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Abstract 32 

Background: Aging is accompanied with loss of tissue homeostasis and accumulation of 33 

cellular damages. As one of the important metabolic centers, aged liver shows altered lipid 34 

metabolism, impaired detoxification pathway, increased inflammation and oxidative stress 35 

response. However, the mechanisms for these age-related changes still remain unclear. In fruit 36 

flies, Drosophila melanogaster, liver-like functions are controlled by two distinct tissues, fat 37 

body and oenocytes. Although the role of fat body in aging regulation has been well studied, 38 

little is known about how oenocytes age and what are their roles in aging regulation. To address 39 

these questions, we used cell-type-specific ribosome profiling (RiboTag) to study the impacts of 40 

aging and oxidative stress on oenocyte translatome in Drosophila. 41 

Results: We show that aging and oxidant paraquat significantly increased the levels of reactive 42 

oxygen species (ROS) in adult oenocytes of Drosophila, and aged oenocytes exhibited reduced 43 

sensitivity to paraquat treatment. Through RiboTag sequencing, we identified 3324 and 949 44 

differentially expressed genes in oenocytes under aging and paraquat treatment, respectively. 45 

Aging and paraquat exhibit both shared and distinct regulations on oenocyte translatome. Among 46 

all age-regulated genes, mitochondrial, proteasome, peroxisome, fatty acid metabolism, and 47 

cytochrome P450 pathways were down-regulated, whereas DNA replication and glutathione 48 

metabolic pathways were up-regulated. Interestingly, most of the peroxisomal genes were down-49 

regulated in aged oenocytes, including peroxisomal biogenesis factors and beta-oxidation genes. 50 

Further analysis of the oenocyte translatome showed that oenocytes highly expressed genes 51 

involving in liver-like processes (e.g., ketogenesis). Many age-related transcriptional changes in 52 

oenocytes are similar to aging liver, including up-regulation of Ras/MAPK signaling pathway 53 

and down-regulation of peroxisome and fatty acid metabolism. 54 

Conclusions: Our oenocyte-specific translatome analysis identified many genes and pathways 55 

that are shared between Drosophila oenocytes and mammalian liver, highlighting the molecular 56 

and functional similarities between the two tissues. Many of these genes are altered in both aged 57 

oenocytes and aged liver, suggesting a conserved molecular mechanism underlying oenocyte and 58 

liver aging. Thus, our translatome analysis will contribute significantly to the understanding of 59 

oenocyte biology, and its role in lipid metabolism, stress response and aging regulation. 60 

Keywords: Oenocyte, Fat body, Liver, Ribosomal profiling, Peroxisome, Fatty acid beta-61 

oxidation, Ras/MAPK signaling 62 
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Introduction 63 

Aging is the major risk factor for many chronic diseases [1]. The prevalence of liver 64 

diseases, such as non-alcoholic fatty liver disease (NAFLD), increase dramatically in the elderly 65 

[2, 3].  It is known that aging is associated with alterations of hepatic structure, physiology and 66 

function [4]. For example, aged liver shows reduced blood flow, loss of regenerative capacity, 67 

decreases in detoxification and microsomal proteins synthesis, increases in polyploidy, oxidative 68 

stress and mitochondrial damage [5]. Additionally, the metabolism for low-density lipoprotein 69 

cholesterol decreases by 35% [3]. Age-related increases in neutral fat levels and high-density 70 

lipoprotein cholesterol predispose aged liver to NAFLD and other liver diseases. Accumulated 71 

evidence suggests that age-related decline of liver function can be attributed to increased ROS 72 

production, DNA damage, activation of p300-C/EBP-dependent neutral fat synthesis [6], 73 

decreases in autophagy, increases in inflammatory responses [7, 8], and activation of nuclear 74 

factor-κB (NF-κB) pathway [4, 9]. Despite the genetic and functional analysis of liver aging and 75 

liver diseases, only a few studies have looked at the global transcriptional changes during liver 76 

aging [10-12].  77 

Similar to mammals, the fruit fly (Drosophila melanogaster, hereafter as Drosophila) 78 

also shows age-dependent decline of tissue function and loss of homeostasis (reviewed in [13]). 79 

In Drosophila, liver-like functions are shared by two distinct tissues, fat body and oenocytes 80 

[14]. Fat body is the main tissue for energy storage in insects, and it plays a key role in 81 

metabolism, nutrition sensing, growth and immunity (reviewed in [15]). Fat body has also been 82 

implicated in the regulation of organismal aging [16]. Many longevity pathways act on fat body 83 

to control lifespan [17-19]. Compared to fat body, little is known about how oenocytes age and 84 

what is the role of oenocytes in aging regulation. Oenocytes are specialized hepatocyte-like cells 85 

responsible for energy metabolism, biosynthesis of cuticular hydrocarbon and pheromone ([14, 86 

20], reviewed in [21, 22]). Oenocytes coordinate with fat body in mobilizing lipid storage upon 87 

nutrient deprivation [14, 23, 24]. Recent studies in the yellow fever mosquito Aedes aegypti 88 

showed that pupal oenocytes highly express cytochrome P450 genes, suggesting an important 89 

role of oenocytes in detoxification [25]. Despite its roles in lipid metabolism and wax 90 

production, we know very little about oenocyte’s other physiological functions, including its role 91 

in the regulation of aging and longevity. It is known that aging oenocytes undergo dramatic 92 

morphological changes (e.g., increases in cell size and pigmented granules [26]) and exhibit 93 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/272179doi: bioRxiv preprint 

https://doi.org/10.1101/272179


dysregulation of mitochondrial chaperone Hsp22 [27]. However, transcriptional characterization 94 

of oenocyte aging has not been previously performed.  95 

Here, we utilized RiboTag technique [28] to profile the genome-wide changes in 96 

ribosome-associated transcripts during oenocyte aging in Drosophila. We show that aging and 97 

paraquat (PQ) exhibit common and distinct regulation on adult oenocyte translatome. Gene 98 

ontology and gene set enrichment analysis (GSEA) revealed that ribosome, proteasome, 99 

peroxisome, xenobiotic metabolism, fatty acid metabolism, and DNA replication pathways were 100 

altered under aging and oxidative stress. Comparing tissue-specific transcriptomes further 101 

revealed that oenocytes were enriched with genes involved liver-like functions (e.g., 102 

ketogenesis). Aging oenocytes also shared many molecular signatures with aging liver. Taken 103 

together, our translatome analysis revealed a conserved molecular mechanism underlying 104 

oenocyte and liver aging. Our study will offer new opportunities for future dissection of novel 105 

roles of oenocytes in lipid metabolism, stress response, and aging control. 106 

 107 

Results 108 

Characterization of age-related changes in ROS production in Drosophila oenocytes  109 

In Drosophila, larval and adult oenocytes exhibit distinct morphological characteristics 110 

[21]. Larval oenocytes are clustering along the lateral body wall [14], while adult oenocytes 111 

(used in the present study) appear as segmental dorsal stripes and ventral clusters nearby the 112 

abdominal cuticle (Fig. 1A). As oxidative stress is commonly observed in aging tissue, we first 113 

examined the age-related changes in ROS production in adult oenocytes. As shown in Figs. 114 

1B&1C, both aging and PQ (an oxidative stress inducer) significantly increased ROS levels in 115 

adult oenocytes. Increases in cell and nuclear sizes were also seen in aged oenocytes (Figs. 1B, 116 

S1). In the present study, oenocytes were dissected from two ages, 10 days (young) and 30 days 117 

(middle age). Middle age was used because many epigenetic and transcriptional changes have 118 

been previously observed in the midlife [29-31]. Since elevated ROS levels were already 119 

apparent at middle age, a comparison between young and middle age will allow us to capture the 120 

early-onset age-related changes in adult oenocytes. Additionally, we noticed that young 121 

oenocytes showed much higher induction of ROS under PQ treatment than the oenocytes from 122 

middle age (Fig. 1C), suggesting the response to oxidative stress was altered in aged oenocytes.  123 

Oenocyte-specific translatomic profiling through RiboTag sequencing 124 
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Besides their roles in metabolic homeostasis, hydrocarbon and pheromone production 125 

(reviewed in [21]), the role of oenocytes in aging regulation has not been carefully examined. 126 

Characterization of age-related transcriptional changes in oenocytes is an important step toward 127 

our understanding of oenocyte aging. To date, only a few oenocyte transcriptome analyses have 128 

been reported [23, 25]. Most of these studies used dissected oenocytes, which often have issues 129 

with tissue cross-contamination. To overcome this issue, we performed an oenocyte-specific 130 

RiboTag analysis. In the analysis, oenocyte-specific driver PromE-Gal4 was used to drive the 131 

expression of FLAG-tagged RpL13A. According to RNA-seq database (at Flybase.org) and a 132 

recent ribosomal proteome analysis [32], RpL13A is one of the highly and ubiquitously 133 

expressed components in Drosophila large ribosomal subunit. Our experimental design 134 

facilitates the enrichment of oenocyte-specific ribosome-associated mRNAs and translatomic 135 

profiling (Fig. 2A). To verify the efficiency and specificity of our RiboTag profiling, we 136 

performed a qRT-PCR analysis to measure the expression of Desaturase 1 (Desat1). Desat1 is a 137 

transmembrane fatty acid desaturase and its E isoform (desat1-E) was known to be specifically 138 

expressed in female oenocytes [20]. We found that the expression of desat1-E was much higher 139 

in anti-FLAG immunoprecipitated sample (oenocytes) compared to the input (whole body), 140 

suggesting that our RiboTag approach can effectively detect the gene expression from adult 141 

oenocytes (Fig. 2B).  142 

To confirm the specificity of the RiboTag analysis, we measured the expression of a 143 

brain-specific gene, insulin-like peptide 2 (Dilp2), and found that Dilp2 expression in oenocyte 144 

RiboTag samples was very low compared to the head samples (Fig. 2C). Thus our RiboTag 145 

analysis has very little contamination from other tissues (such as brain). We also set up two 146 

control experiments to test the specificity of the reagents used in our pull-down assay: 1) 147 

Immunoprecipitation of PromE>RpL13A-FLAG expressing females using only protein G 148 

magnetic beads without adding FLAG antibody. 2) Immunoprecipitation of PromE-gal4 flies 149 

using both Protein G magnetic beads and FLAG antibody. No detectable RNAs were pulled 150 

down from the two control groups, suggesting there is none or very little non-specific binding 151 

from FLAG antibodies or protein G magnetic beads during the immunoprecipitation (Fig. 2D). 152 

Notably, the total RNA pulled down from aged samples were less than those from young 153 

oenocytes. This is probably due to age-related decreases in general transcription and translation, 154 

because the PromE-gal4 driver activity remained the same during aging (Fig. S1). Due to the 155 
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variation in RNA quantity among different samples, we used equal amount of RNAs for all 156 

library construction. To examine age- and stress-related transcriptional changes in Drosophila 157 

oenocytes, we performed RiboTag sequencing on four different experimental groups: H2O-158 

Young, PQ-Young, H2O-Aged, PQ-Aged (see Methods for more details). Female flies were used 159 

in the present study, because previous studies showed that PromE-gal4 drives expression in testis 160 

(additional to oenocytes) in male flies [20]. 161 

Differential gene expression (DGE) analysis reveals common and distinct transcriptional 162 

regulation by aging and oxidative stress 163 

Using Illumina sequencing (HiSeq 3000, single-end, a read length of 50 base pair), we 164 

obtained a total of 402 million reads from 12 library samples (about 11.6X coverage per library). 165 

On average, 82.43% of unique reads were mapped to annotated Drosophila reference genome. 166 

To visualize how gene expression varies under different conditions, we performed principal 167 

component analysis (PCA) on the fragments per kilobase million (FPKM) reads. The first 168 

component accounts for 50% of the variance and the second component accounts for 9% of 169 

variance (Fig. 3A). The PCA analysis showed that three replicates of each condition cluster 170 

together, except for one of the H2O-young samples. Two age groups were also well separated. 171 

Interestingly, there was a reduced variation between H2O and paraquat treatment in aged 172 

oenocytes compared to the young ones (Fig. 3A). 173 

DGE analysis was performed using Cufflinks and Cuffdiff tools (fold change ≥ 2, FDR 174 

adjusted p-value ≤ 0.05, only protein-coding genes were analyzed). To compare the impacts of 175 

aging and oxidative stress on transcriptional changes in adult oenocytes, we first performed 176 

correlation analysis using Log-transformed FPKM reads from all four groups. The coefficient of 177 

determination (R2) was 0.861 between H2O-aged and H2O-young groups (Fig. 3B), 0.926 178 

between H2O-young and PQ-young (Fig. 3C), 0.948 between PQ-aged and H2O-aged (Fig. 3D). 179 

Aging induced a bigger transcriptional shift compared to paraquat treatment. Although the 180 

change of R2 was relatively small, the total number of age-regulated genes was much higher than 181 

that under paraquat treatment (Figs. 3E&3F). Thus, both PCA and correlation analyses suggest 182 

that aging and paraquat exhibit different impacts on oenocyte translatome. 183 

DGE analysis identified 3324 genes that were differentially expressed during oenocyte 184 

aging (1092 up-regulated and 2232 down-regulated), while 949 genes (198 up-regulated and 751 185 

down-regulated) were regulated by paraquat treatment at young ages (Figs. 3E&3F) (Table S1: 186 
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List 1-4). About 706 DEGs were commonly regulated by aging and paraquat (127 up-regulated 187 

and 579 down-regulated) (Table S1: List 5-6). The genes commonly up-regulated by aging and 188 

PQ were involved in DNA metabolism, DNA repair and recombination (Fig. 3E), while those 189 

commonly down-regulated genes were involved in immune response and fatty acid elongation 190 

(Fig. 3F) (Table S2: List 1-4). 191 

Besides common transcriptional regulation between aging and oxidative stress, many 192 

genes were differential regulated between the two processes. A total of 2618 genes (965 up-193 

regulated and 1653 down-regulated) were only regulated by aging (Figs. 3E&3F) (Table S1: List 194 

5-6). Genes up-regulated in aged oenocytes were enriched in several Gene ontology (GO) terms, 195 

including developmental process, glutathione metabolism and metabolism of xenobiotics (Table 196 

S2: List 5). The down-regulated genes are enriched in peroxisome, ribosome, proteasome, 197 

oxidative phosphorylation, and fatty acid metabolism (Table S2: List 6). About 243 genes (71 198 

up-regulated and 172 down-regulated) were only regulated by paraquat treatment at young ages. 199 

These genes are enriched for biological processes like response to bacterium, response to other 200 

organism, and phototransduction (Table S2: List 7-8).  201 

It is known that stress tolerance declines with age [33], which can be caused by impaired 202 

transcriptional regulation of stress signaling pathways [34]. Our transcriptome analysis showed 203 

that the total number of PQ-regulated genes decreased with aging (Figs. 3G&3H). About 949 204 

genes were differentially expressed under paraquat treatment at young ages (198 up-regulated 205 

and 751 down-regulated), while only 385 genes were differentially expressed at middle ages 206 

(213 up-regulated and 172 down-regulated) (Table S1: List 7-8). In addition, paraquat treatment 207 

targeted a different sets of the biological processes and signaling pathways between young and 208 

middle ages (Figs. 3G&3H). In young oenocytes, paraquat up-regulated pathways like response 209 

to DNA metabolism and DNA recombination, while down-regulating immune response, fatty 210 

acid biosynthesis, and fatty acid elongation (Table S2: List 9-10). In contrast, different sets of 211 

pathways were up-regulated by paraquat at middle ages, such as pheromone binding and cation 212 

channel activity. No pathway was found enriched for genes down-regulated by paraquat at 213 

middle ages (Table S2: List 11-12). 214 

Next, we performed hierarchical clustering analysis and identified 11 distinct clusters 215 

among four groups (Fig. 3I). Among 11 clusters, cluster 3 and 5 are two major clusters. Cluster 3 216 

includes genes that were up-regulated in aged oenocytes compared to young ones. Gene ontology 217 
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analysis showed that cluster 3 was enriched with genes in endocytosis, hippo, JAK-STAT, 218 

fanconi anemia pathway, phosphatidylinositol signaling, and DNA replication (Fig. 3J). Cluster 219 

5 consisted of genes down-regulated by aging, and was enriched in fatty acid metabolism, 220 

oxidative phosphorylation, and proteasome (Fig. 3K). Taken together, our RiboTag analysis 221 

revealed common and distinct transcriptional changes under aging and oxidative stress in adult 222 

oenocytes. 223 

Gene set enrichment analysis (GSEA) reveals up- and down-regulated pathways in aged 224 

oenocytes 225 

To further characterize oenocyte-specific signaling pathways that were regulated by 226 

aging and oxidative stress, we performed gene set enrichment analysis (GSEA) using a collection 227 

of pre-defined gene sets retrieved from Kyoto Encyclopedia of Genes and Genomes (KEGG) 228 

database. Through GSEA, we discovered five pathways within which genes were up-regulated 229 

with age (FDR q-value<0.05) (Figs. 4A&4C) (Table S2: List 13). They are mismatch repair, 230 

DNA replication, base excision repair, nucleotide excision repair, and fanconi anemia pathways. 231 

These pathways were tightly related to the cellular responses to DNA replication stress, 232 

suggesting a possible increased DNA replication stress during oenocyte aging. Several key 233 

players in DNA replication stress response were up-regulated aged oenocytes, such as ATR/mei-234 

41 (ATM- and Rad3-related kinase) and TopBP1/mus101 (DNA topoisomerase 2-binding 235 

protein 1). 236 

On the other hand, GSEA analysis revealed 14 pathways within which most of genes 237 

were significantly down-regulated during aging, such as oxidative phosphorylation, ribosome, 238 

proteasome, and peroxisome (Figs. 4B, 4D, 4E, 4F) (Table S2: List 13). These results suggest 239 

that the functions of many key cellular organelles/components (e.g., mitochondria and 240 

peroxisome) were impaired in aged oenocytes. In aged oenocytes, we found that the key 241 

components of all five complexes in mitochondrial electron transport chain were down-242 

regulated, such as NADH dehydrogenase subunits (e.g., ND-13, ND-15, ND-30, ND-B8), 243 

succinate dehydrogenase (e.g., SdhC, SdhD), cytochrome bc1 complex (e.g., Cyt-c1, UQCR-14, 244 

UQCR-C2, UQCR-Q, ox), cytochrome c oxidase subunits (e.g., COX4, COX5A, COX5B), and 245 

ATP synthase subunits (e.g., ATPsynB, ATPsynD, ATPsynF, ATPsynO) (Table S1: List 2). 246 

Interestingly, we found that aging down-regulated many mitochondrial ribosomal subunit genes 247 

(44 out of 72 annotated mitochondrial ribosomal proteins) (Fig. 4I) (Table S1: List 2). Lastly, we 248 
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observed an age-related decrease in the expression proteasome subunit genes. These include 20S 249 

protein subunits (e.g., Prosalpha2, Prosalpha3, Prosbeta1, Prosbeta2, Prosbeta3), and 19S 250 

regulatory cap subunits (e.g., Rpn1, Rpn11, Rpn12, Rpt1, Rpt2, Rpt3) (Table S1: List 2). The 251 

analysis on peroxisome function is described in a following section. 252 

Reduced xenobiotic metabolism is one of the hallmarks of liver aging [35]. Xenobiotics 253 

metabolism (or detoxification) consists of three major phases [36]. The Phase I and II enzymes 254 

represent the most abundant classes of detoxification system, including cytochrome P450 (CYPs) 255 

and glutathione S-transferases (GSTs). Interestingly, our GSEA analysis revealed distinct 256 

expression patterns for these two detoxification enzyme families. We found that almost all of the 257 

GSTs in Delta class were up-regulated under aging, while other classes showed mixed 258 

expression patterns (Fig. 4J) (Table S1: List 9). The microsomal glutathione S-transferase 259 

(Mgstl), one of the highly enriched oenocyte genes, was significantly down-regulated during 260 

oenocyte aging (Table S1: List 9). 261 

On the other hand, most of the cytochrome P450 genes were down-regulated in aged 262 

oenocytes (Figs. 4H&4K). Many of the down-regulated CYPs have been previously linked to 263 

insecticide resistance or xenobiotic metabolism, such as Cyp6a8, Cyp6a21, Cyp308a1, Cyp12a4, 264 

Cyp6a2, Cyp6w1, and Cyp313a1 (Table S1: List 10). Besides metabolizing exogenous 265 

chemicals, several CYPs catalyze endogenous metabolites and play key roles steroid hormone 266 

biosynthesis and fatty acid metabolism. For example, Cyp4g1 is a key CYP gene involved in 267 

cuticular hydrocarbon biosynthesis [37] and triglyceride metabolism [14]. The expression of 268 

Cyp4g1 was decreased in aged oenocytes (Table S1: List 10). About eight CYPs (also known as 269 

the Halloween genes) in Drosophila that are known to regulate ecdysteroid metabolism. Two of 270 

them, Cyp306a1 (Phantom) and Cyp315a1 (Shadow), were highly expressed in oenocytes (32-271 

fold and 12.5-fold enriched respectively) (Fig. S2). During oenocyte aging, Phantom was down-272 

regulated, whereas Shadow was up-regulated (Table S1: List 10).  273 

Peroxisome pathway is transcriptionally deregulated in aged oenocytes 274 

Recent studies suggest that peroxisome protein import is impaired during aging [38]. Our 275 

GSEA analysis revealed that except for Pex1 (up-regulated), most of the genes involved in 276 

peroxisome biogenesis (also called peroxin, PEX) were down-regulated in aged oenocytes (Figs. 277 

4F&5A) (Table S1: List 11). Out of 16 peroxin genes, five of them showed significant down-278 

regulation during aging (fold change ≥ 2, FDR adjusted p-value ≤ 0.05). They are matrix enzyme 279 
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import components (Pex5, Pex12), receptor recycling (Pex6), and membrane assembly 280 

components (Pex16, Pex19) (Figs. 5A&5B). In addition, most of the PEX genes were also down-281 

regulated by paraquat treatment, but to a less extend comparing to aging (Fig. 5C).  282 

Besides peroxisome biogenesis, genes involved in other peroxisomal functions were also 283 

down-regulated during oenocyte aging (Figs. 5D&5E) (Table S1: List 11). These functions 284 

include fatty acid beta-oxidation, ether phospholipid biosynthesis, amino acid metabolism, ROS 285 

metabolism, purine metabolism, and retinol metabolism. Several beta-oxidation genes showed 286 

significantly decreased expression, including sterol carrier protein X-related thiolases (ScpX and 287 

CG17597), enoyl-CoA hydratase (ECH/CG9577), carnitine O-acetyl-transferases (CRAT and 288 

CG5122), and nudix hydrolases (CG10194, CG10195, CG18094) (Fig. 5D). Consistently, 289 

hepatocyte nuclear factor 4 (HNF4), the major regulator for mitochondrial and peroxisomal beta-290 

oxidation, was significantly down-regulated under aging and paraquat (Table S1: List 2). On the 291 

other hand, a few other beta-oxidative genes were up-regulated in aged oenocyte, such as ABC 292 

transporters (Pmp70, CG2316) that are responsible for transporting long-chain fatty acids into 293 

peroxisome, delta3-delta2-enoyl-CoA isomerase (PECI/CG13890), carnitine O-294 

octanoyltransferase (CROT/CG12428). Acyl-CoA oxidases (Acox) that are involved in the first 295 

step of beta-oxidation showed mixed expression pattern (Fig. 5D).  296 

Consistent with increased ROS production during oenocyte aging, most of the genes 297 

regulating peroxisomal ROS metabolism were down-regulated in aged oenocytes, such as 298 

catalase (Cat), superoxide dismutase 1 (SOD1), peroxiredoxin 5 (Prx5). Although the majority 299 

of ether phospholipid synthesis genes (e.g., fatty acyl-CoA reductase, FAR) were down-300 

regulated, there are a few genes that showed up-regulation during aging, such as 301 

dihydroxyacetone phosphate acyltransferase (DHAPAT or Dhap-at), the key enzyme for the 302 

production of acyl-DHAP (the obligate precursor of ether lipids). Additionally, three aldehyde 303 

oxidases (Aox1, Aox2, Aox4) in purine metabolism were up-regulated (Fig. 5E).  304 

To verify our RiboTag sequencing results, we performed qRT-PCR analysis on three 305 

selected peroxisome genes, Pex5, Pex19, and Cat. Consistent with RNA-Seq results, qRT-PCR 306 

showed that all three genes were significantly down-regulated in aged oenocytes (Figs. 5F-5H).  307 

Ketogenesis, fatty acid elongation, and peroxisome pathways are enriched in both 308 

oenocytes and liver 309 
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Fat body, but not oenocytes, is a long-established tissue model to study liver- and 310 

adipose-like functions in Drosophila [39]. Although hepatocyte-like functions (e.g., steatosis) 311 

have been previously observed in oenocytes [14], it remains unclear whether fat body and 312 

oenocytes each perform different aspects of liver-like functions in Drosophila. To address this 313 

question, we performed a transcriptome comparison among Drosophila oenocytes, fat body, and 314 

human liver (Table 1).  315 

We first identified genes that were enriched in adult oenocytes by comparing our 316 

oenocyte RiboTag data (H2O-Young group) with previously published whole body 317 

transcriptome data (Table S1: List 12). Fat body-enriched genes were identified based on 318 

Drosophila tissue transcriptome database, FlyAtlas [40, 41] (Table S1: List 13). The genes with 319 

more than 5-fold higher expression in oenocytes (or fat body) comparing to whole body are 320 

defined as oenocyte-enriched (or fat body-enriched) genes. A total of 423 oenocyte-enriched 321 

genes and 544 fat body-enriched genes were identified through tissue transcriptome comparison 322 

(Fig. S2). A recent study showed that Drosophila oenocytes express many liver-like lipid 323 

metabolic genes/pathways [14]. About 15 of these genes were also found enriched in our 324 

oenocyte translatome analysis (e.g., Cpr, Cat, spidey, FarO) (Table S1: List 16). About 463 325 

human liver-enriched genes were retrieved from the Human Protein Atlas [42] (Table S1: List 326 

15). 327 

Interestingly, there was very little overlap between oenocyte-enriched and fat body-328 

enriched genes, suggesting that adult fat body and oenocytes may regulate distinct biological 329 

processes (Fig. S2A) (Table S1: List 14). Gene ontology analysis revealed that fat body mainly 330 

expressed genes in carboxylic acid and amino acid metabolism, whereas oenocytes were 331 

enriched with genes in pathways like fatty acid biosynthesis, fatty acid elongation, proteasome-332 

mediated protein catabolism, xenobiotic metabolism, ketone body metabolism, and peroxisome 333 

(Table 1) (Table S2: List 14-15). Furthermore, we found that two innate immunity pathways, 334 

Toll and Imd (Immune deficiency), were differentially enriched in fat body and oenocytes (Fig. 335 

S2B) (Table S1: List 12-13). Several genes in Imd pathway (PRGP-LC, PRGP-LB, Dredd) were 336 

enriched in oenocytes, whereas fat body were enriched with genes in Toll pathway (Tl, PGRP-337 

SA, GNBP3, modSP) (Fig. S2B). Additionally, most of the antimicrobial peptides (AMPs) were 338 

enriched in oenocytes, but not in fat body (Fig. S2B) 339 
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When comparing oenocyte and liver transcriptomes, we found that several pathways were 340 

specifically enriched in both liver and oenocytes, such as long-chain fatty acid metabolism, 341 

peroxisome, and xenobiotic metabolism (Table 1, Table S2: List 14-16). A close look at the 342 

enriched genes shared between oenocytes and liver revealed that HMG-CoA synthase (Hmgs in 343 

fly and HMGCS1/2 in human), the key enzyme involved in ketogenesis and production of β-344 

hydroxy-β-methylglutaryl-CoA (HMG-CoA), was highly expressed in both oenocytes and liver 345 

(Figs. 6A&6B). Additionally, two other ketogenesis genes were also highly expressed in both 346 

oenocytes and liver. They are HMG-CoA lyase (CG10399 in fly and HMGCL in human) and D-347 

β-hydroxybutyrate dehydrogenase (shroud in fly and BDH1 in human) (Figs. 6A&6B). 348 

Ketogenesis is primarily activated in mammalian liver, especially during fasting. These results 349 

suggest that oenocyte may be the fly tissue regulating ketogenesis similar to mammalian liver.  350 

Microsomal fatty acid elongation and the synthesis of very-long-chain fatty acid 351 

(VLCFA) were also enriched in both oenocytes and liver (Figs. 6C&6D). Liver and oenocytes 352 

were enriched for very-long-chain 3-ketoacyl-CoA synthase (ELOVL2 in human and CG18609 353 

in fly), which catalyzes the first step of VLCFA synthesis in smooth endoplasmic reticulum 354 

(smooth ER). Oenocytes also showed high expression of three other key enzymes in this process 355 

(spidey, CG6746, Sc2) (Figs. 6C&6D). The enrichment of fatty acid elongation factors in 356 

oenocytes aligns well with previously known oenocyte function in the biosynthesis of VLCFA 357 

and hydrocarbons [20, 24]. Notably, several key players involved in the production of cuticular 358 

hydrocarbons were enriched in adult oenocytes, including cytochrome P450 Cyp4g1 (3.4-fold) 359 

and its obligatory redox partner, cytochrome P450 reductase Cpr (5.7-fold), as well as five 360 

peroxisome-localized fatty acyl-CoA reductases (FAR) (FarO, CG13091, CG14893, CG17562, 361 

and CG4020) (Table S1: List 11-12). In particular, FarO was 123-fold enriched in oenocytes, 362 

while CG13091 was 243-fold enriched (Fig. S4). 363 

Additionally, many oenocyte- and liver-enriched genes belong to peroxisome pathway, 364 

especially peroxisomal beta-oxidation (CG17597, CG9577 in oenocytes, ACOX2, BAAT, 365 

EHHADH, ACAA1, SLC27A2, ACSL1, PECR in liver) (Fig. S4). Genes involved in ROS 366 

metabolism (e.g., Cat, Sod1) were also enriched in both oenocytes and liver (Fig. S4). Lastly, we 367 

found that fibroblast growth factor 21 (bnl in fly and FGF21 in human), a key hormonal factor 368 

that regulates glucose homeostasis, was enriched in both oenocytes and liver (Table S1: List 369 

12&15). Taken together, our translatome analysis suggests that oenocytes and fat body regulate 370 
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distinct processes, and oenocytes may participate several liver-like functions (e.g., ketogenesis, 371 

and long-chain fatty acid metabolism).  372 

Conservation in age-related transcriptional changes between oenocytes and liver  373 

Since our analyses suggest that Drosophila oenocytes may perform liver-like functions, 374 

we wonder if oenocyte and liver exhibit similar transcriptional changes during aging. To test this, 375 

we compared age-related transcriptomic profiles between Drosophila oenocytes and mouse liver 376 

[10]. We first searched for fly orthologues of mouse liver genes using Drosophila Integrative 377 

Ortholog Prediction Tool (DIOPT) [43]. Out of 1052 protein-coding genes that are differentially 378 

expressed in aging mouse liver, 735 of them have putative orthologues in Drosophila genome, 379 

corresponding to 881 Drosophila genes (Fig. 7A). About 30% of these Drosophila orthologues 380 

(252 out of 881) also showed differential expression during oenocyte aging, suggesting a large 381 

conservation between liver and oenocyte aging (Table S1: List 17-18).  382 

Gene ontology analysis showed that several key biological processes were altered in aged 383 

liver, including immune response, apoptosis, peroxisome, bile acid biosynthesis, and fatty acid 384 

metabolism (Table S2: List 17-18). Among these biological processes, peroxisome and fatty acid 385 

metabolism are shared between liver and oenocyte aging (Fig. 7A). Next, we took a close look at 386 

the pathways that contain same orthologues between fly and mouse. Genes up-regulated in both 387 

aged oenocytes and liver were enriched in pathways like Mitogen-activated protein kinase 388 

(MAPK), Ras signaling, NF-κB, and JAK-STAT (Fig. 7B), while down-regulated genes were 389 

found in peroxisome, fatty acid metabolism, and oxidative phosphorylation pathways (Fig. 7C) 390 

(Table S2: List 17-18). Using STRING protein network analysis, we found that large number of 391 

Ras/MAPK signaling components were up-regulated under both oenocyte and liver aging (Figs. 392 

7D&7E), suggesting that age-dependent dysregulation of these pathways are conserved between 393 

fly and mammal. 394 

Lastly, we examined age-related transcriptomic changes between oenocytes and several 395 

other fly tissues, such as fat body, midgut, and heart. The age-related transcriptional profiles in 396 

these fly tissues were obtained from recent genomic studies [44-46] (Table S1: List 19-20). 397 

Pathway analysis (using STRING) on these tissue transcriptomes revealed a tissue-specific 398 

transcriptional profiles during fly aging (Fig. 7F). Each tissue has its own and unique age-399 

regulated biological processes and pathways (Fig. 7G) (Table S2: List 20-21). For example, 400 

genes that were differentially expressed in aged oenocytes are enriched for proteasome and 401 
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ribosome-related functions, while aged fat body showed transcriptional changes in aminoglycan 402 

metabolism, chitin metabolism, and detoxification. In aging heart, immune response, glycolysis 403 

and gluconeogenesis were enriched. And ion transport, DNA replication, and fatty acid 404 

degradation were altered in aging midgut (Fig. 7G). Taken together, aged oenocytes share similar 405 

transcriptional profiles with aging liver, while they also exhibit unique features compared to 406 

other fly tissues. 407 

 408 

Discussion 409 

Oenocytes are one of the poorly studied yet important cells in insects [21, 22]. Although 410 

previous studies show that oenocytes play a crucial role in lipid metabolism (e.g., synthesis of 411 

cuticular hydrocarbon and pheromone), many other oenocyte-regulated physiological functions 412 

remain to be determined. Among the uncharacterized functions, we know very little about 413 

oenocyte aging and the role of oenocytes in aging regulation. To address these issues, we 414 

performed RiboTag sequencing to characterize Drosophila oenocyte translatome under aging 415 

and oxidative stress. We show that both aging and paraquat up-regulated DNA repair pathway, 416 

while down-regulating immune response and fatty acid elongation. In addition, aged oenocytes 417 

were associated with impaired peroxisome, mitochondrial, proteasome, and cytochrome P450 418 

pathways. Our RiboTag sequencing also revealed many shared tissue-specific pathways and age-419 

related transcriptional changes between fly oenocytes and mammalian liver, highlighting 420 

evolutionarily conserved mechanisms underlying oenocyte and liver aging and potential 421 

functional homologies between the two tissues. 422 

 423 

1. Oenocyte-specific expressed genes are involved in insect-specific and conserved liver-like 424 

functions. 425 

Previous functional and histological analyses showed that oenocytes contain large 426 

amounts of smooth ER and acidophilic cytoplasm (high protein and lipid contents) [47, 48], 427 

which is consistent with their roles in lipid synthesis and processing, especially the production of 428 

VLCFA and hydrocarbon [20, 24, 49, 50]. Interestingly, Drosophila oenocytes uptake and 429 

process fatty acids that are released from the storage tissue fat body during food deprivation [14]. 430 

The coordination between fat body and oenocytes in mobilizing lipid storage during fasting is 431 

quite similar to the adipose-liver axis in mammals. Besides lipid metabolism, many other 432 
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oenocyte-associated functions (e.g., detoxification and ecdysteroid biosynthesis) have not yet 433 

been thoroughly examined at the molecular level. It is unclear whether some of these functions 434 

are also conserved liver-like functions, or they are merely insect-specific roles.  435 

To better understand oenocyte function, we conducted oenocyte-specific translatome 436 

profiling in adult Drosophila and identified 423 genes that were highly expressed in oenocytes 437 

(at least 5-fold higher than whole body expression). These genes were enriched in pathways like 438 

fatty acid elongation, proteasome-mediated protein catabolism, xenobiotic metabolism, 439 

ketogenesis, and peroxisome pathways. There was only a small overlap between oenocyte-440 

enriched and fat body-enriched genes, suggesting that the two tissues regulate distinct functions 441 

in Drosophila. Comparing to the genes and pathways enriched in human liver, we found that 442 

oenocytes shared several biological processes with liver, such as ketogenesis, peroxisomal beta-443 

oxidation, ROS metabolism, long-chain fatty acid metabolism, and xenobiotic metabolism. This 444 

is consistent with a previous study showing that Drosophila oenocytes expressed high levels of 445 

lipid metabolic genes similar to those of mammalian liver [14]. One enriched pathway in 446 

Drosophila oenocytes that was not observed in the previous study is the ketogenesis pathway. It 447 

is well-known that ketone bodies (acetoacetate, β-hydroxybutyrate, and acetone) are primarily 448 

produced by liver when glucose is not available as fuel source [51]. Ketogenesis in insects, 449 

however, is not well studied. Ketone bodies have been detected in hemolymph, fat body, and 450 

thoracic muscle of adult desert locust and cockroach [52-54]. It is speculated that ketone bodies 451 

are produced in fat body according to the ex vivo tissue culture assay in locust [53]. However, fat 452 

body (along with many other tissues) can also oxidize ketone bodies, which is quite different 453 

from mammals where the ketogenesis tissue liver cannot oxidize ketone [53]. It might be 454 

possible that in previous ex vivo tissue culture studies, the ketone production came from a 455 

contaminated tissue (like oenocytes), rather than fat body. Based on our oenocyte translatome 456 

analysis, most of the ketogenesis genes are highly expressed in oenocytes, but not in fat body. 457 

Our data suggest that oenocytes are likely the major ketogenesis tissue. A careful function and 458 

genetic analysis, such as cell ablation or tissue-specific gene silencing, will need to be performed 459 

to examine whether oenocytes are responsible for ketogenesis in Drosophila and in other insect 460 

species. 461 

Insect hydrocarbons serve as important waterproofing components, and species- and sex-462 

specific recognition signals. The biosynthesis of hydrocarbons are involved in fatty acid 463 
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elongation, desaturation, reduction, and oxidative decarbonylation [55]. Our oenocyte 464 

translatome analysis revealed an enrichment of genes in microsomal fatty acid elongation 465 

system, such as CG18609, spidey, CG6746, and Sc2. This is consistent with oenocyte’s role in 466 

hydrocarbon production and its abundant smooth ER content. In microsomal fatty acid 467 

elongation system, spidey (also known as Kar) encodes for the only very-long-chain 3-ketoacyl-468 

CoA reductase in Drosophila genome, and it has been implicated in oenocyte VLCFA synthesis 469 

and waterproof of the trachea system [50], as well as the production of cuticular hydrocarbon, 470 

ecdysteroid metabolism, and oenocyte maturation [24, 56]. Final two steps of hydrocarbon 471 

production in insects are very-long-chain fatty acyl-CoA to aldehydes conversion by FAR and 472 

aldehyde oxidative decarbonylation by Cyp4g1 and Cpr [21, 37]. Our translatome analysis 473 

showed that five different FARs (including FarO), Cyp4g1, and Cpr are highly expressed in 474 

adult oenocytes. The large number of FARs expressed in adult oenocytes suggests that aldehyde-475 

forming FARs may be responsible for the production of a variety of hydrocarbons in oenocytes, 476 

and each FAR can catalyze a unique set of very-long-chain fatty acyl-CoA esters that vary in 477 

saturation status and chain length. 478 

 In adult insects (especially in females), ovary is the major tissue for ecdysteroid 479 

biosynthesis [57, 58]. It remains to be determined whether other adult tissues are also capable to 480 

synthesize ecdysteroids. Interestingly, we found two Halloween genes (phantom and shadow) 481 

that are highly expressed in adult oenocytes, suggesting that oenocytes may participate in 482 

ecdysteroid synthesis in adult females. Our findings are consistent with an early study showing 483 

that abdominal oenocytes dissected from Tenebrio molitor larvae can synthesize 20-484 

Hydroxyecdysone (β-ecdysone) [59]. Several recent studies also detected the expression of 485 

Halloween genes in adult tissues other than ovaries, such as brain [60], fat body, muscle, and 486 

Malpighian tubule [61]. To functionally verify the role of adult oenocytes in ecdysteroid 487 

biosynthesis, direct measurement of ecdysteroid production is needed when Halloween genes are 488 

specifically knocked down in oenocytes.   489 

 490 

2. Impaired peroxisome pathway and fatty acid beta-oxidation are the hallmarks of 491 

oenocyte aging. 492 

Our translatome analysis identified large number of genes (1092 up-regulated and 2232 493 

down-regulated) that were differentially expressed between young and middle ages, suggesting 494 
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that dramatic cellular and molecular alterations can be observed in oenocytes at the middle age. 495 

Some of these changes are consistent with previous aging transcriptome analysis in Drosophila 496 

[30, 31, 62], such as up-regulation of DNA repair and down-regulation of oxidative 497 

phosphorylation. On the other hand, oenocyte aging was specifically associated with the 498 

dysregulation of several other pathways, such as down-regulation of peroxisome and fatty acid 499 

metabolism pathways. Peroxisomes are important subcellular organelles that participate in a 500 

variety of metabolic pathways, including alpha-oxidation of phytanic acids, beta-oxidation of 501 

VLCFA, ether phospholipid synthesis (e.g., plasmalogen biosynthesis), ROS and hydrogen 502 

peroxide metabolism, glyoxylate metabolism, catabolism of amino acids and purine [63]. There 503 

are about 16 peroxisome biogenesis genes (also known as peroxin, or PEX) in Drosophila that 504 

are responsible for peroxisome membrane assembly (Pex3, Pex6, Pex9), matrix enzyme import 505 

and receptor recycling (Pex5, Pex7, Pex13, Pex14, Pex2, Pex10, Pex12, Pex1, Pex6), and 506 

peroxisome proliferation (Pex11) [64]. Mutation in many peroxin genes leads to various forms of 507 

peroxisome biogenesis disorder (PBD), also known as Zellweger syndrome (ZS) in human [63]. 508 

Our data revealed that aging and oxidative stress decreased the expression of most of the 509 

peroxisome biogenesis and protein import genes, which may lead to reduced peroxisome 510 

function, including hydrogen peroxide metabolism. Decreased expression of receptor protein 511 

Pex5 and reduced peroxisomal enzyme import were previously observed in aged C. elegans [38] 512 

and during human fibroblast senescence [65]. Among many key peroxisomal enzymes, the 513 

importing of antioxidant catalase was significantly affected during fibroblast senescence, which 514 

led to accumulation of hydrogen peroxide and further disruption of peroxisome import [65]. 515 

Similar to early studies in aging rat liver [66-68], we found that the expression of many 516 

peroxisomal antioxidant enzymes (e.g., Cat, SOD1, Prx5) decreased in aged oenocytes. The 517 

combined dysregulation of peroxisomal gene expression and protein import may attribute to 518 

elevated toxic reactive oxygen species, and impaired oenocyte functions. Furthermore, 519 

generation of excess peroxisomal ROS could disrupt mitochondria redox balance, leading to 520 

mitochondrial dysfunction and tissue aging [69]. 521 

Impaired peroxisome biogenesis/protein import during aging not only contributes to 522 

reduced antioxidant capacity and elevated ROS levels, but also dysregulation of other 523 

peroxisomal functions. Besides ROS metabolism, our translatome analysis revealed that genes 524 

involved in peroxisomal beta-oxidation and ether phospholipid were down-regulated under 525 
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oenocyte aging. This is consistent with previous studies showing that peroxisomal beta-oxidation 526 

activity decreased in old mouse liver [70]. Peroxisome has been shown to coordinate with 527 

mitochondrial fission/fusion pathway to regulate cellular fatty acid oxidation [71], a major 528 

metabolic process dysregulated during mouse aging [72]. Although the metabolic reactions for 529 

fatty acid beta-oxidation are similar in mitochondria and peroxisome, a set of fatty acid 530 

substrates can only be processed by peroxisomes, such as VLCFA, pristanic acid, di- and 531 

trihydroxycholestanoic acid (DHCA and THCA), long-chain dicarboxylic acids, certain 532 

polyunsaturated fatty acids [63, 73]. Mutation of peroxisome fatty acid transporter ABCD1 533 

impaired peroxisomal beta-oxidation and caused to accumulation of VLCFAs and 534 

neuroinflammation, which is associated X-link neurodegenerative disease adrenoleukodystrophy 535 

[74, 75]. Mouse homozygous mutants of ACOX, which catalyzes the first step of peroxisomal 536 

beta-oxidation, also showed accumulation of VLCFA and development of microvesicular fatty 537 

liver. Although the expression of two Drosophila ACOX genes were not significantly altered 538 

during oenocyte aging, ScpX (peroxisomal thiolase) was significantly down-regulated. Mice 539 

with ScpX mutation showed defects in peroxisome proliferation, hypolipidemia, motor and 540 

peripheral neuropathy, as well as impaired catabolism of methyl-branched fatty acids [76]. In 541 

addition, reduced peroxisome function can disrupt lipid homeostasis and lipid composition, 542 

which could lead to compromised immune response [77, 78].  543 

 544 

3. Conservation between oenocytes and liver aging.  545 

The comparison of aging transcriptomes between fly oenocytes and mouse liver revealed 546 

many shared pathways between the two tissues. Among these conserved pathways, MAPK and 547 

Ras signaling pathways were significantly up-regulated in both aged oenocytes and liver. MAPK 548 

signaling is one of the major regulatory pathways involved in stress responses (e.g., oxidative 549 

stress). The typical MAPK pathway includes three branches: c-Jun N-terminal kinase (JNK), 550 

p38/MAPK, and extracellular signal-regulated kinase (ERK). Previous studies show that all three 551 

MAPK cascades are elevated under aging, probably due to increased oxidative stress [79, 80]. 552 

Dysregulated MAPK signaling has been implicated in cancer and neurodegenerative diseases 553 

such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (reviewed in 554 

[81]). In model organisms (e.g., Drosophila and C. elegans), activation of JNK and p38/MAPK 555 

extended lifespan and improved tissue functions in late life [82-84]. Among many MAPK 556 
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components identified in our analysis, the activator protein 1 (AP-1) subunit, Drosophila Kay 557 

and its mouse orthologue c-Fos, were found significantly induced under aging. Both Kay and c-558 

Fos are basic leucine zipper transcription factors that mediate JNK signaling to regulate cell 559 

proliferation, tissue regeneration, stress tolerance [85, 86]. Since JNK signaling is the key 560 

regulator for the maintenance of tissue homeostasis in response to intrinsic and extrinsic stresses 561 

(e.g., UV irradiation, ROS, DNA damage, inflammatory cytokines, infection), the induction of 562 

Kay/c-Fos indicates an up-regulation of JNK signaling and accumulated cellular damages/stress 563 

responses in aged oenocytes and liver. In addition, Ras small GTPase pathway, the upstream 564 

regulator of MAPK kinase cascades, was also up-regulated during oenocyte and liver aging. The 565 

direct role of Ras signaling pathway in longevity regulation has been previously demonstrated in 566 

several model organisms [87-90]. Further studies on Ras/MAPK signaling are needed to advance 567 

our understanding on the specific contributions of these pathways in oenocyte and liver aging. 568 

Nevertheless, the up-regulation of Ras/MAPK signaling pathways can be used as an important 569 

molecular signature and biomarker for oenocyte and liver aging.  570 

 571 

Conclusion 572 

Using RiboTag sequencing, we characterized the first oenocyte translatome profiles in 573 

Drosophila. Our analysis uncovered many previously unexplored oenocyte-specific molecular 574 

pathways, especially those associated with oxidative stress and aging. Some of these pathways 575 

were found enriched in both fly oenocytes and mammalian liver, suggesting a functional 576 

homolog between the two tissues. We believe that the analysis of oenocyte translatome will 577 

contribute significantly to our understanding of oenocyte biology, as well as the molecular 578 

mechanisms for its role in stress response and aging regulation.  579 

 580 

Methods 581 

Fly strains, aging and paraquat treatment  582 

 Flies are raised in 12h:12 h light:dark cycle at 25 ˚C, 60% relative humidity on agar-583 

based diet with 0.8% cornmeal, 10% sugar, and 2.5% yeast (unless otherwise noted). Fly strains 584 

used in the present study include: w*; PromE-Gal4 (also known as Desat1-GAL4.E800) 585 

(Bloomington #65405) [20], PromE-Gal4; UAS-CD8::GFP (a gift from Alex Gould), UAS-586 

RpL13A-FLAG (a gift from Pankaj Kapahi),  To age flies, females were collected two days after 587 
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eclosion, and twenty females per vial were maintained at 25 °C and transferred to fresh food 588 

every 2-3 days. Two ages were tested, young (10-day-old) and middle age (30-day-old). For 589 

paraquat treatment, flies were fed on fly food containing 10 mM of paraquat (at the food surface) 590 

for 24 hours prior to each assay.  591 

Dihydroethidium (DHE) staining 592 

Young and aged flies were fed on normal food or paraquat (10 mM) for 24 hours prior to 593 

the staining with dihydroethidium (Calbiochem, Burlington, MA, USA. Catalog number: 38483-594 

26-0). DHE staining was performed as previously described [91]. Briefly, fly abdomen was 595 

dissected out (fat body removed) and incubated with 30 µM of DHE in Schneider’s Drosophila 596 

Medium (ThermoFisher Scientific, Catalog number: 21720-024) for 5 minutes in a dark chamber 597 

on an orbital shaker. After additional 5 minutes incubation with 1 µg/mL of Hoechst 33342 598 

(ImmunoChemistry Technologies, Bloomington, MN, USA. Catalog number: 639), fly abdomen 599 

was mounted with 50% glycerol in PBS. DHE staining was visualized with Olympus BX51WI 600 

upright epifluorescence microscopy. 601 

Oenocyte RiboTag 602 

Female progeny from the crosses between PromE-gal4 and UAS-RpL13A-FLAG were 603 

collected two days after eclosion. Four different experimental groups were tested: 1). 10-day-old 604 

females fed on normal food (H2O-Young); 2). 10-day-old females treated with 10 mM of 605 

paraquat for 24 hours (PQ-Young); 3). 30-day-old females fed on normal food (H2O-Aged); 4). 606 

30-day-old females treated with 10 mM of paraquat for 24 hours (PQ-Aged). Three biological 607 

replicates (200 females per replicate) were performed for each group. Female flies were used in 608 

the present study, because PromE-gal4 drives expression in testis (additional to oenocytes) in 609 

male flies [20]. 610 

RiboTag was performed following the protocol from McKnight Lab [28]. Briefly, flies 611 

were first frozen and ground in nitrogen liquid. The fly powder was then further homogenized in 612 

a Dounce tissue grinder containing 5 mL of homogenization buffer (50 mM Tris-HCl, pH 7.4, 613 

100 mM KCl, 12 mM MgCl2, 1 mM DTT, 1% NP-40, 400 units/ml RNAsin RNase inhibitor, 614 

100 µg/ml of cycloheximide, 1 mg/ml heparin, and Protease inhibitors). After centrifuging the 615 

homogenate at 10,000 rpm for 10 minutes, the supernatant was first pre-cleaned using 616 

SureBeads™ Protein G Magnetic Beads (Bio Rad, Hercules, CA, USA. Catalog number: 161-617 

4023), and then incubated with 15 µl of anti-FLAG antibody (Sigma-Aldrich, St. Louis, MO, 618 
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USA. Catalog number: F1804) for about 19 hours at 4 0C. The antibody/lysate mixture was then 619 

incubated with 100 µl of SureBeads for 3 hours at 4 0C. Ribosome-bound RNA was extracted 620 

and purified using RNeasy Plus Micro Kit (Qiagen, Hilden, Germany. Catalog number: 74034). 621 

Transcriptome library construction and high-throughput sequencing (RNA-Seq) 622 

RNA-Seq libraries were constructed using 300 ng of total RNA and NEBNext Ultra 623 

Directional RNA Library Prep Kit for Illumina (New England Biolabs (NEB), Ipswich, MA, 624 

USA. Catalog number: E7420). Poly(A) mRNA was isolated using NEBNext Oligo d(T)25 beads 625 

and fragmented into 200 nt in size. After first strand and second strand cDNA synthesis, each 626 

cDNA library was ligated with a NEBNext adaptor and barcoded with an adaptor-specific index. 627 

Twelve libraries were pooled in equal concentrations, and sequenced using Illumina HiSeq 3000 628 

platform (single-end, 50 bp reads format).  629 

RNA-Seq data processing and differential expression analysis  630 

The RNA-Seq data processing was performed on Galaxy, an open source, web-based 631 

bioinformatics platform (https://usegalaxy.org) [92]. FastQC was first performed to check the 632 

sequencing read quality. Then the raw reads were mapped to D. melanogaster genome (BDGP 633 

Release 6 + ISO1 MT/dm6) using Tophat2 v2.1.0 [93]. Transcripts were reconstructed using 634 

Cufflinks v2.2.1 with bias correction. Cuffmerge (http://cole-trapnell-lab.github.io/cufflinks/) 635 

was used to merge together 12 Cufflinks assemblies to produce a GTF file for further differential 636 

expression analysis with Cuffdiff v2.2.1.3 [94]. After normalization, differentially expressed 637 

protein-coding transcripts were obtained using following cut-off values, false discovery rate 638 

(FDR) ≤ 0.05 and fold-change ≥ 2. RNA-Seq read files have been deposited to NCBI 's Gene 639 

Expression Omnibus (GEO) (Accession # is GSE112146). Non-coding gene and low expressed 640 

genes (FPKM<0.01) were excluded from the analysis. 641 

Principal component analysis (PCA), heatmap and expression correlation plot 642 

PCA graph was generated using plotPCA function of R package DESeq2 [95]. Heatmaps 643 

and hierarchy clustering analysis were generated using heatmap.2 function of R package gplots. 644 

(https://cran.r-project.org/web/packages/gplots). Expression data was log2 transformed and all 645 

reads were added by a pseudo-value 1. The expression correlation plots were plotted using R 646 

package ggplot2 (https://cran.r-project.org/web/packages/ggplot2). 647 

Oenocyte-enriched genes and tissue-specific aging transcriptome analysis 648 
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Oenocyte-enriched genes were identified by comparing our oenocyte RiboTag data (H2O 649 

Young group) to the whole body transcriptome profiles from previous studies (two wild-type 650 

backgrounds: w1118: GSM2647344, GSM2647345, GSM2647345. yw: GSM694258, 651 

GSM694259).The sequencing reads with FPKM ≥ 0.01 were normalized by quantile 652 

normalization function using preprocessCore package. 653 

(https://www.bioconductor.org/packages/release/bioc/html/preprocessCore.html). Oenocyte-654 

enriched genes were defined as those with 5-fold higher FPKM in oenocytes comparing to whole 655 

body. Fat body-enriched genes were obtained similarly by comparing the expression values 656 

between adult fat body and whole body (data retrieved from FlyAtlas).  657 

The lists of differentially expressed genes in multiple fly tissues were extracted from 658 

previous transcriptome analyses, heart [44], posterior midgut [46], fat body [45]. Venn diagram 659 

analysis (http://bioinformatics.psb.ugent.be/webtools/Venn/) was performed to identify 660 

overlapping genes between different tissues.  661 

Gene Set Enrichment Analysis (GSEA) 662 

For GSEA analysis, a complete set of 136 KEGG pathways in Drosophila were 663 

downloaded from KEGG. Text were trimmed and organized using Java script. Quantile 664 

normalized FPKM values for each group were used as input for parametric analysis, and 665 

organized as suggested by GSEA tutorial site (GSEA, 666 

http://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html) [96]. Collapse dataset 667 

to gene symbols was set to false. Permutation type was set to gene set; enrichment statistic used 668 

as weighted analysis; metric for ranking genes was set to Signal to Noise. 669 

Gene ontology and pathway analysis 670 

Functional annotation analysis of differentially expressed genes was performed using 671 

STRING. GO terms (Biological Process, Molecular Function, Cellular Component), KEGG 672 

pathway, INTERPRO Protein Domains and Features, were retrieved from the analysis. To build 673 

Ras/MAPK protein network in STRING, “kmeans clustering” option was used and number of 674 

clusters was set to 2 or 3.  675 

Quantitative real-time polymerase chain reaction (qRT-PCR) 676 

qRT-PCR was performed using Quantstudio 3 Real-Time PCR system and SYBR green 677 

master mixture (Thermo Fisher Scientific, Waltham, MA, USA Catalog number: A25778). To 678 

determine the most stable housekeeping gene, the Ct values for four housekeeping genes were 679 
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examined in all twelve cDNA samples obtained from different treatments. Using an Excel-based 680 

tool, Bestkeeper [97], we confirmed that Gapdh1 is the least-variable housekeeping gene across 681 

samples (Table S3). All gene expression levels were normalized to Gapdh1 by the method of 682 

comparative Ct [98]. Mean and standard errors for each gene were obtained from the averages of 683 

three biological replicates, with one or two technical repeats. Primer sequences are available in 684 

Table S4.  685 

 686 

Statistical analysis 687 

GraphPad Prism (GraphPad Software, La Jolla, CA, USA) was used for statistical analysis. To 688 

compare the mean value of treatment groups versus that of control, either student t-test or one-689 

way ANOVA was performed using Dunnett’s test for multiple comparison. 690 

 691 

 692 

 693 
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Figure Legends 711 

Figure 1. Characterization of age-related changes in ROS production in Drosophila 712 

oenocytes. (A) Fluorescent image of GFP-labeled oenocytes from the abdomen of PromE-Gal4; 713 

UAS-CD8::GFP female flies. Scale bar: 100 µm.  (B) ROS levels indicated by DHE staining in 714 

female oenocytes under aging and paraquat (PQ) treatment. Young: 10-day-old, Aged 715 

: 30-day-old. DAPI stains for nuclei. Scale bar: 10 µm. (C) Quantification of DHE staining from 716 

Panel (B). One-way ANOVA (*** p<0.001, * p<0.05). N=5.  717 

 718 

Figure 2. Oenocyte-specific translatomic profiling through RiboTag sequencing. (A) 719 

Schematic diagram showing RiboTag procedures. FLAG-tagged ribosomal protein RpL13A was 720 

first ectopically expressed in oenocytes. Translating RNAs were immunoprecipitated using anti-721 

FLAG antibodies. RNAs were further purified and used in RNA-seq analysis.  (B) Oenocyte-722 

specific transcript desat1-E highly expressed in anti-FLAG immunoprecipitated sample (IP) 723 

compared to the input (whole body lysate). (C) The transcripts of brain-specific gene Dilp2 was 724 

enriched in head samples compared to oenocyte RiboTag samples. One-way ANOVA (**** 725 

p<0.0001, *** p<0.001, ** p<0.01, * p<0.05, ns = not significant). N=3. (D) RNA 726 

concentrations of various immunoprecipitated samples. ND: Not detected. 200 female flies were 727 

used in each condition. Three biological replicates per condition. 728 

 729 

Figure 3. Differential gene expression analysis reveals common and distinct transcriptional 730 

regulation by aging and oxidative stress. (A) Principal component analysis (PCA) on four 731 

oenocyte translatomes. (B-D) Correlation analysis on the gene expression between H2O-Young 732 

and H2O-Aged; H2O-Young and PQ-Young; H2O-Aged and PQ-Aged. Log10 (FPKM) was used 733 

in the analysis (E-F) Venn diagram and GO terms for the genes commonly and differentially 734 

regulated by aging and paraquat. (G-H) Venn diagram and GO terms for the genes commonly 735 

and differentially regulated by paraquat at two ages. (I) Hierarchy clustering analysis on 736 

oenocyte translatome. (J-K) Gene ontology analysis on cluster 3 and 5 in panel (I). 737 

 738 

Figure 4. GSEA analysis revealed up- and down-regulated pathways under aging. (A) List 739 

of the pathways up-regulated in aged oenocytes. (B) List of the pathways down-regulated in aged 740 

oenocytes. ES: Enrichment score. (C-H) GSEA enrichment profiles of six pathways: DNA 741 
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replication, oxidative phosphorylation, proteasome, peroxisome, glutathione S-transferase, 742 

cytochrome P450. (I-K) Heatmaps for mitochondrial ribosomal subunits, glutathione S-743 

transferase, cytochrome P450. 744 

 745 

Figure 5. Peroxisome pathway is transcriptionally deregulated in aged oenocytes. (A) 746 

Schematic diagram showing peroxisome pathway and the role of each peroxin (PEX) genes. (B-747 

C) Log2 (fold change) of the expression of PEX genes under aging and paraquat treatment, based 748 

on oenocyte RiboTag sequencing results. (D-E) Log2 (fold change) of the expression of genes 749 

involved in other peroxisome functions during oenocyte aging. (F-H) qRT-PCR verification of 750 

three peroxisome genes (Pex5, Pex19, Cat). One-way ANOVA (, ** p<0.01, ns = not 751 

significant). N=3. 752 

 753 

Figure 6. Ketogenesis and fatty acid elongation are enriched in both oenocytes and liver. 754 

(A) List of ketogenesis genes that are enriched in both oenocytes and liver. (B) Schematic 755 

diagram showing ketogenesis pathway. (C) List of genes in microsomal fatty acid elongation 756 

pathway that are enriched in both oenocytes and liver. (D) Schematic diagram showing 757 

microsomal fatty acid elongation pathway (in smooth ER). Oenocyte-enriched genes are 758 

highlighted in red. Liver-enriched genes are highlighted in blue. 759 

 760 

Figure 7. Conservation of age-related transcriptional changes between oenocytes and liver. 761 

(A) Venn diagram comparing genes differentially expressed in aged liver and aged oenocytes. 762 

The mouse liver genes were first converted to their putative Drosophila orthologues before 763 

comparing to oenocyte aging genes. GO terms were shown in the lower panel. (B) Signaling 764 

pathways that were up-regulated under both oenocyte and liver aging. (C) Signaling pathways 765 

that were down-regulated under both oenocyte and liver aging. The genes listed in Panel B&C 766 

are the orthologues between Drosophila and mouse. (D-E) List of all genes in Ras/MAPK 767 

signaling pathway that were down-regulated in aged fly oenocytes and mouse liver. Protein 768 

network was generated using STRING (with kmeans clustering option). (F) Venn diagram 769 

showing the overlap of differentially expressed genes in aged oenocytes, fat body, heart, and 770 

midgut. (G) GO terms enriched in aged oenocytes, fat body, heart, and midgut. 771 

 772 
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Table 1. Comparison of the GO terms enriched in oenocyte, fat body and liver 773 

 774 

Table S1. Gene list tables 775 

Table S2. GO term tables 776 

Table S3. Housekeeping gene analysis using Bestkeeper 777 

Table S4. Primer list 778 

 779 

Figure S1. Age-dependent PromE-gal4 expression pattern. (A-B) Fluorescent image PromE-780 

Gal4; UAS-CD8::GFP female flies at two ages: Young (10-day-old), Aged 781 

(30-day-old). Scale bar: 50 µm. (C) Quantification of GFP intensity from Panel (A&B). Student 782 

t-test (ns = not significant). N=9. 783 

Figure S2. Two ecdysteroid biosynthesis genes highly express in oenocytes. Schematic 784 

diagram showing ecdysteroid hormone metabolism pathway. Two Halloween genes, phantom 785 

and shadow, highly expressed in adult female oenocytes (Highlighted in red). 786 

Figure S3. Genes in innate immunity pathway highly express in oenocytes. (A) Genes 787 

enriched in oenocytes and fat body show less overlap. (B) Genes in Imd pathway were enriched 788 

in oenocytes, while fat body were enriched with genes in Toll pathway (Red arrows denote for 789 

age-induced genes. Blue arrows denote for age-repressed gene.). 790 

Figure S4. Peroxisome pathways are enriched in both oenocytes and liver. List of 791 

peroxisome genes that are enriched in both oenocytes and liver. 792 

 793 
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Table 1. Comparison of the GO terms enriched in oenocyte, fat body and liver 

GO Oenocyte Fat body Liver

Biological 
Process

• Fatty acid biosynthesis
• Fatty acid elongation
• Oxidation reduction
• Immune response
• Proteasome-mediated

protein catabolic process

• Carboxylic acid 
metabolism

• Immune response
• Amino acid metabolism

• Lipid metabolism
• Long-chain fatty acid 

metabolism
• Oxidation reduction
• Immune response
• Xenobiotic metabolism
• Bile acid metabolism

Molecular 
Function

• Oxidoreductase activity
• Threonine-type 

endopeptidase activity
• Fatty acid synthase activity
• Fatty acid elongase activity
• Peptidoglycan binding

• Oxidoreductase activity
• Metalloendopeptidase

activity
• Heme binding

• Oxidoreductase activity
• Serine-type peptidase 

activity
• Lipid binding
• Heme binding

Cellular 
Component

• Peroxisome
• Proteasome

• Extracellular region
• Peroxisome
• Extracellular region
• Endoplasmic reticulum

KEGG 
Pathway

• Metabolism of xenobiotics
• Peroxisome
• Proteasome
• Ketone body metabolism
• Biosynthesis of unsaturated 

fatty acids

• Glycine, serine and 
threonine metabolism

• Arginine and proline 
metabolism

• Metabolism of xenobiotics
• Peroxisome
• Bile secretion
• PPAR signaling pathway
• Retinol metabolism
• Biosynthesis of amino acids

Protein 
Domain

• ELO family
• Proteasome subunit

• Peptidase S1, M13
• EGF-like domain

• Serpin family
• Cytochrome P450
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Figure S2
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Figure S4

1. Peroxisome biogenesis and protein import

2. Peroxisome function
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