29.4 

protein degradation 996 6405 29.5 

ubiquitin 2691 16000 29.5.11 

protein folding 138 814 29.6 

protein glycosylation 87 459 29.7 

protein assembly 44 312 29.8 

aIncludes a 2.5 kb buffer before and after the start/stop position of each gene.  
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A few patterns were noticeable when looking at absolute levels of FAAs (Fig 2). Traits in 180 

the aspartate and glutamate families showed a high proportion of genomic heritability explained 181 

for pathways related to specialized and protein metabolism. One example is the pathway for sulfur 182 

containing compounds and absolute levels of methionine, which is a precursor for aliphatic 183 

glucosinolates. The only relationship observed for absolute levels in the pyruvate/BCAA group 184 

was with amino acid synthesis. Similarly, three traits in the serine family had a significant 185 

proportion of genomic heritability explained for pathways related to protein metabolism, while 186 

three traits in the aromatic family stood out for specialized metabolism. 187 

When looking at relative ratios of FAA traits (Fig 2), a high proportion of genomic 188 

heritability was explained for four traits in the glutamate family and pathways across amino acid 189 

metabolism, primary metabolism, specialized metabolism, and protein metabolism. A similar 190 

relationship was observed for traits in the pyruvate/BCAA family, with the exception of 191 

specialized metabolism. Traits in the serine and aromatic families again showed significant values 192 

for pathways related to protein and specialized metabolism, respectively. These relationships were 193 

similar for family-based ratios of FAA traits (Fig 2), with the exception that traits in the 194 

pyruvate/BCAA family had associations with specialized metabolism and not with primary 195 

metabolism. 196 

For nine trait-pathway combinations, the prediction accuracy for the MultiBLUP model 197 

was over 5% higher than for the GBLUP model with limited effects on bias and MSE (Table 3, 198 

bold). This substantial increase in prediction accuracy was observed for BCAA related traits when 199 

the model included the amino acid degradation (relative levels of isoleucine, Ile_t, and the family-200 

based ratio of valine, Val_BCAA) or isoprenoid pathway information (Val_BCAA). A similar 201 

increase in prediction accuracy was observed for relative and family-based ratios of glutamine 202 

(Gln_t and Gln_GluFam, respectively) when partitioning SNPs related to sulfur containing 203 

specialized metabolites, and for the family-based ratio of tyrosine (Tyr_ShikFam) for SNPs related 204 

to phenylpropanoids.    205 
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Fig 2. Biological pathways explain significant variation and improve prediction accuracy for 206 

free amino acid traits.  207 

Dots indicate pathways that improved prediction accuracy compared to GBLUP and exceeded the 208 

95% null thresholds for proportion of heritability explained and likelihood ratio (LR). The 209 

diameter of each dot is proportional to the amount of genomic variance explained by pathway 210 

SNPs in the MultiBLUP model. Traits are included on the x-axis and grouped by metabolic family 211 

(aspartate, glutamate, pyruvate/BCAA, serine, aromatic) and type of measurement (A = absolute, 212 

R = relative, F = family-based ratio). Pathways are included on the y-axis and separated into amino 213 

acid, primary, specialized, and protein metabolism categories.   214 
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Table 3. Free amino acid traits and pathway combinations for which MultiBLUP increases accuracy compared to GBLUP.  215 

   Proportion h2 explained Likelihood ratio   Δbias   

 Pathway Trait 
95 

percentilea 
MultiBLUP 

95 
percentilea 

MultiBLUP Δrb Δr2/h2c intercept slope ΔMSE 

am
in

o 
ac

id
 

degradation his_t 0.19 0.26 4.43 5.65 0.03 0.01 -3.2E-04 -4.5E-02 2.8E-05 

degradation ile_t 0.28 0.43 4.30 9.12 0.07 0.07 2.2E-04 -5.4E-02 4.8E-07 

degradation leu_t 0.22 0.24 4.05 5.17 0.03 0.03 -4.0E-05 -4.3E-02 -2.0E-06 

degradation met_t 0.15 0.28 3.30 6.63 0.03 0.02 2.8E-05 -9.0E-03 -2.0E-06 

degradation his_GluFam 0.22 0.42 4.70 8.73 0.06 0.03 5.6E-02 8.3E-02 8.7E-01 

degradation ile_BCAA 0.19 0.36 4.41 5.98 0.04 0.03 -4.8E-05 2.3E-02 3.0E-07 

degradation val_BCAA 0.19 0.34 3.56 9.99 0.07 0.05 7.6E-05 4.2E-02 -1.1E-06 

synthesis BCAA 0.15 0.29 4.18 11.58 0.03 0.03 3.2E-04 -2.6E-02 -1.2E-05 

synthesis ile 0.24 0.39 3.54 7.69 0.05 0.04 1.2E-04 -4.3E-02 -9.3E-06 

synthesis leu 0.19 0.26 3.25 12.56 0.03 0.03 3.1E-04 -2.1E-02 -1.4E-05 

synthesis PyrFam 0.16 0.37 3.43 5.17 0.03 0.03 -5.0E-05 -8.9E-02 -6.6E-07 

transport ShikFam 0.10 0.27 3.55 6.43 0.03 0.03 -4.1E-05 -7.2E-03 2.8E-08 

pr
im

ar
y alternative oxidase arg_t 0.03 0.16 3.95 4.35 0.02 0.00 1.5E-05 1.5E-02 1.2E-06 

alternative oxidase arg_GluFam 0.14 0.77 3.40 9.39 0.05 0.05 -2.6E-05 -6.7E-02 3.2E-03 

glycolysis ile_t 0.23 0.29 3.78 5.19 0.02 0.02 -5.3E-05 -7.1E-02 2.8E-06 

sp
ec

ia
liz

ed
 

flavonoids pro 0.10 0.18 2.98 3.46 0.02 0.02 -3.2E-04 -1.1E-03 -5.8E-05 

flavonoids tyr 0.16 0.25 3.75 5.75 0.02 0.01 -6.8E-05 -8.5E-03 -1.9E-07 

isoprenoids val_BCAA 0.23 0.33 3.56 6.26 0.09 0.05 7.5E-05 -1.3E-01 8.8E-07 

N containing arg 0.14 0.20 3.07 3.64 0.01 0.01 -1.5E-04 4.6E-02 1.6E-06 

phenylpropanoids lys_AspFam 0.23 0.45 3.67 3.95 0.03 0.03 -5.8E-05 4.9E-02 4.3E-08 

phenylpropanoids tyr_ShikFam 0.18 0.56 4.61 10.86 0.11 0.07 -5.0E-05 -5.6E-03 -2.7E-07 

S containing met 0.14 0.30 3.58 5.46 0.03 0.02 1.3E-05 -3.6E-02 -2.6E-07 

S containing phe 0.14 0.21 3.68 4.38 0.03 0.03 -1.0E-06 -6.2E-03 7.3E-08 

S containing ShikFam 0.10 0.21 3.55 8.18 0.02 0.02 -1.3E-05 -1.0E-02 -8.0E-11 

S containing gln_t 0.58 1.00 4.56 5.59 0.06 0.13 1.5E-04 -2.6E-01 1.1E-05 

S containing phe_t 0.13 0.19 3.78 4.60 0.02 0.02 2.1E-04 -1.9E-02 4.7E-06 

S containing gln_GluFam 0.33 0.80 3.44 6.41 0.06 0.12 -2.3E-03 -5.2E-02 1.5E-03 
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   Proportion h2 explained Likelihood ratio   Δbias  

 Pathway Trait 
95 

percentilea 
MultiBLUP 

95 
percentilea 

MultiBLUP Δrb Δr2/h2c intercept slope ΔMSE 

pr
ot

ei
n 

degradation 
(ubiquitin) ala_t 1.00 1.00 4.19 5.57 0.04 0.05 1.5E-05 -2.0E-01 8.9E-09 

degradation 
(ubiquitin) val_PyrFam 0.47 0.63 8.76 13.53 0.05 0.02 2.3E-05 5.1E-02 -1.5E-07 

amino acid activation gly 0.12 0.25 3.80 4.00 0.02 0.02 -3.6E-05 -2.0E-02 -6.0E-06 

amino acid activation gly_t 0.17 0.38 3.81 5.38 0.03 0.05 -1.1E-04 -3.0E-02 -6.1E-05 
amino acid 
activation gly_SerFam 0.27 0.51 3.12 11.40 0.05 0.08 2.0E-05 -9.0E-02 -2.8E-06 

amino acid 
activation ser_SerFam 0.28 0.51 3.16 11.08 0.05 0.08 3.6E-06 -9.3E-02 -1.5E-06 

assembly met 0.06 0.13 3.58 5.31 0.03 0.02 1.6E-05 6.6E-03 -6.8E-08 

assembly met_t 0.04 0.12 3.30 4.05 0.01 0.01 -4.6E-05 -7.4E-03 -6.4E-07 

folding his 0.09 0.14 8.86 9.56 0.02 0.01 -1.2E-03 3.2E-02 5.1E-04 

folding met 0.14 0.19 3.58 3.67 0.01 0.01 2.3E-05 -2.8E-02 6.6E-08 

folding ser 0.17 0.37 3.59 6.63 0.05 0.04 1.0E-03 -5.8E-02 2.3E-05 

folding SerFam 0.13 0.23 4.16 6.75 0.04 0.03 9.3E-04 8.2E-03 2.7E-05 

folding Total 0.09 0.18 8.48 9.06 0.02 0.01 -5.0E-05 2.3E-02 2.3E-07 

glycosylation thr_AspFam 0.14 0.15 3.17 5.19 0.05 0.04 1.8E-05 1.5E-02 2.9E-08 

postrans arg_t 0.93 1.00 3.95 4.45 0.02 0.02 1.4E-04 4.1E-02 -5.8E-07 

postrans arg_GluFam 1.00 1.00 3.40 4.17 0.03 0.02 -7.4E-06 -1.4E-01 -2.4E-07 

postrans glu_GluFam 0.63 0.71 3.11 3.28 0.02 0.00 -1.9E-05 1.1E-01 2.1E-06 

targeting glu_t 0.30 0.44 3.36 3.98 0.02 0.02 -1.6E-02 2.7E-02 -3.4E-03 

Trait and pathway combinations where the MultiBLUP model improved prediction accuracy by at least 5% are bolded. Changes in 216 

bias (zero centered) and mean squared error (MSE) were taken as the absolute value of the difference between the MultiBLUP and 217 

GBLUP model, with negative values suggesting less bias/error in the MultiBLUP model. 218 

a
95 percentile based on random gene groups with the same number of markers. 219 

b
The difference in prediction accuracy (r) between the MultiBLUP and GBLUP models. 220 

c
The difference in reliability (r2/h2

) between the MultiBLUP and GBLUP models.221 
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Pathway-level association testing reveals novel SNP associations for FAA traits 222 

The multiple testing correction in a typical GWAS is highly conservative, resulting in only 223 

the strongest marker-trait associations being classified as statistically significant at a genome-wide 224 

level [47,53].  To reassess previous GWAS results for FAA traits [23] at specific genomic regions, 225 

we performed pathway-level association testing for pathways which passed our significance 226 

criteria. When subsetting the GWAS P-values from [23] into biological pathways, we identify 227 

several novel associations that pass a false discovery rate (FDR) significance threshold of 10% (S3 228 

Table). Similar to previous results, we found significant associations for several BCAA traits and 229 

the amino acid degradation pathway, which contained a known causal gene (BCAT2) associated 230 

with BCAA traits [22]. We also found additional associations with the amino acid degradation 231 

genes DELTA-OAT (At1g10060) and isovaleryl-CoA-dehydrogenase (IVD, At3g45300). The 232 

IVD protein was previously shown to influence all BCAAs [54], but has not been identified in 233 

GWAS or QTL mapping studies, further supporting the effectiveness of the MultiBLUP model to 234 

study genetic regulation of metabolites.  235 

Other significant associations were found for absolute levels of methionine (Met) and SNPs 236 

in the category for protein folding (Atg01230) and for the family-based ratio of threonine 237 

(Thr_AspFam) and SNPs related to protein glycosylation (GALT31A, At1g32930; OST48, 238 

At5g66680). Single SNP associations were also identified for the family ratio of valine 239 

(Val_PyrFam) and the ubiquitin-mediated protein degradation category, for relative levels of 240 

glycine (Gly_t) and the protein amino acid activation category, and for absolute levels of 241 

phenylalanine (Phe) and the annotations for sulfur-containing specialized metabolites.  242 

In the glutamate family, several significant associations were found for the alternative 243 

oxidase, amino acid degradation, and protein folding categories. For example, relative and family 244 

ratios of arginine (Arg_t, and Arg_GluFam, respectively) had a significant association with SNPs 245 

in the alternative oxidase 3 gene (AOX3, At1g32350), suggesting that free arginine may be related 246 

to alternative respiration. Notably, histidine related traits were associated with both the amino acid 247 

degradation category (His_GluFam) and SNPs related to protein folding (His) (Fig 3, S3 Table). 248 

Annotations for the genes that were found significant for His_GluFam (THA1, At1g08630; PED1, 249 

At2g33150; PYD4, Atg08860; LOG7, At5g06300) suggest that the metabolism of both threonine 250 

and lysine may be involved in determining the partition of histidine in dry Arabidopsis seeds, 251 
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consistent with the observed interconnectivity within the amino acid metabolic pathway and the 252 

interdependent regulation of these amino acids [5,55].  253 

 

 
 

Fig 3. Increases in prediction accuracy inform pathway-guided GWAS to reveal novel SNPs 254 

related to histidine.  255 

Comparison of MultiBLUP and GBLUP models for prediction accuracy, reliability, bias (intercept 256 

and slope), and mean squared error (MSE) for (A) absolute levels of histidine (His) and (B) the 257 

family ratio of histidine (His_GluFam). Note that the y-axis scale varies. GWAS results for (C) 258 

the protein folding category and His and for (D) the amino acid degradation category and 259 

His_GluFam. All SNPs are shown in gray, with pathway SNPs highlighted as blue triangles. SNPs 260 

with an FDR corrected p-value < 0.10 are annotated and highlighted in yellow.  261 
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Discussion 262 

Previous studies on the genetic architecture for FAA and other metabolic traits suggest a 263 

complex genetic architecture comprised of small effect QTLs (e.g. [22,23,29]). These conclusions 264 

are recapitulated by previous biochemical and transcriptomic studies that investigated FAA 265 

homeostasis in the vegetative stage across changing environments [7,12,56,57]. Combined, these 266 

lines of evidence suggest FAA homeostasis is orchestrated by multiple pathways, including amino 267 

acid synthesis and degradation, primary metabolism, specialized metabolism, and protein 268 

metabolism (reviewed in [12]). In this study, we applied a genomic partitioning model 269 

(MultiBLUP) to investigate how FAA homeostasis is orchestrated in the model system 270 

Arabidopsis thaliana, allowing us to both test the feasibility of this approach and to further 271 

examine the genetic basis of FAAs in seeds. In addition to shedding light on the genetic complexity 272 

of FAA traits and the role of metabolic pathway genes in FAA homeostasis, this method can be 273 

used to develop hypotheses for biochemical and molecular studies.  274 

Since its development nearly two decades ago [37], genomic prediction has dramatically 275 

altered the speed and scale of applied genetic and breeding research [58]. However, the use of 276 

genomic prediction has been primarily limited to agricultural species [59–61], likely because this 277 

is the realm where predicted breeding values are most directly applicable for breeding objectives. 278 

Recently, several studies have used genomic partitioning in prediction models to evaluate the 279 

relative influence of various genomic features, such as positional effects and gene annotation 280 

categories, on phenotypes of interest. Genomic partitioning is most successful when the partition 281 

is enriched for causal variant(s) [44], providing a framework for guided hypothesis testing. For 282 

example, [43] incorporated annotations for several biological pathways to determine which 283 

pathways were associated with udder health and milk production in dairy cattle. Similarly, gene 284 

ontology categories were leveraged to explore the genetic basis of different phenotypes in 285 

Drosophila melanogaster [42]. In maize, applications of genomic partitioning models have 286 

revealed that SNPs located in exons explain a larger proportion of phenotypic variance compared 287 

to other annotation categories [51]. The incorporation of prior biological information from 288 

transcriptomics, GWAS, and genes identified in silico also improved predictions of root 289 

phenotypes in cassava [62].  290 

Surprisingly, genomic partitioning has not been widely applied in plants to decipher the 291 

underlying genetic contribution of biological processes to metabolic traits. We chose to use 292 
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genomic partitioning to investigate amino acid traits, with the goal of advancing our understanding 293 

of metabolic systems, their complexity, and the genetic determinants that may contribute to 294 

homeostasis of FAAs in seeds. Because FAA traits are part of core metabolism that is highly 295 

conserved, we hypothesize that many of our findings can be used to develop similar hypotheses in 296 

crop systems, where there is potential to contribute to the biofortification of essential amino acids.  297 

 298 

Genomic prediction of FAA traits in Arabidopsis seeds  299 

We first established the efficacy of the GBLUP model in a diversity panel of 313 300 

Arabidopsis individuals, which represents a substantial proportion of the known genetic variability 301 

present in Arabidopsis [63]. Because this setting is distinct from the closed breeding populations 302 

of dairy cattle, maize, and other agricultural species where genomic prediction is often applied 303 

(e.g. [40,59,61]), we were interested in testing how well genomic prediction would work in this 304 

panel. We were also interested in testing the utility of genomic prediction for FAA traits, which 305 

are highly conserved. The observation of moderate prediction accuracies for many of these traits 306 

suggests that there is LD between markers and causal loci, providing evidence that genomic 307 

prediction can be successfully applied in this system. Interestingly, we observe higher prediction 308 

accuracies for a greater proportion of absolute FAA levels compared to relative levels and family-309 

based ratios, consistent with the previous hypothesis that, compared to metabolic ratios, absolute 310 

levels of metabolites have a more complex genetic architecture, where many loci of small effect 311 

are contributing to genetic variation.  312 

 313 

Genomic partitioning guided by metabolic processes generates new insights into the genetic 314 

basis of FAAs 315 

We next applied a genomic partitioning approach, MultiBLUP, to investigate the 316 

association of different metabolic annotation categories with FAA traits in dry Arabidopsis seeds, 317 

focusing specifically on categories which are thought to influence FAA traits at this developmental 318 

stage. Our findings indicate that various FAA traits are associated with multiple biological 319 

pathways, many of which are not previously reported. On a broader scale, these results provide 320 

evidence that FAA composition in dry seeds is likely influenced by multiple metabolic processes 321 

rather than a single, predominant process. A notable caveat of this approach is that a given 322 

metabolic pathway may be in LD with an unrelated causal variant, and so the pathway itself may 323 
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not be associated with the trait tested. In addition, this approach is also most effective when small 324 

SNP sets explain a large proportion of the phenotypic variance for a trait [41]. As such, some of 325 

the pathways tested in this study may have been too large to find an association.  326 

 327 

Branched chain amino acid traits are associated with amino acid synthesis and degradation 328 

pathways. The inclusion of BCAA traits (leucine, isoleucine, valine) enabled both a proof of 329 

concept for the MultiBLUP approach and generated new insights into their genetic regulation. 330 

Previous work has demonstrated that a large effect QTL contributes to approximately 12-19% of 331 

the observed variability for BCAA traits, with the highest variance explained for relative level of 332 

isoleucine (Ile_t) [22]. The causal gene was identified as branched chain amino acid transferase 2 333 

(BCAT2; At1g10070), which is part of the BCAA metabolic pathway [64]. Our results recapitulate 334 

this observation, showing that the amino acid degradation pathway, which contains the BCAT2 335 

haploblock, explained both a significant proportion of heritability (43%) and improved prediction 336 

accuracy by 6.7% for Ile_t. This finding suggests that the MultiBLUP approach was effective at 337 

identifying a category of markers when a known causal variant is included.  338 

Surprisingly, we also found that the BCAA family was the only group associated with 339 

amino acid synthesis, with a significant proportion of heritability explained for absolute levels of 340 

isoleucine, leucine, BCAA, and the pyruvate family composite trait. Previous work suggested that 341 

active amino acid synthesis is part of a metabolic switch occurring  during the end of seed 342 

desiccation [21]. Under the metabolic switch scenario, we expected to see many FAA traits 343 

associated with the amino acid synthesis category. Instead, our results indicate that the effect of 344 

genes related to amino acid synthesis on FAA levels in dry seeds may be more limited. 345 

Furthermore, our findings further suggest that BCAA traits may also be influenced by genes related 346 

to glycolysis and isoprenoid metabolism, eluding to a more complex genetic architecture for these 347 

traits. Future studies will be necessary both to validate these observations and to further explore 348 

the genetic architecture for BCAA traits. 349 

 350 

Specialized metabolism categories explain significant variation for aromatic amino acids. 351 

This study included measurements of natural variation for traits related to the aromatic amino acids 352 

(i.e. phenylalanine, tyrosine, and tryptophan). Notably, no pathway associations were identified 353 

for traits related to tryptophan. With the exception of an association of the composite aromatic 354 
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family trait (ShikFam) and the amino acid transport pathway, these traits were exclusively 355 

associated with specialized metabolism pathways. Specific categories associated with aromatic 356 

FAA traits included phenylpropanoids, flavonoids, and sulfur-containing compounds (Fig 2, Table 357 

3),  consistent with the knowledge that aromatic amino acids can be converted to numerous 358 

specialized metabolites such as alkaloids, phenylpropanoids, and glucosinolates [65,66]. One 359 

notable pattern was that tyrosine-related traits were only associated with the flavonoid and 360 

phenylpropanoid categories. The finding of an association between tyrosine and flavonoids agrees 361 

with previous findings in transgenic rice seeds, which reported that flavonoids biosynthesized by 362 

exogenous enzymes may act as signaling molecules to alter amino acid biosynthesis [67]. For the 363 

family-based ratio of tyrosine (Tyr_ShikFam), we observed a 10.8% increase in prediction 364 

accuracy when SNPs from the phenylpropanoid pathway were partitioned in the MultiBLUP 365 

model, suggesting SNPs in this pathway are contributing to the variation for Tyr_ShikFam or are 366 

in strong LD with a causal variant. This is again consistent with biological expectations, as tyrosine 367 

is a known precursor for phenylpropanoid biosynthesis. 368 

On the other hand, traits related to phenylalanine were associated with the pathway for 369 

sulfur-containing specialized metabolites (Fig 2), possibly influenced by a relationship to 370 

glucosinolates. The results from pathway-guided association mapping identified a significant SNP 371 

in the AOP1 gene (At4g03070, S3 Table), which encodes a probable 2-oxoglutarate-dependent 372 

dioxygenase involved in aliphatic glucosinolate biosynthesis. This result was surprising, as 373 

aliphatic glucosinolate biosynthesis begins with the chain elongation of methionine, suggesting 374 

that the relationship with phenylalanine in this case may be indirect. On the other hand, aromatic 375 

glucosinolates, which are produced from phenylalanine, are not considered widespread in 376 

Arabidopsis but are known to occur both in leaves and seeds in some ecotypes [68,69]. However, 377 

it is possible that the composition of aromatic glucosinolates in seeds and their effect on core 378 

metabolism is underestimated.  379 

Interestingly, no association with nitrogenous specialized metabolism was detected for 380 

either phenylalanine or tyrosine, which are precursors for the nitrogen-containing compounds 381 

alkaloids. We also found no evidence of associations with protein metabolism, despite categories 382 

in this group being associated with most other amino acid families, and only one association with 383 

amino acid metabolism, suggesting that core metabolism may not play a critical role in the 384 

regulation of homeostasis for these traits.  385 
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Traits in the aspartate family, especially methionine, show relationships with amino acid 386 

degradation, specialized metabolism, and protein metabolism. Traits in the aspartate family 387 

were associated with multiple ontology categories. The most interesting of these were methionine-388 

related traits, which were associated with amino acid degradation, specialized metabolism, and 389 

protein related metabolism. Since methionine is an essential amino acid, there have been many 390 

attempts to increase its content in seed crops via alteration of its metabolic pathway. Consistent 391 

with our observations, these attempts have also shown that alteration of methionine content in 392 

seeds affects multiple aspects of core metabolism [6,26]. We also found an association of 393 

methionine with the sulfur-containing specialized metabolism pathway. This finding is congruent 394 

with the knowledge that methionine is a precursor for aliphatic glucosinolate biosynthesis and with 395 

evidence that perturbing glucosinolates produces a significant increase in levels of free methionine 396 

in Arabidopsis leaves [16]. 397 

 398 

Traits in the serine family are exclusively associated with pathways related to protein 399 

metabolism. Within the serine family, traits were exclusively associated with the protein 400 

metabolism categories for amino acid activation and protein folding. Interestingly, family-based 401 

ratios for both glycine (Gly_SerFam) and serine (Ser_SerFam) showed an increase in prediction 402 

accuracy of 5% when partitioning SNPs related to amino acid activation in the MultiBLUP model. 403 

This suggests that genes related to amino acid activation, such as tRNA synthetases, may 404 

contribute to the homeostasis of glycine and serine.  405 

Surprisingly, we did not observe a relationship of serine family traits with the amino acid 406 

synthesis category, which includes genes in the serine acetyltransferase (SAT) gene family. These 407 

enzymes catalyze the first step in the conversion of serine to cysteine (Cys), which can then be 408 

converted to methionine. In maize kernels, overexpression of SAT has been linked to increased 409 

sulfur assimilation and higher levels of methionine, without incurring detrimental effects on plant 410 

yield [70]. Notably, measurements of cysteine are not included in the present study, and thus we 411 

may be unable to fully capture the dynamics of this agronomically important relationship.  412 

 413 

The glutamate family showed surprising associations with amino acid degradation and 414 

sulfur-containing specialized metabolism. Traits in the glutamate family were associated with 415 

amino acid degradation, primary metabolism, specialized metabolism, and protein metabolism. 416 
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Amino acids in the glutamate family are known to play a central role in core metabolism, mainly 417 

by functioning as one of the entry points for nitrogen into plants and via connections to the TCA 418 

cycle [7,71].  Hence, it was not surprising to find traits in this family associated with multiple 419 

categories, including the association of arginine traits with the pathway related to alternative 420 

oxidase activity (S3 Table). Two surprising associations were also identified: the association of 421 

His_GluFam with amino acid degradation (Fig 3) and the association of glutamine related traits 422 

with sulfur-containing specialized metabolism (Fig 2). In each case, prediction accuracy was 423 

increased substantially (>5%) (Table 3). For His_GluFam and the amino acid degradation 424 

category, pathway-guided association mapping identified SNPs in genes related to the catabolism 425 

of lysine and threonine, suggesting that these processes may be involved in the regulation of 426 

histidine composition in seeds (S3 Table). The genetic architecture for histidine is of special 427 

interest, with evidence suggesting that levels of histidine in seeds can influence important 428 

agronomic traits such as seed oil deposition [72]. However, the metabolic pathway for histidine 429 

biosynthesis and catabolism is not yet fully understood [73,74]. Previous work using network-430 

guided GWAS has identified CAT4, a vacuolar transporter, that was associated with histidine traits 431 

[23]. Here, we present evidence that regulation of histidine may also be influenced by genes related 432 

to other aspects of amino acid degradation.  433 

 434 

Conclusions 435 

Our results demonstrate that genomic partitioning is a useful technique to identify genomic 436 

categories or features that are more likely to harbor causal variants. We leveraged genomic 437 

partitioning models to identify genomic regions that increase prediction accuracy. Using this 438 

approach, we are able to reduce the search space for causal variants and to identify novel candidate 439 

genes for traits related to methionine, threonine, histidine, arginine, glycine, phenylalanine, and 440 

BCAAs (S3 Table). These results can be used as a platform to further explore the biofortification 441 

of seed amino acids, to deepen our understanding of metabolic regulation, and to identify candidate 442 

regions for functional validation. Furthermore, this strategy of genomic partitioning and pathway 443 

association may be useful for classifying the genetic architecture of other complex metabolic traits 444 

in additional species.  445 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2019. ; https://doi.org/10.1101/272047doi: bioRxiv preprint 

https://doi.org/10.1101/272047
http://creativecommons.org/licenses/by/4.0/


 

23 

Methods  446 

Plant materials and trait data 447 

For this study, we reanalyzed data of the absolute levels, relative compositions, and 448 

biochemical ratios for free amino acids in dry Arabidopsis thaliana seeds. These traits were 449 

previously measured in [22,23] for 313 accessions of the Regional Association Mapping panel 450 

[63,75]. In summary, seeds from two plants of each accession were harvested from three 451 

independent grow outs. Absolute levels of FAAs (nmol/mg seed) were quantified using liquid 452 

chromatography–tandem mass spectrometry multiple reaction monitoring (LC-MS/MS MRM; see 453 

[22,23] for further details). Eighteen of the 20 proteinogenic amino acids were measured, including 454 

composite phenotypes for the sum of all FAAs measured (total FAAs) and for each of five 455 

biochemical families as determined by metabolic precursor (S1 Fig, S1 Table). This prior 456 

knowledge of biochemical relationships among FAAs was used to determine metabolic ratios, 457 

which can represent for example the proportion of a metabolite to a related biochemical family or 458 

the ratio between two metabolites that share a metabolic precursor [30,76,77]. For each amino 459 

acid, relative composition was calculated as the absolute level over the total. Additional ratio traits 460 

were determined based on biochemical family affiliation [23]. Traits and their respective 461 

abbreviations are described in S1 Table. Overall, the 65 phenotypes included 25 absolute FAA 462 

levels (individual amino acids and composite traits), 17 relative levels (ratio of absolute level for 463 

an amino acid compared to total FAA content), and 23 family-derived traits (ratio of absolute level 464 

for an amino acid to the total FAA content within a given family).  465 

The best linear unbiased predictors (BLUPs) for each accession, reported in [22], were 466 

used as the phenotype data in this study. Briefly, BLUPs were generated by first fitting a mixed 467 

model including replicate and accessions as random effects. Outliers were then removed for 38 of 468 

the 65 traits based on Studentized deleted residuals [78].  Following outlier removal, the Box-Cox 469 

procedure [79] was applied to transform each trait to avoid violating model assumptions for 470 

normally distributed error terms and constant variance. The BLUP for each accession was then 471 

determined for all transformed traits using a mixed model fit across all three replicates. This 472 

procedure removed the effect of growing environment but did not account for genetic differences.    473 
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Genetic data 474 

The accessions used in this study were previously genotyped using a 250k SNP panel [80], 475 

v3.06.  The software PLINK v1.9 was used to filter for minor allele frequency (MAF) > 0.05 (--476 

maf 0.05), reducing the number of SNPs from 214,051 to 199,452.  477 

To partially account for population structure, quality filtered SNPs were first pruned for 478 

linkage disequilibrium (LD) in PLINK v1.9 using a window size of 10kb that shifted by five SNPs 479 

and a pairwise LD threshold of 0.1. The SNPs exceeding this threshold were removed, reducing 480 

the number of SNPs from 199,452 to 45,122. These LD pruned SNPs were then used as the input 481 

for principal component analysis in R v3.6.0 [86] using the ‘prcomp’ function. Phenotypes were 482 

adjusted for population structure by regressing the first six principal components, which explained 483 

9.4% of the variance (S3 Fig),  against each phenotype and returning the residuals (see similar 484 

approach in [81]). These residuals were used as the phenotypes for downstream analyses along 485 

with the full set of 199,452 quality filtered SNPs.  486 

 487 

Selection of pathway SNPs  488 

To examine specific metabolic pathways, SNPs were selected based on annotation 489 

categories in the MapMan software [82] for the TAIR10 annotation of Arabidopsis [83]. We 490 

focused broadly on four categories: amino acid metabolism (three pathways), primary metabolism 491 

(three pathways), specialized metabolism (five pathways), and protein metabolism (nine 492 

pathways) (Table 2). The SNP positions were first matched to the corresponding Ensembl gene id 493 

using the biomaRt package [84,85] in R v3.6.0 [86]. We then selected all SNPs within a 2.5 kb 494 

range of the start and stop position for each gene, which is within the range of the estimated average 495 

in Arabidopsis [87] and includes upstream promoter regions. Specific pathways and corresponding 496 

MapMan annotation categories, including the number of genes and SNPs represented, are 497 

described in Table 2. We followed MapMan annotations for all genes except BCAT2 (At1g10070), 498 

which was moved from the amino acid synthesis pathway to the amino acid degradation pathway 499 

along with other SNPs in the same haploblock (chromosome 1, 3274080 to 397645 bp). This 500 

decision was based on previous work in which bcat2 mutants showed higher accumulation of 501 
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branched-chain amino acids in seeds, thereby demonstrating that BCAT2 has catabolic activity 502 

[22]. 503 

 504 

Prediction models 505 

The Linkage Disequilibrium Adjusted Kinship (LDAK) software v5.0 [88] 506 

(http://dougspeed.com/ldak/) was used to implement two models for genomic prediction of each 507 

trait: GBLUP, in which random effects are drawn from the same effect size distribution, and 508 

MultiBLUP, in which random effects can be drawn from distributions with distinct effect size 509 

variances [41]. First, the pairwise genetic similarity between individuals was estimated using a 510 

genomic similarity matrix (GSM), or kinship matrix [89,90]: 511 

 ! = ##′/&, (1) 

where # is a matrix of SNP genotypes, #′ is the transpose of #, and & is the number of SNPs.  512 

Genomic prediction was performed for all markers using a random regression BLUP (RR-513 

BLUP) model as described in [37,91], in which phenotypes are regressed against markers that 514 

share a common effect size variance distribution. Briefly, this model equates each phenotypic 515 

value to a normally distributed random effect of each marker, and the BLUP of each random 516 

marker effect is subjected to a ridge regression penalty. The RR-BLUP model is considered 517 

equivalent to a GBLUP model, which uses a genomic relationship matrix in place of markers [37].  518 

To model biological pathways, we used the MultiBLUP model, which extends the RR-519 

BLUP model to incorporate multiple kinship matrices as random effects with distinct effect size 520 

variances. For this study, the MultiBLUP model included random effects for sets of markers within 521 

a biological pathway (m) and for the remaining markers not included in a given pathway (Ïm). 522 

Following equation (1), markers within a biological pathway have a correlation structure Km, with 523 

the matrix form Xm, where columns refer to the set of markers in the pathway. In this case, the set 524 

of pathway markers, Rm, contains a total of pm markers with the effect size of the jth marker 525 

distributed as '() ∼ +(0, /)0 /&)). Similarly, the correlation structure for the remaining markers 526 

is KÏm, has the matrix form XÏm for the set RÏm of size pÏm and the effect size of the jth marker is 527 
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distributed as '(
∉) ∼ +(0, /∉)

0 /&∉)). These terms were used in the following random regression 528 

model from [41] to perform MultiBLUP:  529 

 
34	 	= 	'6	 + 8 #4(

)'(
)

(∈:;

+ 8 #4(
∉)'(

∉)

(∉:;

+ <4, (2) 

where Yi is the observed phenotypic value of the ith individual, b0 is the intercept, and ei is the 530 

normally distributed random error term associated with the ith individual. 531 

For our purposes, kinship matrices were estimated in the LDAK software for either all 532 

SNPs (GBLUP) or each SNP partition (MultiBLUP, i.e. pathway SNPs and all other remaining 533 

SNPs) by ignoring LD adjusted SNP weightings (--ignore-weights YES) so that each marker in 534 

the model was assigned an effect. This avoids distributing a marker effect to neighboring markers 535 

that are in strong LD, which can increase noise in the prediction model, although it may bias 536 

estimates of variance. Predictors were scaled by setting the parameter a = 0 (--power 0), a 537 

commonly used value in plant and animal breeding that assumes each SNP has the same effect 538 

size distribution regardless of MAF [92]. 539 

  540 

Heritability 541 

The GBLUP and MultiBLUP models use average information restricted maximum 542 

likelihood (REML, see [41] for details) to compute variance component estimates for  /=0, . . . , /?0  543 

and /@0. Because we were only interested in a single partition for any given pathway, we refer to 544 

variance estimates for a given partition m as /A)0  and variance estimates for all other markers not 545 

included in this partition as /A∉)0 . In the case of the GBLUP model, /A)0  is the estimate of variance 546 

for all SNPs. These estimates were used to calculate genomic heritability as the ratio of additive 547 

genomic variance explained for a given marker set (/)0 ) over the total variance explained (the sum 548 

of /)0 , /∉)0 ,and the residual variance, /@0): 549 

 ℎ0 =
C;
D

C;
D 	E	C∉;

D 	E	CF
D .  (3) 

For the MultiBLUP model, the proportion of genomic heritability explained was calculated as: 550 
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 	 G;
D

G;
D E	G∉;

D ,  (4) 

where ℎ)0  is the genomic heritability explained by SNPs in a given genomic partition and ℎ∉)0  is 551 

the genomic heritability explained by all other SNPs not included in the partition. 552 

 553 

Model performance 554 

The performance of prediction models was determined using ten-fold cross validation with 555 

a one-fold holdout, with the same training and testing sets used for the GBLUP and MultiBLUP 556 

models. For each cross validation, 10% of the data were withheld when fitting the GBLUP and 557 

MultiBLUP models. Variance estimates from REML were then used to determine the genomic 558 

estimated breeding value (GEBV) based on marker data for the excluded individuals. This process 559 

was repeated five times for a total of 50 cross validations per trait. Prediction accuracy was then 560 

calculated as H(IA, I), where IA represents the estimated breeding values and I represents the 561 

observed phenotype values. Reliability, which is the coefficient of determination (H0) scaled by 562 

heritability, was calculated as J
D

GD
 [93]. Bias was calculated as the simple linear regression 563 

coefficients (i.e., the intercept and slope estimates) between the estimated breeding values and 564 

observed phenotype, with a slope estimate of one and an intercept estimate of zero indicating no 565 

bias. Lastly, mean squared error (MSE), which measures prediction bias and variability, was 566 

calculated as the mean of the squared difference between the observed phenotypes and GEBVs, 567 

=

K
∑(I − IA)0	where n is the number of observations. 568 

 569 

Generation of an empirical null distribution 570 

To test if a metabolic pathway explained more variation than expected by chance, we 571 

generated an empirical null distribution. The null hypothesis was that a given biological pathway 572 

will explain a similar amount of trait variance as the same number of SNPs in randomly selected 573 

gene groups [43]. To establish a null distribution, we first defined 5,000 random gene groups with 574 

a target number of SNPs that ranged uniformly from 1 to 50,000 SNPs. For each random subset, 575 

all SNPs within 2.5 kb of the start and stop positions were sampled for a randomly selected gene. 576 
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This process was repeated by randomly sampling genes one at a time until the target number of 577 

SNPs for each subset was achieved. As discussed in [43], this approach does not explicitly model 578 

variation in other parameters (e.g., allele frequencies, the number of markers, and LD), but it is 579 

expected that these differences are captured to some extent by the sampling process.  580 

 Next, we used two metrics to test if SNPs in a given pathway explained more genomic 581 

variance than expected by chance and increased model fit for each trait: (1) the proportion of 582 

genomic heritability explained by a pathway compared to the random gene groups described 583 

above, and (2) the likelihood ratio (LR) as a measure of pathway model fit compared to the model 584 

fit of random SNP subsets. Each metric was evaluated by testing pathway values against the null 585 

distribution of values computed from the random gene groups described above. The proportion of 586 

heritability explained was calculated as described previously and the LR was calculated as twice 587 

the difference between the log likelihood of the MultiBLUP model and the log likelihood of the 588 

GBLUP model. Significant values for both of these metrics suggest that a given pathway 589 

annotation has biological importance [43].   590 

To establish significance thresholds for the LR and proportion of heritability explained, we 591 

first accounted for rounding errors by setting heritability estimates that were negative to zero and 592 

greater than one to one. These negative estimates are possible because we did not constrain 593 

estimates to be non-negative in the REML solver (--constrain NO) and may occur as a consequence 594 

of small sample size and/or if the true heritability is low. Heritability estimates with negative 595 

standard deviations and/or a negative LR suggested the model did not converge and were excluded 596 

(S2 Table). Relatively few random gene groups were filtered for each trait except valine (Val), 597 

which had a high proportion (1504 observations) of random gene groups with a negative LR. 598 

Significance thresholds were then determined based on the 95th percentile of both the proportion 599 

of heritability explained and the LR using smooth quantile regression in the R package ‘quantreg’ 600 

with constraint set to ‘increasing’.  601 
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Identifying biological pathways of interest 602 

In summary, a pathway was considered of interest for a trait if the MultiBLUP model passed 603 

all three of the following criteria:  604 

1.) The MultiBLUP model explained a greater proportion of the genomic heritability than the 605 

95th percentile of the same number of randomly selected markers.  606 

2.) The LR for the MultiBLUP model was greater than the 95th percentile of LR for the same 607 

number of randomly selected markers.  608 

3.) The MultiBLUP model improved prediction accuracy by at least 1% compared to the 609 

GBLUP model.  610 

Together, criteria (1) and (2) established that the pathway being tested contained significantly more 611 

information than a random set of SNPs. Criteria (3) was imposed to ensure that there was a 612 

meaningful difference in prediction accuracy when pathway information was incorporated via 613 

MultBLUP compared to the naive GBLUP model that incorporated no pathway information. 614 

 615 

Pathway-level association analysis 616 

If a given trait and pathway combination passed all of the above criteria, P-values for the 617 

SNPs in the pathway were selected from the GWAS results reported in [22,23]. For each trait and 618 

pathway combination, the Benjamini and Hochberg [94] procedure was conducted on the 619 

corresponding set of SNPs to control the false discovery rate (FDR) at 10%.  620 

 621 

Data availability 622 

Genotype data are previously published and were accessed from 623 

https://github.com/Gregor-Mendel-Institute/atpolydb/wiki [80]. The scripts and phenotypic data 624 

used for this analysis are publicly available on GitHub at https://github.com/mishaploid/aa-625 

genomicprediction.   626 
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Supporting information 639 

 
 

S1 Fig. Biochemical relationships among amino acids.  640 

Colors indicate different amino acid families and boxes indicate the corresponding precursor. The 641 

branched-chain amino acids include Leu, Ile, Val are split across the Aspartate and Pyruvate family 642 

and therefore denoted with asterisks (*). Note that histidine (†) does not belong explicitly to the 643 

families identified here, but often is considered as part of the glutamate family.  644 
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S2 Fig. Genomic variance explained by 5,000 random SNP subsets for free amino acid traits.  645 

Each point represents a different random gene group with the number of SNPs indicated on the x-646 

axis. The solid line indicates the 95th percentile for the proportion of heritability explained and the 647 

dashed line represents the expectation when all SNPs have a similar effect size. Points are colored 648 

blue if the likelihood ratio for a random set exceeds 95% percentile for the LR of the same trait. 649 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2019. ; https://doi.org/10.1101/272047doi: bioRxiv preprint 

https://doi.org/10.1101/272047
http://creativecommons.org/licenses/by/4.0/


 

33 

 
 

S3 Fig. Principal component analysis (PCA) of genetic data for the 313 Arabidopsis 650 

accessions used in this study.  651 

(A) PCA scatterplot and percent variation explained for the first two principal components. (B) 652 

Screeplot showing the percent variance explained by each principal component.   653 
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S1 Table. List of seed free amino acid traits calculated from the quantification of 18 FAA and biochemical family affiliations. 654 

Strings of AA letter codes represent the sum of those AAs. 655 

 656 

Amino 
acids one 

letter code   
Absolute levels   Relative levels to 

total 
  Biochemistry based metabolic ratios, grouped by AA families' affiliation 

Ala A  
AA-Abs  

Total = Sum of 18 AA   
AA/Total 

 
Asp Family = Ile, Met, Thr, 
Asp Lys (IMTDK)  

BCAA Family = Ile, Val, Leu (IVL)      
Pyr Family=Leu, Ala, Val (LAV) 

Asp D  A  A/Total  D/IMTDK  I/IVL 

Glu E  D  D/Total  K/IMTDK  V/IVL 

Phe F  E  E/Total  M/IMTDK  L/IVL 
Gly G  F  F/Total  T/IMTDK  A/LAV 

His H  G  G/Total  IMTDK/D  L/LAV 

Ile I  H  H/Total    V/LAV 
Lys K  I  I/Total  Glu Family = Glu, His, Pro, 

Arg, Gln (EHPRQ) 
 I/IMTDK  

Leu L  K  K/Total    
Met M  L  L/Total  Q/EHPRQ  Shikimate (Aromatic) Fam = Trp, Phe,Tyr (WFY) 

Pro P  M  M/Total  E/EHPRQ  W/WFY 

Gln Q  P  P/Total  H/EHPRQ  F/WFY 

Arg R  Q  Q/Total  P/EHPRQ  Y/WFY 

Ser S  R  R/Total  R/EHPRQ   
Thr T  S  S/Total  EHPRQ/E  Ser Family = Ser, Gly (Cysteine-not detected -SG)  

Val V  T  T/Total*    G/SG 

Trp W  V  V/Total    S/SG 

Tyr Y  W  W/Total     

   Y  Y/Total     

   Total       

   IMTDK (Asp family)  * T/Total not included due to errors when generating BLUPs   

   IVL (BCAA family)       

   LAV (Pyr family)       

   EHPRQ (Glu family)       

   WFY (Shik family)       

   SG (Ser family)       
657 
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S2 Table. Summary of null gene groups for each free amino acid trait.   658 

Includes the number of gene groups that passed filtering criteria, failed to converge, or had a 659 

negative likelihood ratio statistic. 660 

 

Trait Number of gene groups Failed to converge Negative LR 
ala 4998 1 1 
ala_PyrFam 4958 26 17 
ala_t 4998 0 2 
arg 4996 0 4 
arg_GluFam 4997 1 3 
arg_t 4992 6 4 
asp 4997 0 3 
asp_AspFam 4999 1 1 
asp_t 4992 5 3 
AspFam 4999 0 1 
AspFam_Asp 4999 0 1 
BCAA 4988 0 12 
gln 5000 0 0 
gln_GluFam 4997 1 3 
gln_t 4985 10 5 
glu 4998 0 2 
glu_GluFam 5000 0 0 
glu_t 4994 2 4 
GluFam 4954 10 36 
GluFam_glu 4989 2 9 
gly 4999 0 1 
gly_SerFam 4996 1 3 
gly_t 4994 1 5 
his 4999 0 1 
his_GluFam 4997 1 2 
his_t 4997 0 3 
ile 4999 0 1 
ile_AspFam 4999 0 1 
ile_BCAA 4995 3 2 
ile_t 5000 0 0 
leu 4998 0 2 
leu_BCAA 4998 1 1 
leu_PyrFam 4982 2 16 
leu_t 4998 0 2 
lys 5000 0 0 
lys_AspFam 4998 1 1 
lys_t 4997 0 3 
met 4999 0 1 
met_AspFam 4995 0 5 
met_t 4999 1 0 
phe 4997 1 2 
phe_ShikFam 4998 0 2 
phe_t 4997 0 3 
pro 5000 0 0 
pro_GluFam 4998 0 2 
pro_t 4999 0 1 
PyrFam 4997 1 2 
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Trait Number of gene groups Failed to converge Negative LR 
ser 5000 0 0 
ser_SerFam 4996 0 4 
ser_t 4997 0 3 
SerFam 4997 0 3 
ShikFam 4999 0 1 
thr 4996 0 4 
thr_AspFam 4998 0 2 
Total 4999 0 1 
trp 4999 0 1 
trp_ShikFam 4993 1 6 
trp_t 4997 1 2 
tyr 4999 0 1 
tyr_ShikFam 4997 0 3 
tyr_t 4997 1 2 
val 3491 8 1504 
val_BCAA 5000 0 0 
val_PyrFam 4987 7 6 
val_t 4997 0 3 

 

 
S3 Table. Significant results from pathway guided association testing (α = 0.10).  661 

Columns include the original GWAS p-values, the number of SNPs tested for each pathway, and 662 

the pathway-level FDR corrected p-value.  (see supplementary information)  663 
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