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ABSTRACT 11 

Motivation: Genome-scale studies using next-generation sequencing technologies generate 12 

substantial number of differentially-regulated genes. The gene lists need to be further analyzed to 13 

identify overrepresented genes and functions in order to guide downstream analyses. Currently 14 

available gene enrichment tools rely on functional classifications based on Gene Ontology (GO) 15 

terms. A shortcoming of the GO-based classification system is that the GO terms are broad and 16 

often redundant, hence necessitating alternate approaches.  17 

Results: We propose a new functional enrichment approach, GenFam, to classify as well as 18 

enrich overrepresented gene functions, based on gene family categories. GenFam offers a unique 19 

approach to mine valuable, biologically-relevant information, beyond the conventional GO term 20 

based enrichment. GenFam is available as a web-based, graphical-user interface, which allows 21 

users to readily input gene lists, and export results in both tabular and graphical formats. 22 

Additionally, users can customize analysis parameters, by choosing from the different 23 

significance tests to conduct advanced statistics. Currently, GenFam supports gene family 24 

classification and enrichment analyses for seventy-eight plant genomes and gene identifiers that 25 

are available on Phytozome v12.0 database. 26 

Availability and implementation: The GenFam application is open-source and accessible 27 

through world-wide web at http://mandadilab.webfactional.com/home/ 28 

Contact: kkmandadi@tamu.edu 29 

Supplementary information: Supplementary File 1 and 2 30 
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1 INTRODUCTION 32 

In recent years, genome-wide analyses using next-generation sequencing (NGS) technologies, 33 

have become indispensable to life science research. Generating large-scale datasets has become 34 

relatively straightforward, as opposed to efficiently interpreting the data to gain intuition into 35 

biologically-significant mechanisms. Data mining tools that determine, predict, and enrich 36 

putative functions among NGS datasets are highly valuable for such genomic analyses (Backes 37 

et al., 2007). For instance, RNA-sequencing (RNA-seq) analyses is a high-throughput approach 38 

to study transcriptome regulation by determining transcript-level changes in multiple cell- or 39 

tissue-types, or among varying experimental conditions (e.g., unstressed vs. stressed). In a 40 

typical RNA-seq experiment, the analysis yields hundreds, if not thousands, of genes that are 41 

differentially expressed among the experimental conditions. Uncovering enriched biological 42 

pathways among these gene lists is a valuable starting step for downstream genetic analyses. 43 

The Gene Ontology (GO)-term based enrichment tools (e.g., BinGO, Blast2GO, AgriGO) 44 

are commonly used by researchers to infer the enriched pathways in NGS experiments (Bedre et 45 

al., 2016; Bedre et al., 2015; Chen et al., 2013; Li et al., 2017; Mandadi and Scholthof, 2015; 46 

Mandadi and Scholthof, 2012; Schaker et al., 2016). These tools identify overrepresented GO 47 

terms associated within a user-defined list of genes by mapping them to the background genome 48 

annotations, and calculating statistical probability of enrichment relative to the background. The 49 

enrichment tools can classify genes into GO categories or pathways related to biological process, 50 

molecular function and cellular locations (Du et al., 2010; Goffard and Weiller, 2007). However, 51 

the GO classifications are often broad and provide limited information on specific biological 52 

attributes of the gene (Ashburner et al., 2000). For instance, GO terms in molecular function 53 

such as nucleic acid binding (GO:0003676) and DNA binding (GO:0003677) do not provide 54 

further information on the class of gene that is being enriched. Further, enriched GO terms can 55 

be redundant, that need to be manually filtered before interpretation. Given these shortcomings, 56 

new methods to analyze and interpret large-scale datasets to gain further insights into 57 

biologically-meaningful information are needed.  58 

In this study, we present a unique approach to perform classification and enrichment 59 

analysis of genes, based on gene family (GenFam). The GenFam offers a meaningful way to 60 

determine pertinent gene functions by directly classifying and enriching genes, in a user-defined 61 
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list, based on the encoded-protein and its associated gene family. We present GenFam as a user-62 

friendly, graphical-user interface application that can be launched on the world-wide web.   63 

 64 

2 IMPLEMENTATION AND DATA ANALYSIS 65 

2.1 Background database 66 

GenFam classifies and enriches genes into 128 representative and unique gene families, based on 67 

the well-annotated reference plant genome, Arabidopsis thaliana (Berardini et al., 2015). 68 

GenFam currently supports analysis of genes from seventy-eight plant species. The background 69 

gene family database for the genomes was manually curated to remove redundancy among the 70 

families. Furthermore, we also determined a common protein domain structure for each gene 71 

family based on the protein sequences of the family members. The protein domains were 72 

predicted using HMMER (v3.1b2) from protein family database (Pfam release 31.0) (Eddy, 73 

2009; Finn et al., 2015). A multi-step annotation approach was used to classify gene sequences 74 

to a gene family. First, gene families were assigned based on their sequence similarity to 75 

Arabidopsis orthologs. Next, remaining sequences were assigned to a gene family based on their 76 

Pfam protein domain signature. All the selected 128 gene families, individual gene sequences, 77 

and corresponding gene IDs were formatted using the PostgreSQL database to perform 78 

classification and enrichment analysis using various statistical methods.  79 

2.2 Statistical enrichment methods 80 

GenFam provides two main functions: i) classification, and ii) enrichment of user-defined gene 81 

lists. The enrichment analysis is based on the singular enrichment analysis methods (Huang da et 82 

al., 2009). In a manner similar to GO term enrichment tools (Backes, et al., 2007; Du, et al., 83 

2010; Huang da, et al., 2009), GenFam utilizes the user-defined gene IDs as input to perform 84 

statistical enrichment analysis. GenFam accepts different types of gene IDs for the analysis, as 85 

defined by the Phytozome database. For example, for rice, it accepts locus (LOC_Os01g06882), 86 

transcripts (LOC_Os01g06882.1) and PAC (24120792) IDs. To determine acceptable IDs for all 87 

plant species, user can use the “check allowed ID type for each species” function on the GenFam 88 

analysis page. Once the appropriate gene IDs are provided, GenFam classifies and identifies 89 

specific gene families and members that are overrepresented in the input gene lists. A unique 90 
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feature of GenFam is that it only utilizes genes categorized to gene family as a reference 91 

background, unlike the GO enrichment tools which utilizes the entire genome as a reference 92 

background. This feature greatly enhances the sensitivity of the enrichment analysis. GenFam 93 

can employ rigorous statistical tests such as the Fisher exact, Chi-Square, Binomial distribution 94 

and hypergeometric tests, along with multiple test corrections to control family-wise error rate, 95 

in order to report the statistically significant enriched genes.  96 

As a default test, GenFam performs the Fisher exact test, which relies on the proportion 97 

of observed data, instead of a value of a test statistic to estimate the probability of genes of 98 

interest corresponding to a specific category. For instance, suppose we have n differentially 99 

expressed genes, and among them, k falls in a particular gene family category, and there are m 100 

total genes associated with that gene family in the background reference database among N total 101 

genes; then Fisher probability that a given gene family is overrepresented in the input of gene list 102 

is calculated as, 103 

     p = 
(𝑛𝑘)(

𝑁−𝑛
𝑚−𝑘)

(𝑁𝑚)
 104 

To address the false positives resulting from multiple comparisons especially when the 105 

input gene list is large (>1000), GenFam subsequently employs false discovery rate (FDR) 106 

correction methods including the Benjamini-Hochberg (Benjamini and Hochberg, 1995), 107 

Bonferroni (Bonferroni, 1936) and Bonferroni-Holm (Holm, 1979). The various statistical tests 108 

and FDR methods can be customized by the user as appropriate. Along with enrichment results 109 

for the gene families, GenFam also provides information related to GO terms in biological 110 

process, molecular function and cellular component categories associated with the enriched gene 111 

families. These results can be downloaded as a tabular file (“Enriched Families”) or as a 112 

graphical figure of the enriched families (“Get Figures”). If users only want to retrieve the 113 

classification of genes, GenFam parses another tabular file containing information of all the 114 

annotated gene families (“All Families”). 115 

2.3 Web server implementation 116 
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The GenFam web server is implemented using Python3 (https://www.python.org/), Django 117 

1.11.7 (https://www.djangoproject.com/) and PostgreSQL (https://www.postgresql.org/) 118 

database. All the codes for data formatting and statistical analysis are implemented using Python 119 

scripting language. The high-level Python web framework was constructed using Django. The 120 

Django web framework was hosted using WebFaction (https://www.webfaction.com/). The web-121 

based templates were designed using Bootstrap, HTML, and CSS. GenFam is compatible with 122 

all major browsers including Internet Explorer, Microsoft Edge, Google Chrome, Mozilla and 123 

Safari. All the precomputed plant gene family background databases were built using advanced 124 

PostgreSQL database. The analyzed data was visualized using the matplotlib (Droettboom et al., 125 

2016) Python plotting library.  126 

 127 

 128 

Fig. 1. GenFam workflow. The list of input gene IDs for respective plant species provided by the user are 129 

analyzed for enrichment analysis using various statistical tests. The ouput of the analysis can be viewed 130 

and/or downloaded as a table and/or graphical summary. The results page has multiple options to 131 

visualize or download data for both enriched and non-enriched categories (all gene families). The detailed 132 

output data from a case study are provided in Supplementary Files 1 and 2. 133 

2.4 Case study and data analysis 134 

To demonstrate the utility of GenFam, we performed two case studies using cotton (a dicot) and 135 

rice (a monocot) transcriptome datasets (Bedre, et al., 2015; Dametto et al., 2015). We have 136 
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previously identified ~662 differentially expressed genes in cotton infected with Aspergillus 137 

flavus (Bedre, et al., 2015). For the first case study, we used GenFam to determine the enriched 138 

gene families among these 662 differentially expressed genes, using the options of Fisher exact  139 

 140 

 141 

Fig. 2. Graphical summary of  GenFam enrichment analysis of a cotton case study. Results are plotted as 142 

bar chart using the -log10(P-Value) scores. Higher the -log10(P-Value) value, greater the confidence in 143 

enrichment of the gene family. 144 
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test for statistical enrichment, and the Benjamini-Hochberg (Benjamini and Hochberg, 1995) 145 

method to control FDR. The GenFam classification and enrichment analysis revealed 146 

overrepresented gene families such as expansins, kinases, peroxidases, and transcription 147 

factors—genes that we have hypothesized to mediate cell-wall modifications, antioxidant 148 

activity and defense signaling in response to A. flavus infection (Bedre, et al., 2015) (Fig. 1 and 149 

2; Supplementary File 1). In the second case study, we analyzed  ~758 genes which were up-150 

regulated in a cold-tolerant rice genotype (Dametto, et al., 2015). GenFam was able to 151 

successfully classify and determine enriched gene families related to aquaporins, peroxidases, 152 

glutathione S-transferases, as well as gene families involved in cell wall-related mechanisms 153 

(Supplementary File 2) —genes that were hypothesized by Dametto et al. (2015) to play a role 154 

in the rice cold stress response. Together, the information of classified and enriched gene 155 

families not only provides understanding of the affected biological processes, but allows the user 156 

to readily select favorite gene families for further downstream characterization.  157 

A snapshot of the analysis page and workflow is shown in Fig. 1. Users have the option 158 

to either use the default settings or select desired statistical parameters. The analysis page also 159 

guides the users to select gene IDs that are acceptable in GenFam (Fig. 1). Users are directed to 160 

the results after analysis is completed (Fig. 1).  161 

2.5 Output summary 162 

The results are displayed as summary table (HTML) and graphical chart plotted using the -163 

log10(P-Value) scores. Higher the -log10(P-Value) value, greater the confidence in enrichment of 164 

the gene family (Fig. 2). The enriched and non-enriched gene family results can also be 165 

downloaded as tabular files, with further details of associated P-value and FDR statistics, and 166 

GO terms.  167 

 168 

3 DISCUSSION 169 

Data mining of big datasets (e.g., NGS data) is a very important step, and approaches that can 170 

systematically dissect biologically-relevant information from big data are highly desirable. GO 171 

term-based enrichment analyses, although commonly employed, does not provide specific, 172 

biologically-relevant, gene family level information. Further, GO classifications can be broad 173 
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and redundant. We suggest that GenFam is a unique way to extract biologically-relevant, gene 174 

family level information among large-scale results. GenFam allows users to readily uncover 175 

biologically-relevant functions enriched in large-scale gene datasets by classifying and providing 176 

specific information about the enriched gene families— information that could not be inferred by 177 

GO enrichment analysis alone. Furthermore, unlike GO enrichment tools, instead of using the 178 

whole genome as a background database for enrichment analysis, GenFam uses only genes 179 

annotated and classified into a gene family as a reference. This feature ensures decreasing 180 

enrichment bias and increasing the accuracy of the analysis (Huang da, et al., 2009). GenFam 181 

can be implemented with various statistical enrichment methods such as Fisher exact test, 182 

hypergeometric distribution, chi-square test and binomial distribution, thus providing flexibility 183 

in the analysis based on the sample size and user preferences. We recommend using Fisher exact 184 

test, chi-square test and hypergeometric distribution for smaller datasets (< 1000) (McDonald, 185 

2009), and binomial distribution for larger datasets (Khatri and Draghici, 2005; Zheng and 186 

Wang, 2008). To control the false positives, GenFam also supports multiple testing corrections 187 

(family-wise error rate) algorithms such as Benjamini-Hochberg (Benjamini and Hochberg, 188 

1995), Bonferroni (Bonferroni, 1936), and Bonferroni-Holm (Holm, 1979). 189 

In conclusion, we suggest that GenFam provides a unique approach to interpret 190 

biologically relevant information in big datasets by directly classifying and representing 191 

overrepresented genes into gene families. This allows users to readily interpret and identify 192 

favorite genes for downstream inquiries.  193 
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