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ABSTRACT 27 
 28 
The demands of foraging are a major driver in the evolution of cognitive faculties. To 29 

successfully pursue a mobile prey that is attempting to avoid capture, the ability to predict its 30 
flight path can provide a crucial advantage. We hypothesized that, during pursuit, rhesus 31 
macaques exploit patterns in prey’s behavior to predict the prey’s future positions. We modeled 32 
behavior of three macaques in a joystick-controlled pursuit task in which prey follow simple 33 
escape algorithms that involve repulsion from the subject and from the walls of the virtual 34 
enclosure. We find that, even in this artificial task, macaques actively predict and aim towards 35 
prey’s future positions, increasing their foraging success. Their predictions are derived from the 36 
three core variables in Newtonian dynamics: position, velocity, and acceleration. Even after 37 
extensive training, subjects favored these principles and ignored other regularities in prey 38 
behavior. Most notably, they ignored the effects their own actions would have on the prey, 39 
despite extensive training and even though doing so would have further improved performance. 40 
We conjecture that subjects have a strong bias towards using physical principles to pursue 41 
fleeing prey, possibly reflecting an evolved physics module. The observed predictive behavior 42 
suggests that foraging demands facilitate the development of prospection. 43 

44 
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Significant Statement 45 
Real-time prediction is crucial when chasing moving objects. We developed a novel virtual 46 
hunting task that requires macaque monkeys to control a joystick to pursue prey continuously 47 
moving on a computer screen. We found that subjects actively predict the upcoming position of 48 
the virtual prey by taking advantages of basic kinematic principles (speed and acceleration). 49 
Their predictions do not reflect expectations about the effects the agent’s own actions will have 50 
on the prey. These results demonstrate prospection in macaques and also suggest it may have 51 
practical limits.  52 
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INTRODUCTION 53 

The demands of foraging are a major driver of our neural and cognitive faculties, 54 

including specialized brain systems that allow us to perform complex computations in order to 55 

hunt more effectively (1, 2). When faced with mobile prey that move erratically, such as those 56 

that are fleeing, the ability to actively predict preys’ future positions can provides a boost in 57 

pursuit efficiency and, ultimately, survival (3–6). Prediction about the future movements of 58 

objects in the environment depends on the ability to calculate future events. It is therefore an 59 

element of a suite of skills that constitute prospection - a hallmark of human thought (7, 8).  60 

In natural pursuit settings, the ability to predict—rather than simply follow—prey's 61 

movement has been shown for some highly specialized species (9), but not primates. Nor are 62 

animal prospection abilities strongly established more generally (10–12). Well-known examples 63 

of putative animal prospection generally rely on naturalistic foraging contexts, suggesting that it 64 

is the need to forage that drives prospective abilities. Nonetheless, such tasks generally operate 65 

on the domain of long time scales (often, several days). We conjectured that prey-related 66 

prediction should be a much more general skill, and thus be readily observable at short time 67 

scales in rapidly changing environments. 68 

The manner in which such prospection occurs is poorly understood. Sensorimotor control 69 

research shows that humans and animals use inverse models to generate the motor commands 70 

that are required to achieve desired sensory states and forward models to predict the sensory 71 

outcome of movement (13, 14). Those studies provide hints that prospection might require 72 

internal model that simulates predicted outcome. However, such models are limited to self-73 

movement. The types of computations that we use to predict object movement remain 74 
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unidentified. This problem is compounded when the predicted object adaptively avoids the 75 

subject and attempts to elude capture.  76 

Here, we developed a virtual pursuit task to test rapid on-line prospection in macaque 77 

monkeys with a real-time adaptive pursuit component. The task is loosely inspired by the pursuit 78 

of insects, which are thought to be a major driver of primate evolution (15). To determine which 79 

strategy the subjects used to capture the prey, we developed a generative framework to model 80 

online pursuit movements. The model formalized different possible ways that subject might 81 

predict or follow prey, allowing us to quantitatively evaluate what determined subject 82 

movements. Our results suggest that macaque monkeys aim their joystick to the position of prey 83 

based on extrapolating physical variables of the trajectory, aiming at a position where physics 84 

predicts the object is going to be located, even in situations where prey's motion has other 85 

regularities.  86 
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RESULTS 87 

We trained three rhesus macaque subjects on computerized virtual pursuit task (subjects 88 

K, H, and C). In our task, subjects used a joystick to control the position of an avatar (a yellow 89 

circle) moving continuously and smoothly in an open rectangular field on a computer screen 90 

(Fig. 1 and Methods). On each trial, subjects had 20 seconds to pursue and capture a prey item 91 

(a fleeing colored square) to obtain a juice reward. Prey avoided the avatar with a deterministic 92 

strategy that combined repulsion from the subject’s current position with repulsion from the 93 

walls of the field (see Methods for details). One prey was present on each trial; the prey item on 94 

any trial was drawn randomly from a set of five, identified by color, that differed in maximum 95 

velocity and associated reward size (Fig. 1).  96 

All three subjects attained proficiency and showed stabilized behavior within twelve 2-97 

hour training sessions that occurred following an initial longer training period on basic joystick 98 

use (see Fig. S1 and Fig. S2 for details). All data presented here were collected after the training 99 

sessions (number of trials analyzed in this post-training dataset: subject K: 3024; subject H: 100 

3083; subject C: 2512). Subjects successfully captured the prey in over 95% of trials and, on 101 

successful trials, did so in an average of 5.04 seconds (subject K: 4.26 sec, subject H: 5.32 sec, 102 

subject C: 5.54 sec). Subjects’ performance and capture time declined with the maximum speed 103 

and reward offered by the prey, indicating sensitivity to manipulation of reward and difficulty 104 

(see Fig. S1).  105 

We next fit the subjects’ strategies in pursuing their prey using a generative framework 106 

with a small number of parameters. Initially, the framework assumes that subjects exert a force 107 

towards either the prey's future position (τ > 0), past position (τ < 0) or current position (τ = 0, 108 

Fig. 2A) using one of several possible predictive models of the prey's motion. Our primary 109 
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analyses thus determine (1) the value of the prospection parameter τ, and (2) the performance of 110 

different models of the prey's predicted future motion, on each 1-second slice of the predator and 111 

prey's motion. Along with τ, the strength of the force applied to the joystick, which in turn 112 

quantified the attraction to the prey, was a free parameter fit on each slice.  113 

In addition to terms that define the amount of prospection and applied force, we added 114 

an inertia term reflecting physical constraints associated with our customized joystick. This 115 

inertia term was defined in terms of the velocity of the previous time step. The predicted 116 

movement is computed by summing a vector corresponding to the aimed direction and vector of 117 

inertia (Fig. 2). To compare the difference in fitting result, we calculated the difference of ‘the 118 

mean for sum-of-squared error’ between the model in each trajectory. Thus, if the model with 119 

inertia explained specific trajectory better, the value should be negative. We found that in all 120 

cases, subjects’ performance was better explained by the model having inertia term (Fig. 3). For 121 

significance testing, we performed bootstrapping for the value we obtained. We still found 5% 122 

significance line resulted in a negative value, meaning the negative value obtained in here is 123 

significant. 124 

To quantify the typical parameter values, we averaged a full grid of parameter values 125 

across trajectories, shown in Fig. 2C, using a physics-variable based prediction model (PVBP) 126 

of prey motion (see Methods). We observed a strong preference for positive force, 127 

demonstrating monkeys are engaging the task. The best fitting τ is positive, indicating that 128 

subjects point the joystick towards the prey's future trajectory. This pattern holds for all three 129 

individuals tested. Specifically, subjects K, H and C pointed the joystick towards the position at 130 

which the prey would be in an average of 800 ms, 767 ms, and 733 ms, in the future respectively. 131 

All of these times are significantly greater than zero (more than 95% of bootstrapped data stayed 132 
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above zero). In the context of the task, these numbers are substantial: they reflect 18.78%, 133 

14.42%, and 13.23% of the average trial duration for K, H, and C, respectively. 134 

 The distance into the future that our subjects prospected did not reliably depend on the 135 

reward or the speed of the prey, as measured using a linear regression between reward/speed and 136 

mean τ (K: r = 3.0316, p = 0.1110; H: r = 4.5798, p = 0.1791; C: r = 7.1007, p = 0.0957). Prey 137 

path complexity (as measured by path curvature) did affect prediction. Subjects prospected less 138 

far into the future when the prey path was more complex (K: rho = -0.0687; H: -0.0567; C: -139 

0.0898, p < 0.0001 for each). 140 

We next quantitatively compared possible strategies subjects used to predict future prey 141 

direction by formalizing different computations by which monkeys could predict future 142 

trajectories (Fig. 2A) and fitting the parameters to each. The veridical prediction (VP) algorithm 143 

assumes that monkeys predict according to the true game dynamics in which prey move away 144 

from the boundaries of the field and also from the avatar. The cost contour map prediction 145 

(CCMP) algorithm matches VP but ignores repulsion from the avatar, meaning that monkey's 146 

model of prey would not take into account their own motion. Third, the physics variable-based 147 

prediction (PVBP) algorithm assumes that subjects' predictions derive from the prey’s position 148 

and first two derivatives, velocity and acceleration (additional derivatives are considered in Fig. 149 

S3). We measured the accuracy of each algorithm by computing the predicted path of the subject 150 

on every trajectory slice then computing its error (sum of squared distance between predicted and 151 

observed trajectories). 152 

We use the Akaike Information Criterion (AIC) to compare models (Fig. 4 and 153 

Methods). This figure shows that the PVBP model of future prey trajectories is overall the best 154 

fit to our subjects’ behavior. This pattern held within the two well-trained subjects. Specifically, 155 
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the PVBP algorithm was favored (Subject K: PVBP: 7.529x106, second best was VP: 7.542x106; 156 

Subject H: PVBP: 8.923x106; second best was CMPP: 8.950x106, Fig. 4A). For the less well-157 

trained subject C, CCMP explained trajectories most accurately (7.955x106, VP: 8.013x106). 158 

These patterns appear to be robust to the specific analysis as they could be seen in also by 159 

estimating which model fit best for each individual trajectory slice (Fig. 4B).  160 

Because Subject C showed a different pattern, and Subject C performed worst overall 161 

(and thus chased slower prey), we wondered whether prey speed may influence strategy. 162 

Supporting this idea, a trial-by-trial logistic regression between whether PVBP was the best 163 

model and average prey velocity showed a positive relationship for all three subjects (p < 0.01 in 164 

each case), with subject C maintaining a similar proportion of trajectories best explained by 165 

PVBP for its speed (Fig. S5). These results highlight the adaptive flexibility of prospective 166 

pursuit strategy selection, and indicate that Subject C’s overall difference can be explained by 167 

the relatively slower speed prey used. 168 

We asked which values of parameters are closest to optimal in capturing prey using 169 

simulations (Fig. 5). To exclude the possibility where optimal parameters exist beyond what 170 

subjects can accomplish using the current joystick configuration, we examined optimality by 171 

comparing performance under identical pursuit/inertia ratios, which can be accomplished by 172 

limiting the range of the force parameter in simulation. The representative prediction parameter 173 

in simulation shows that all subjects’ prediction parameter sets are not identical to the optimal 174 

parameter set obtained from PVBP simulation. Average capture time in simulation using optimal 175 

parameter was 1.10 second while top 5% capture time of actual trial was 1.31 second (subject 176 

K), 1.32 second (subject H). The value of the optimal prediction parameter was 335 pixels 177 

compare to actual prediction of each animal was 536 (subject K), 455 (subject H) pixels (Subject 178 
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C’s prediction is not directly comparable in pixel units because the prey in simulation had 179 

maximum speed matched with subject K and subject H but faster than subject C’s game). These 180 

results suggest that our subjects’ pursuit strategy is less than the optimal even subject to 181 

reasonable empirically derived constraints, and performance would have improved once they 182 

used shorter prediction scales.    183 
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DISCUSSION 184 

We trained macaques to perform a novel joystick-based pursuit task. The generative 185 

framework we developed to model our subjects’ strategies shows that macaque monkeys do not 186 

simply point the joystick towards the prey, but actively predict its future position. Notably, they 187 

extended basic principles of Newtonian physics to this artificial situation. That is, each subject’s 188 

movement is best explained by a model that predicts prey position based on extrapolating 189 

variables derived from physics (velocity and acceleration). These results therefore show that, in a 190 

difficult dynamic pursuit context, macaques will rapidly and naturally take advantage of 191 

regularities in their prey’s behavior to gain an advantage in reward intake. Moreover, they show 192 

that our subjects demonstrate a basic ability to perform the necessary computations to predict 193 

future prey positions and to exploit that prediction. 194 

Our generative framework does not explain why animals prefer using basic physical 195 

principles and ignoring other factors that could make their predictions more accurate. One 196 

possibility is that the brain is equipped with a physics module that performs mental simulation 197 

about the physics of external environment (16). By having a module that specifically simulates 198 

physics, computations for external physics change would be more efficient than reasoning about 199 

underlying method how prey movement is generated. The fact that animals favor the physics 200 

predictions in the most difficult cases – those with the fastest prey – provides at least suggestive 201 

evidence for the idea that the physics based approach is one that is more natural. 202 

 Our results provide support, in a very different form than other studies, for the idea that 203 

our brains simulate physics to making judgement of the scene, sometimes called ‘intuitive 204 

physics’ (17–20). Previous studies related to intuitive physics have mainly focused scene 205 

understanding or moving objects without any interactions between the subject participant and the 206 
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stimulus. Our study expands on these previous findings by generalizing for cases where 207 

environment changes dynamically and interactively.  208 

More broadly, our results open a unique direction to understand real-time pursuit 209 

behavior. The majority of the behavioral studies try to use minimally simple tasks that sacrifice 210 

naturalness in order to control each variable precisely to understand behaviors. Such tasks can 211 

cause behavior to enter into modes that are unnatural. On the other hand, real-time naturalistic 212 

behavior requires frameworks to narrow down hypothesis space. Our study has set example of 213 

studying real-time dynamic behavior under guidance of well-established framework.  214 

Questions about prospection aside, the ability to make choices based on expectations of 215 

future events is a basic skill in the repertoire of intelligent decision-makers (21–23). Those 216 

abilities guide appropriate selection of choices in foraging contexts, including under both risk 217 

and delay (24–26). A unique factor of our study is its focus on real-time decisions, that is, 218 

decisions in which subjects choose from a continuum of possible actions - which constitute a 219 

corresponding continuum of options - and reassess their options as their actions occur (27–30). 220 

Some scholars have argued that these types of decisions are the type of decisions that drove the 221 

evolution of our choice systems (2, 31, 32). As such they provide a more realistic assessment of 222 

choice behavior than binary choice tasks. We anticipate that future studies using this paradigm 223 

and others like it will lead to greater insight into the psychological and neural mechanisms of 224 

choice. 225 
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MATERIALS AND METHODS 226 

Subjects Three male rhesus macaques (Macaca mulatta) served as subjects in the current 227 

experiment. All animal procedures were approved by the University Committee on Animal 228 

Resources at the University of Rochester and were designed and conducted in compliance with 229 

the Public Health Service’s Guide for the Care and Use of Animals. 230 

Experimental Apparatus The joystick was a modified version of commercially available 231 

joysticks with a built-in potentiometer (Logitech Extreme Pro 3D). The control bar was removed 232 

and replaced with a control stick (15 cm, plastic) designed to be ergonomically easy for 233 

macaques to manipulate. The joystick position was read out by a custom coded program in 234 

Matlab running on the stimulus-control computer. The joystick was controlled by detecting the 235 

positional change of the joystick and limiting the maximum pixel movement to within 23 pixels 236 

in 16.66 ms.  237 

Task Design At the beginning of each trial, two shapes appeared on a gray computer 238 

monitor placed directly in front of the macaque subject. The yellow (subject K) and purple circle 239 

(subject H and C) shape (15-pixel diameter) represents the subject himself and its position is 240 

determined by the joystick and limited by the screen boundaries. The square shape (30-pixel 241 

length) represents the prey. The movement of the prey is determined by a simple AI (see below). 242 

Each trial ends with either successful capture of the prey or after 20 seconds, whichever comes 243 

first. Successful capture is defined as any overlap between the avatar circle and the prey square. 244 

Capture results in immediate juice reward; juice amount corresponds to prey color: orange (0.3 245 

mL), blue (0.4 mL), green (0.5 mL), violet (0.6 mL), and cyan (0.7 mL).  246 

 The path of the prey was computed interactively using A-star pathfinding methods, which 247 

are commonly used in video gaming (33). For every frame (16.66 ms), we computed the cost of 248 
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15 possible future positions the prey could move to in the next time-step. These 15 positions 249 

were spaced equally on the circumference of a circle centered on the prey’s current position, with 250 

radius equal to the maximum distance the prey could travel within one time-step. The cost in turn 251 

is computed based on two factors: the position in the field and the position of the subject’s 252 

avatar. The field that the prey moves in has a built-in bias for cost, which makes the prey more 253 

likely to move towards the center (Fig. 1B). The cost due to distance from the subject’s avatar is 254 

transformed using a sigmoidal function: the cost becomes zero beyond a certain distance so that 255 

the prey does not move, and the cost becomes greater as distance from the subject’s avatar 256 

decreases. Eventually, the costs from these 15 positions are calculated and the position with the 257 

lowest cost is selected for the next movement. If the next movement is beyond the screen range 258 

(1920x1080 resolution), then the position with the second lowest cost is selected, and so on.  259 

The maximum speed of the subject was 23 pixels per frame (i.e. 16.66 ms). The 260 

maximum and minimum speeds of the prey varied across subjects and were set by the 261 

experimenter to obtain a large number of trials (Fig. 1). Specifically, speeds were selected so that 262 

subjects could capture prey on above 85% of trials; these values were modified using a staircase 263 

method. If subjects missed the prey three times consecutively, then the speed of the prey was 264 

reduced. Once the subject intercepts the prey in a trial where the staircase method was used, then 265 

the selection of prey speed was randomized again. To ensure sufficient time of pursuit, the 266 

minimum distance between the initial position of each subject avatar and prey was 400 pixels.   267 

 Behavioral Model  To fit each subject’s movement, each trial was divided into 1 second-268 

long trajectories and each trajectory included 61 data-points with 16.66 ms time resolution. We 269 

model these trajectories using a single prediction and a single force parameter for the entire trial, 270 

as a simplifying assumption. Nonetheless, it is reasonable to assume that throughout a long, 20-271 
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second period, there would be active adjustment of prediction and force. Actual comparison by 272 

AIC supported our intuition, and we used trajectory as unit of analysis throughout (value of ‘AIC 273 

of trajectory/AIC of trial’ was 0.9328, 0.9214, 0.9227, for each subject respectively. Less than 274 

one indicates trajectory as unit result in better fitting). 275 

 The model assuming Physics Variable-Based Prediction (PVBP) incorporated one 276 

previous time step to predict the prey’s next position, which is like a Kalman filter. The other 277 

two models do not utilize any past information. The model assuming prediction using the cost 278 

contour map considers only the lowest cost location at next time step. The model assuming 279 

veridical prediction automatically finds the exact position of the prey at the next time step. Once 280 

the prey’s position on the next time step is predicted, the model computes how far this predicted 281 

position is from the agent’s current position. A prediction value of 1 indicates that the future 282 

position will be as far as from the agent’s current position as the prey’s current position is. The 283 

optimal parameter pairs of how much subject has made prediction and actual amount of force 284 

was acquired by performing a grid search across the ranges of both parameters. The range of the 285 

prediction parameter was between -400 to 400 subjects H and C, -200 to 200 for subject K (units 286 

were defined relative to the distance the prey moved in the previous timestep). Different ranges 287 

of the prediction parameter were used since over 5% of trajectories in subjects H and C resulted 288 

either in -200 or 200 in prediction parameter value. Representative parameters for explaining an 289 

each trajectory were selected based on the value of the sum of squared error between the actual 290 

trajectory and the trajectory generated by model.  291 

Significance Testing  To see whether the positive prediction parameter is significant 292 

above the zero, we performed a bootstrap of heatmap slices from each trajectory. This 293 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/272260doi: bioRxiv preprint 

https://doi.org/10.1101/272260


16 

resampling was done for 500 times and selected heatmaps were added. Then, the parameter set 294 

resulting in the lowest cost was selected in each resampling.  295 

Model Evaluation To evaluate model performance and compare different models, we 296 

computed the Akaike Information Criteria (AIC) using the likelihood of each model (Fig. 4, and 297 

Fig. S3, Fig. S4). For calculating likelihood, we first calculated the mean and variance of all the 298 

sum-of-squared errors across trajectories. Then we estimated the likelihood assuming a normal 299 

distribution centered on the mean of the sum-of-squared errors and with a variance equivalent to 300 

the variance of the sum-of-squared errors across all trajectories. To validate whether subjects 301 

used a single prediction and force across the all the trials or adaptively changed their prediction 302 

method, we compared the AIC value between cases where the parameter pair varied across all 303 

trajectories and using only the single best parameter pair. The single best parameter pair is 304 

acquired by lowest cost value in all trajectory added heatmap of parameter space.   305 

Simulation To estimate the efficiency of parameter values obtained from fitting subjects’ 306 

behavior, we performed a simulation with 100 different initial positions of artificial subjects and 307 

prey (Fig.5). The algorithm generating prey movements was the same as that used in the actual 308 

task, and the movements of the artificial subject were generated based on different prediction 309 

methods. The maximum duration for each simulation was 1200 time-bins, which is equivalent to 310 

20 seconds (the longest possible trial in the actual task). All the values of the parameter sets 311 

(prediction, force) that were used for fitting actual behavior were simulated.  312 

Velocity Dependent Physics Variable-Based Prediction Bias We examined whether 313 

PVBP is preferred when the velocity of prey is high. We first obtain the average velocity of prey 314 

at each trajectory, and then categorized each trajectory as physics variable-based prediction if the 315 

fitting result was best with physics variable-based prediction and non-physics when other 316 
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prediction method provided the best fitting result. With the prey velocity and trajectory category, 317 

we performed logistic regression having velocity as predictor and category as the dependent 318 

variable (glmfit in MATLAB).  319 

Data availability The data sets generated during the current study are available on the 320 

Hayden lab website, http://www.haydenlab.com/, or from the authors on reasonable request. The 321 

code generated to do the analyses for the current study is available from the corresponding 322 

author on reasonable request. Video of experiment is available at 323 

http://www.haydenlab.com/pursuit.  324 
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Figures  411 

 412 
Fig. 1. Experimental design. (A) Cartoon illustrating the virtual pursuit task. A subject moves a 413 

joystick to control the position of an avatar (yellow circle). The task code determines the prey’s 414 
next position according to the movement of the subject and the built-in cost contour map (in 415 
panel B). Updates of both subject and prey positions occur every 16.66 ms, (i.e. 60 Hz: identical 416 
to screen refresh rates). (B) The cost contour map across the screen. At each time-step, the task 417 
code determines the prey’s next move by choosing the position with the lowest cost. Cost is 418 
higher as prey moves closer to the edges and corners of the screen (to prevent the prey from 419 
being cornered by the predator). The configuration of this cost-contour map makes the prey more 420 

likely to move (1) away from the subject (grey arrow), and (2) towards the center of the screen 421 
(black arrow). (C) Example trajectories (capture time: 7.84 seconds). Green trajectory indicates 422 
the subject’s actual trajectory, while the grey trajectory indicates the prey’s actual trajectory.  423 
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 424 
Fig. 2. Model description, fitting results for single trial and population. (A) Model to generate 425 
trajectory based on prediction. Solid black arrow indicates movement from one previous time 426 
point (i.e. 16.66 ms before) to the current time point. The prediction for the prey’s position at the 427 

next time point is generated according to each model type. The monkeys are assumed to aim at a 428 
point forwards or backwards along the predicted trajectory, as determined by tau. The resulting 429 
movement vectors are constrained to a maximum speed specific to each subjects’ motor 430 
constraints. (B) Two example trajectories (left and right columns), and the fit trajectory 431 
generated by each prediction method (Physics Variable-Based, Cost Contour Map, and 432 
Veridical). The empty circle in the trajectory indicates the starting position, and the star marker 433 
indicates the ending position of the trajectory. (C) Heatmap plots of model performance 434 

explaining subject’s pursuit trajectory across parameter space from a single subject (Subject K). 435 
The gray circle indicates the best parameter combination explaining subject’s behavior, which 436 
generates the closest distance between the actual trajectory and model-predicted trajectory.  437 
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 438 
Fig. 3. Inertia enhances model performance. (A) Model trajectory comparison between models 439 
with and without inertia. (B) Histogram results suggest that incorporating inertia component to 440 
the model leads to a better fit of the data (mean for sum-of-squared error difference below zero at 441 
x-axis). 95% of data falls to the left of the black, dashed line. Bootstrapping of difference in 442 

performance between the model with and without inertia was performed in randomly sampled 443 
trajectories (number of resamples: 1000, randomly selected trajectories: 2000).  444 
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 445 
Fig. 4. The fitting result across the subjects and model comparison. (A) Normalized Akaike 446 
Information Criteria (AIC) across all the trajectories. In the current figure, only the Physics 447 
Variable-Based Prediction (PVBP) based on velocity and acceleration is included as 448 

representative of all the physics variable-based prediction models. (B) Percentage of trials best 449 
explained by each model. The AIC values are compared across models.   450 
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 451 
Fig. 5. Pursuit trajectory of monkey is less than optimal compare to simulation result. (A) Left 452 
column is heatmap of fitting trajectory (identical as Fig. 2C, gray scaled for showing subject’s 453 
best parameter in color) and right column is capture time result from simulating artificial subject. 454 
Pink circle indicates best parameter obtained from simulation and other circles is best parameter 455 
from fitting each subject (red: Subject K; green: Subject H; subject C was not included since 456 

simulation matched prey speed with Subject K and H). (B) Trajectories generated by using best 457 
parameter from fitting (pink) and best parameter from simulation (light orange). The results 458 
suggest different strategy selection according to parameter (Quantitative comparison for 459 
capturing time between simulation and actual monkey’s behavior is at supplementary results). 460 
(C) Mean of distance per unit time in given example trajectory. Black line is maximum distance 461 
per unit time possible and gray dashed line is the mean of actual subject’s distance per time. 462 
Fitting parameter results in smaller value for trajectory A while has larger value for trajectory B. 463 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/272260doi: bioRxiv preprint 

https://doi.org/10.1101/272260


26 

SUPPLEMENTARY MATERIALS 464 

Pseudocode for Pacman Game Algorithm 465 

prey_size = 30 pixel 466 

number_of_angle = 15 467 

distance_factor = 50 468 

time_out = 20 seconds (resolution: 60Hz: 1200 data points) 469 

weight_x = sigmoidal function between 0 and 1920  470 

weight_y = sigmoidal function between 0 and 1080 471 

cost_grid = [1920 x 1080 matrix: z-axis is shown in Fig.1B] 472 

 473 

index = 1 474 

While prey_capture or time_out 475 

 % subject position is joystick input (x_coodinate, y_coordinate). 476 

 % initial position: randomly selected.  477 

 % prey_position is arbitrary random value. 478 

% initial position: 400 pixel away from subject initial position. 479 

 prey_away_vector = prey_pos - subj_pos; 480 

 normalized_away_vector = prey_away_vector/sqrt( sum( prey_away_vector)2) ); 481 

  482 

 % Multiple weight vector: If farther than particular distance, prey will not move.  483 

normalized_away_vector(1) = normalized_away_vector *weight_x; 484 

normalized_away_vector(2) = normalized_away_vector *weight_y; 485 

 486 
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 % multiply speed of prey: vary 5 levels  487 

 speed_considered_vector = normalized_away_vector*prey_speed; 488 

 489 

 % Compare 15 different positions: same distance, different angle.  490 

For number_of_angle 491 

  rotation_matrix = [cosd(angle), -sind(angle); sind(angle), cosd(angle)]; 492 

  rotated_away_vector = rotation_matrix * speed_considered_vector;   493 

  potential_prey_pos = current_prey_position + rotated_away_vector; 494 

 495 

% Calculate distance related value 496 

dist_from_subject = sqrt( sum( potential_prey_pos - current_subj_pos)2) ) 497 

dist_points = distance_factor *dist_from_subject; 498 

  499 

% cost according to shape of cost grid: how does imaginary screen look like 500 

grid_points = cost_grid( potential_prey_pos(x), potential_prey_pos(y)); 501 

 502 

% value considered for final movement 503 

final_cost = dist_points + grid_points;  504 

Endfor 505 

  506 

 % check condition whether prey is captured 507 

 If sqrt( sum( potential_prey_pos - current_subj_pos)2) ) <= prey_size then 508 

  prey_capture = True;  509 
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 Endif 510 

 511 

% check timeout 512 

If index  == time_out  513 

 time_out = True; 514 

else 515 

 % update index 516 

 index = index +1; 517 

Endif  518 

Endwhile  519 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/272260doi: bioRxiv preprint 

https://doi.org/10.1101/272260


29 

 520 
Fig S1. Monkeys behavior varies according to prey speed/reward. (A) Mean prey velocity in each 521 
trajectory plotted separately for each subject. Pursuit result differs according to color (equivalent to 522 
maximum speed) of prey. The maximum speed of prey increases from orange (slowest with smallest 523 
reward) to cyan (fastest with largest reward). As maximum speed increases, the mean capturing time (B) 524 
and percent of failed trials increase (C). However, reward rate also increases since the amount of reward 525 
is larger for faster prey (D).  Errorbars are the standard error of the mean, obtained by bootstrapping 526 
(1000 bootstraps).  527 
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 528 
Fig S2. Stabilization of the behavioral performance. Performance stabilization shown by the mean (A) 529 
and the standard deviation (B) of prey capture time. Subject C (blue) and Subject H (green) do not show 530 
any significant changes in their capture time throughout the days of the experiment (linear regression with 531 
p-value > 0.1) while Subject K (red) shows significant changes to both mean and standard deviation of 532 
capture time across days (p-value < 0.001).  533 
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 534 
Fig S3. Second order approximation of physics explains trajectory most accurately. (A) Each 535 

heatmap indicates the addition of more physical derivatives until sixth derivatives. The black 536 
circle indicates the best parameter set for the model. (B) In summary figure, physics include 537 
within-physics prediction model comparison (from velocity to pop, the 6th derivative). Any 538 
physics indicate summed result of whole physics variable based prediction (PVBP) model class 539 
to compare with other prediction methods.    540 
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 541 
Fig S4. Dynamic change of parameter set at each trajectory explains monkey’s trajectory better 542 
than identical single parameter set across all the trajectories. AIC comparison between the case 543 
of the single parameter set across all the session (case 1) or adaptively changing parameter set at 544 
each trajectory (case 2). Delta AIC indicates the difference between the cases (case 1 - case 2), 545 
and a positive value indicates adaptively changing the strategy explains subject’s trajectory better 546 
even there is penalty having more parameters. Each column shows the individual subject result. 547 
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 548 
Fig S5. Prey velocity dependent strategy selection. All the monkeys consistently show biases 549 
using PVBP when the prey velocity is faster. Logistic regression was performed between prey 550 

velocity and categorical dependent variable (0: non-PVBP, 1: PVBP). The p-values of all logistic 551 
coefficient was significant (p < 0.001).  552 
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 553 
Fig S6. Some trajectories explained with negative prediction. (A) Though the representative 554 
parameter set appears at positive prediction and positive force (identical figure as PVBP heatmap 555 
at figure 2C, across all trajectory heatmap). (B) Some trajectories are better explained with 556 

negative prediction, as indicated by an example trajectory. The model trajectory in (B) results 557 
from PVBP with ‘velocity and acceleration accounted’. (C) The fitting of individual trajectory 558 
displayed as scatter plot. Percent indicates the most fitting resulted in that quadrant (subject K 559 
and H: 1st quadrant with both positive prediction and force; subject C: 4th quadrant with positive 560 
force and negative prediction). (D) Scatter plot and polynomial fitting (grey solid line) result for 561 
cost against prediction. The rho and p-values are obtained from Spearman rank correlation. This 562 

provides reason for positive prediction in all subjects: method of heatmap accounts how well 563 
each trajectory is fitted.   564 
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 565 
Movie 1. Video of two primates subject playing dynamic pursuit task. Each subject was filmed in 566 
different stage of training (subject K: 6 weeks after initial joystick training, subject C: 3 weeks after initial 567 
joystick training).  568 
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