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The impact of fluorescence microscopy has been limited by the difficulties of express-
ing measurements of fluorescent proteins in numbers of molecules. Absolute numbers
enable the integration of results from different laboratories, empower mathematical
modelling, and are the bedrock for a quantitative, predictive biology. Here we de-
velop a general algorithm to infer numbers of molecules from fluctuations in the
photobleaching of proteins tagged with Green Fluorescent Protein. To untangle
measurement noise from stochastic fluctuations, we use the linear noise approxima-
tion and Kalman filtering within a framework of Bayesian inference. Not only do
our results agree with biochemical measurements for multiple proteins in budding
yeast, but we also provide a statistically verified model of measurement noise for
fluorescence microscopes. The experiments we require are straightforward and use
only a wide-field fluorescence microscope. As such, our approach has the potential
to become standard for those practising quantitative fluorescence microscopy.

Introduction

In fluorescence microscopy, converting measurements of fluorescence into numbers of molecules
is a long-standing challenge. This deficit limits both the ability to combine fluorescence measure-
ments from different experiments into one data set and the application of quantitative analyses
of time-series that assumes the numbers of molecules are known [1, 2, 3, 4, 5].

Although methods exist to estimate the ratio between protein number and fluorescence,
most require additional expertise and equipment beyond that typically needed for fluorescence
microscopy [6]. Examples include fluorescence correlation spectroscopy [7, 8], image correlation
spectroscopy [9], photon-counting histogram analysis [10], and fluorescence intensity distribution
analysis [11], but all these approaches require at least a confocal microscope. Data is publicly
available for alternative biochemical methods, such as quantitative Western blotting [12, 13] and
mass spectrometry [14], but their accuracy is difficult to assess [15].

Ideally we would like to have a technique that requires only a wide-field fluorescence micro-
scope and can be applied directly to the cells whose fluorescence is of interest. One promising
set of approaches are fluctuation-based methods. These methods were first proposed in 1974 [7],
but since then no standard approach has been developed for wide-field microscopy. Fluctuation
analyses exploit that the magnitude of fluctuations in fluorescence are determined not by the
concentration of the fluorescent molecules but by their numbers [16] and infer the fluorescence
per molecule by analysing deviations from the mean (Fig. 1A).

Bespoke fluctuation techniques have been developed for wide-field microscopes, which do not
focus on diffusion as fluorescence correlation spectroscopy does but instead use other stochastic
events. There are two main approaches. One is to study fluctuations in the distribution of fluo-
rescent proteins between daughter cells at cell division [17, 18, 19]. These techniques have been
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mostly applied to bacteria, are unsuitable for non-dividing cells [20] and do not straightforwardly
extend to species that exhibit differences in size between mothers and daughters. Further, the
data must be obtained over several tens of divisions, which may be prohibitive for slowly dividing
cells. The other approach is to study fluctuations in stochastic decay processes. Interventions to
inhibit translation and transcription have allowed the fluorescence per molecule to be estimated
in mammalian cells [4], but the stability of fluorescent proteins can make these experiments time
consuming. A faster approach is to deliberately induce photobleaching [21]: the process whereby
fluorophores cease to fluoresce when continuously excited [22]. This method has been applied in
vitro [23, 24] and to bacteria [25], but the proposed analysis relies on photobleaching exhibiting
an exponential decay [21], which is expected for single molecules but not for the fluorescence of
cells [22].

Analysing such data is challenging. We must fit not the mean behaviour but fluctuations
around the mean, and these fluctuations are typically confounded by measurement noise. To be
successful, any inference procedure must be able to distinguish between measurement noise and
stochastic effects (Fig. 1 inset).

Here we calibrate data from fluorescence microscopy through a Bayesian analysis of the
fluctuations during photobleaching of eukaryotic cells. We model photobleaching as a multi-
exponential process [22] and include measurement noise, unlike earlier analyses [21, 23, 25,
24], which neglect both. Using budding yeast, we show that photobleaching is indeed not
described by a single exponential decay and introduce, fit, and statistically compare models that
differ in their description of measurement noise. We therefore find both an empirically verified
distribution for the measurement noise present in wide-field fluorescence microscopy, which can
be used in the analysis of other data, and the fluorescence per molecule for proteins tagged with
Green Fluorescent Protein (GFP). The corresponding predictions of protein numbers agree with
estimates found by biochemical methods for the six proteins tested.

Figure 1. The magnitude of fluctuations is determined by numbers of molecules. Simulated
time-series for stochastic exponential decay are normalized to the same starting value and plotted
on a log scale for both low and high numbers of proteins. The mean behaviour is common (green
line), but the data for low numbers of proteins (orange) shows larger deviations from the mean
than the data for high numbers of proteins (purple). Inset: Stochastic fluctuations become
masked with measurement noise (here an independent, additive Gaussian noise with zero mean
and a standard deviation of 0.01): the orange and purple time-series now substantially overlap.
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Results

A biophysical model of photobleaching

Figure 2. Photobleaching is not described by a single exponential decay. The logarithm of the
fluorescence of 5 cells of budding yeast expressing Pgk1-GFP and undergoing photobleaching
does not fall on a straight line as a function of time (in contrast to the data of Fig. 1). The inset
shows all the pairs of decay rates found from fitting a bi-exponential decay to the time-series
of each cell (using maximum likelihood). There is substantial cell-to-cell variation (each circle
represents a cell and notice the log scale on the y-axis).

We obtained time-series of photobleaching using budding yeast and GFP-tagged proteins [26].
Cells were fixed and photobleached in sustained illumination with fluorescence measurements
taken every 10 seconds (Fig. 2 and Methods).

Our data is incompatible with earlier methodologies (Methods) because it is not well de-
scribed by a single exponential decay (Fig. 2). First, the data for any individual cell shows
systematic deviations from a single exponential and is better fit by a bi-exponential decay. Sec-
ond, the decay rates of these two exponentials vary substantially between cells (Fig. 2 inset).
Multi-exponential photobleaching is common [22, 27, 28, 29, 30] and can be caused by heteroge-
neous illumination [31], differing intracellular micro-environments [32], molecular rotation [33],
and higher order interactions between excited fluorophores [34, 35]. These phenomena can also
cause heterogeneity in parameters between cells if there is variation in either illumination or
chemical composition across the population of cells.

We therefore consider each cell to have two populations of fluorescent proteins that pho-
tobleach with different rates. Writing the number of fluorescent proteins in cell j in the first
population as x1,j and the number of fluorescent proteins in the second population as x2,j , we
model photobleaching as

x1,j
λ1,j−−→ ∅ x2,j

λ2,j−−→ ∅ (1)

where λ1,j is the rate of photobleaching of the first population in cell j and λ2,j is the rate of
photobleaching of the second population in that cell. We emphasise that these rates are specific
to each cell.
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Modelling measurement noise

To infer numbers of molecules, we require a model for the measurement noise generated by
fluorescence microscopes.

A common description of this error is additive Gaussian noise [1, 2, 4, 18, 36]. Writing
N (y;µ, σ2) for a Gaussian distribution in y with mean µ and standard deviation σ, yj(t) for the
measured fluorescence of cell j at time point t, and ν for the fluorescence per molecule – the
parameter that we wish to infer, we have

yj(t) ∼ N
(
yj(t); ν[x1,j(t) + x2,j(t)] + fj , σ

2
e

)
(2)

where j again indexes an individual cell. Here σe is a constant, common to all cells, that deter-
mines the magnitude of the measurement noise, and we include a heterogeneous autofluorescence
for each cell as fj (Methods).

The additive Gaussian model for noise has been criticised, and multiplicative Gaussian noise
[37] and log-normal noise [3] proposed as alternatives. Unlike additive Gaussian noise, both
these models have the intuitively attractive property of a standard deviation that scales with
the mean: we do not expect to have the same accuracy when measuring, for example, 100 and
10,000 proteins. This scaling is physically justified if the major sources of measurement noise are
inconsistent illumination, segmentation errors, and small movements of the stage. Poisson noise,
which is often used to model errors generated by CCD cameras [38], has the similar property
that the standard deviation scales with the square root of the mean.

We therefore considered a second model for measurement noise, which we call polynomial
state-dependent normal noise, in which the measurement is distributed as:

yj(t) ∼ N
(
yj(t); ν[x1,j(t) + x2,j(t)] + fj ,

σ2e,0 + ν[x1,j(t) + x2,j(t)]σ
2
e,1 + ν2[x1,j(t) + x2,j(t)]

2σ2e,2

)
(3)

for constant σe,i. This noise model is general: if σe,1 = σe,2 = 0, the model recovers Eq. 2; if
σe,1 = 0, the model’s standard deviation scales with the mean. The model does not have the
positive skewness of log-normal noise and has support for negative fluorescence values, which
can be observed after correcting images for background.

A fluctuation analysis

Due to their complexity, these models are no longer amenable to previous approaches [18, 21],
and we instead use Bayesian methods for the analyses of time-series.

Briefly (see Methods for details), we employ the linear noise approximation [16, 39] to de-
scribe fluctuations in the dynamics of bleaching and combine this approximation with a Kalman
filter [36, 40] to estimate the likelihood of the parameters. These parameters include homoge-
nous parameters shared between all cells (ν and σe) and heterogeneous parameters that vary
from cell to cell (λ1,j , λ2,j , and fj). To move from this likelihood to inference, we first use an
optimisation routine to estimate the parameter values with maximum likelihood and then take
these values as a starting point for an adaptive Markov chain Monte Carlo scheme to sample
the parameters’ posterior distribution [41].

For additive Gaussian noise (Eq. 2), a standard Kalman filter can be used [40], but for state-
dependent noise (Eq. 3), we use the predicted values of the protein concentrations at each time
point to find an estimated value for the variance in Eq. 3. As the inference proceeds sequentially,
this approximation means that the variance is known at each time point allowing the standard
Kalman filter to be employed again, speeding up the analysis.

We verified the algorithm for both types of measurement noise using simulated data and use
the evidence for each model, P (data|model), to discriminate between models [42].
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To compare with biochemical measurements of protein numbers, we use the fluorescence
data at the initial time-point before we bleach the cells and the posterior distribution for the
parameters of the model given the bleaching data to infer the expected number of proteins in
log-phase cells.

Comparison with biochemical estimates of protein numbers

Figure 3. For multiple proteins in budding yeast, estimates of numbers of proteins by our anal-
ysis of fluctuations in photobleaching agree with those obtained biochemically. (A) Considering
the log evidence for the four models (either mono- or bi-exponential bleaching and either addi-
tive Gaussian or state-dependent measurement noise), the data strongly favour bleaching with
a biexponential decay and a state-dependent measurement noise (the evidence for this model is
at least 5000 dB higher than any other). We normalize so that the lowest log evidence is zero
(for the model with mono-exponential bleaching and Gaussian measurement noise). (B) Our
analyses, using the favoured model of Eqs. 1 and 3, predicts numbers of proteins in agreement
with biochemical estimates. For each protein, the blue histogram is a kernel density estimate
of the distribution of protein numbers measured by diverse biochemical methods [15]; the red
histogram shows the distribution of inferred numbers for log-phase cells using our analysis (from
multiple, replicate photobleaching experiments – Methods). (C) The posterior distributions for
the homogenous parameters peak at physically reasonable values and provide, with Eq. 3, a
model for the measurement noise of wide-field fluorescence microscopes. The plots show the
marginal posteriors (from all replicates – Methods).

To test our method, we looked at biochemical measurements of the numbers of molecules for
the proteome of budding yeast [15] and selected six proteins (Fus3, Hog1, Guk1, Def1, Gpm1 and
Pgk1), which have a range of copy numbers. GFP fusions for these proteins [43] were subjected
to our analysis.

The data favour both bi-exponential photobleaching and a state-dependent measurement
noise. Running our inference procedure (Methods), we estimated the evidence, P (data|model)
or the marginal likelihood, for four models: either mono- or bi-exponential bleaching and either
additive Gaussian or state-dependent measurement noise. Following standard interpretations of
the numerical values of evidence [44], bi-exponential photobleaching is highly favoured and a
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state-dependent measurement noise preferred over Gaussian noise (Fig. 3A).
Using this model, we infer numbers of proteins in agreement with the biochemical estimates

(Fig. 3B). There appears to be a general tendency to underestimate the number of molecules,
especially for proteins with high-copy numbers, but there is considerable variation in the bio-
chemical results, which may themselves be biased, and GFP-tagging could affect the stability of
a protein and its mRNA.

Understanding the possible reasons the algorithm might give an underestimation requires de-
veloping an intuition for how protein number is inferred. A fluorescent measurement, y, is given
by the product of the brightness per molecule, ν , and the number of fluorescent molecules, x,
and is therefore not informative about their individual values. The magnitude of the fluctuations
in the underlying biochemical process changing x (here photobleaching) are expected to scale
with the mean [16]: Var[x] ∼ E[x]. Therefore the variance in the fluorescence, y = νx, scales
as Var[y] ∼ ν2E[x] = νE[y]. For a given fluorescence (a given E[y]), large fluctuations therefore
imply a high value of ν and correspondingly low numbers of proteins because E[x] = E[y]/ν, and
vice versa (Fig. 1). In our algorithm, we make the common assumption that the measurement
noise on each measurement is independent. Any correlation in the measurement noise over time
will therefore be interpreted as originating from bleaching. The magnitude of the fluctuations in
bleaching will correspondingly be overestimated and the number of molecules underestimated.
Physically, there are multiple possible sources of correlated error: for example, a gradual drift
in the brightness of the illuminating LED or if the microscope slide or cells were to slowly move
during the experiment. Furthermore, shortcomings in our biochemical model of bleaching will
lead to a discrepancy between the model’s expected behaviour and the cells’ actual behaviour
that would appear too as correlated errors.

Our method not only returns an estimate for the number of molecules but also posterior
probabilities for the parameters necessary to describe a wide-field fluorescence microscope’s
distribution of measurement noise (Fig. 3C). It is difficult to find published data with which to
compare these parameters. Nevertheless, the range of supported σe,1 values is close to 1, which
is the value expected for Poissonian noise. These estimates are robust: using an informative
prior for the brightness parameter, ν, the modes of the posterior distributions maintain the same
order of magnitude and are shifted at most by a factor of two (Methods).

Discussion

A long standing problem in quantitative fluorescence microscopy is converting measurements of
fluorescence to absolute units. Absolute units enable the data from different laboratories to be
combined and are needed both for models to accurately fit single-cell data [3] and to assess the
validity of the magnitude of fitted parameters [45]. As such, absolute units are an important
facilitator for the long-term success of systems and synthetic biology [46, 47].

Here we have presented a fluctuation analysis that estimates the numbers of fluorescent pro-
teins by deliberately photobleaching cells on a wide-field fluorescence microscope. Fluctuation
analyses have long been used to estimate numbers of molecules on confocal microscopes, but
the challenges of untangling measurement noise from fluctuations in stochastic biochemistry
has prohibited a similar approach becoming a standard for the more commonly used wide-field
fluorescence microscope.

Building on advances in the study of stochastic gene expression [40], we have used the
linear noise approximation to model stochastic biochemical events combined with a Kalman
filter and a state-dependent measurement noise to infer numbers of proteins from fluctuations in
photobleaching. For budding yeast, we have shown that photobleaching has two distinct time-
scales, corresponding to two decay processes, but our framework remains valid for more complex
reactions. The approximations developed allow faster inference than alternative approaches,
such as particle-based methods, and the data we require can be gathered on a standard wide-
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field fluorescence microscope, requiring no specialist equipment.
Further, we have rigorously compared different models of measurement noise, and we an-

ticipate that the state-dependent measurement noise, Eq. 3, which is most consistent with our
data, together with its inferred parameters (Fig. 3C), will underpin future work both for fitting
mathematical models and for quantitative microscopy [48].

To bring together discoveries from different laboratories and to build those discoveries into
a larger predictive framework, measurements both in single cells and in absolute numbers are
necessary. We believe that methods that extend the fluctuation analyses available for confocal
microscopes to wide-field microscopes, such as the one we present here, are key for a broad
transition to a quantitative single-cell biology.

Methods

Selecting proteins to study

When selecting proteins to test our method, we looked at three whole-proteome datasets of
absolute numbers of protein obtained by quantitative Western blot [26], mass spectrometry [14],
and fluorescence microscopy [49]. Proteins were selected that appeared in all three data sets. To
obtain proteins whose levels would be robust to any stresses from our fixing procedure, we used
a protein localisation atlas [50] to select cytoplasmic proteins that showed no significant fold
change under starvation and dithiothreitol- and peroxide-induced stress. From these proteins,
we selected four giving a broad range of levels: Def1, Guk1, Gpm1, and Pgk1. To these proteins
we added Hog1 because of its regular study in our laboratory [51] and Fus3 because of the
availability of a measurement by fluorescence correlation spectroscopy (FCS) [52]. Taking a
cytoplasmic concentration of 180 nM for vegetative Saccharomyces cerevisiae cells and a three
times higher concentration for the nucleus [52] along with cellular and nuclear volumes of 42
µl and 3 µl [53, 54, 55], we estimate 5200 molecules of Fus3 per cell from this FCS data.

During the course of our work, however, a comprehensive collection of whole-proteome data
sets was published [15], and this data is the data we use for comparison. Our estimate for Fus3
from the FCS data is within the range of values reported in this data set, being 1.75 times the
median.

Cell preparation

Following [26], cells from the ORF GFP collection [43] were grown overnight in YEPD (2%)
media past the diauxic lag, and 0.5 ml of this culture diluted in 5 ml of fresh media. After 5
hours and at an OD of ∼ 0.5, the cells were fixed [56].

Microscopy and image analysis

All experiments were performed on a Nikon Eclipse Ti inverted microscope controlled using
custom MATLAB scripts (Mathworks) written for Micromanager [57] and the Perfect Focus
System. We used a 60X 1.2 NA water immersion objective (Nikon), and images were acquired
using an Evolve EMCCD camera (Photometrics) with a 512 × 512 sensor in CCD mode. Cells
were adhered to slides using concanavalin A.

To effect photobleaching, the GFP excitation LED was kept at full power for the duration
of the experiment with cells imaged for GFP every 10 seconds. This procedure was repeated for
multiple, isolated fields of view for each slide. Wild-type cells, which do not express GFP, were
also imaged.

Fluorescence images were corrected for flat field and background. We obtained a flat field
image by flowing 0.001% fluorescein (by mass) through a narrow microfluidic device [58] and
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Figure 4. After correction for flat field and background, cells have a residual autofluorescence.
(A) Examples of selected cells with their outlines in red. The area in the bottom left without
cells was used to correct the fluorescence for background. (B) The residual fluorescence of each
wild-type cell, after all corrections, has a non-zero mean, which we include in our models of
measurement noise, Eqs. 2 and 3, as the heterogenous parameter fj .

imaging multiple positions over an extended time course. Any microfluidic features were ‘blot-
ted out’ of the images and the modified images averaged and normalised to a median of one. A
correction was applied to the fluorescence images through an element-wise division by the flat
field. To remove any background particular to the slide, we subtracted the average pixel fluores-
cence for a region of the image containing no cells from each pixel value (Fig. 4A). Fluorescence
images were also registered to correct for drift in the field of view.

Date Strain n for each replicate

11 Oct 2016

Def1-GFP 30, 30, 30
Fus3-GFP 30, 25, 30
Gpm1-GFP 17, 30
Guk1-GFP 30, 30, 30
Hog1-GFP 8, 17, 30
Pgk1-GFP 9?, 21?, 12?

23 Mar 2017

Def1-GFP 30, 30
Fus3-GFP 30, 30, 30, 30, 30
Gpm1-GFP 30, 30, 30, 30
Guk1-GFP 30, 30
Hog1-GFP 24, 24, 30, 30
Pgk1-GFP 30, 30, 30, 30

Table 1. Numbers of cells for each experimental replicate for each protein. On two occasions,
cells were brought up from stocks, cultured, fixed, and photobleached. Cells were imaged for
400 ms except for asterisked replicates, which were imaged for 200 ms to avoid saturating the
camera. We compensate for this difference when combining estimates (Methods).

Given that we imaged fixed cells, cells were selected and segmented at the first time point
from a bright-field image and whole-image registration used to propagate this outline to other
time points. Cells in the bright-field image were chosen by eye to be isolated, well focused,
present for the whole experiment (i.e. not washed away), and in a region where the illumination
intensity (taken from the flat field correction) was at least 80% of the median illumination.
Selected cells were outlined based on the out-of-focus bright-field image using custom MATLAB
scripts, and these outlines curated by hand.

Cells were also corrected for autofluorescence. We corrected wild-type cells for flat field and
background, and their average value was subtracted from all fluorescent cells. When this proce-
dure is performed on wild-type cells, the residual fluorescence time-series display a systematic
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error that varies from cell to cell (Fig. 4B). We therefore assume a similar systematic error in the
time-series of our fluorescent cells and include a heterogeneous basal fluorescence in our model
of measurement noise (fj in Eqs. 2 and 3).

Finally, cell fluorescence was calculated as the sum of the values of brightest 80% of pixels
within the cell boundary. This measure reduced the effect of movements of the stage. We
used the 35 time points after the 5th because the first 5 time points were often erratic. Cells
or replicates that displayed large systematic deviations from bi-exponential decay (such as a
sudden drop in fluorescence) were discarded.

We twice repeated the entire experimental procedure (bringing colonies up from glycerol
stocks, cell fixation and imaging). The list of all replicates used, with cell numbers per replicate,
are shown in Table 1.

Inference fails assuming no measurement noise and mono-exponential decay

Analysing the data using the previously proposed estimator [21], which assumes no measurement
noise and that photobleaching decays exponentially, the number of proteins inferred are incon-
sistent with the biochemical data. To correct for residual autofluorescence, we first fitted an
exponential decay with an offset to each cell and then subtracting the fitted offset from the data
before processing (a procedure that worked for data simulated from a single exponential decay
with parameters shared by all cells and no measurement noise). Other than this correction, we
followed the procedure of Kim et al. [25].

This naive inference underestimated numbers of proteins by several orders of magnitude. For
Fus3, 174 and 1 proteins are estimated for the two replicates (the biochemical estimate is 3835
[15] – an underestimate by at least a factor of 20); for Hog1, the estimates are 69 and 77 (an
underestimate by a factor of 90); for Guk1, the estimates are 153 and 1 (an underestimate by a
factor of over 420); for Def1, the estimates are 7 and 47 (an underestimate by a factor of over
750); for Gpm1, the estimates are 134 and 11 (an underestimate by a factor of over 4500); for
Pgk1, the estimates are 34 and 9 (an underestimate of over 45000).

Inference with measurement noise and complex decay

Given data Yt = {y1, · · · ,yt}, we would like to infer θ = {θm,θe}, where θm are the parameters
for the biophysical model and describe the dynamics of the underlying x variables and θe are the
parameters describing the distribution of the measurement noise (including the autofluorescence
fj). The y variables are related to the x variables through this measurement noise. We note that
an analytical, maximum likelihood solution is possible for the ideal case without measurement
noise [56].

Modelling protein concentration using the linear noise approximation

The dynamics of the protein concentrations, x, are determined by chemical reactions and can
be described by a chemical master equation for P (x, t), the probability distribution of the state
x at time t [16]. We use the linear noise approximation (first-order terms in an expansion of
the master equation in the size of the system, which for us is the volume of the cell [39]). This
approximation makes P (x, t) a normal distribution if the initial distribution is either a normal
or a delta distribution [16].

If we let the stochiometric matrix be S and the hazards (propensities) be h and noting that
x describes numbers of molecules not concentrations, then

P (x, t) = N
(
x;µ(t),Σ(t)

)
(4)

where µ(t), the mean, and Σ(t), the covariance matrix, obey [40]

d

dt
µ = STh(µ, t) (5)
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and
d

dt
Σ = JΣ + ΣJT + STHS. (6)

Here J is the Jacobian:

Jij =
∂

∂xj

∑
k

Sikhk(µ, t) (7)

and H is a matrix of zeros with h(µ, t) on the diagonal.

Linear noise and sequential data – a Kalman filter

We wish to infer θ given Yt. Bayes’s rule states:

P (θ|Yt) ∼ P (Yt|θ)P (θ) (8)

or, by using the rules of probability to factorize the likelihood,

P (θ|Yt) ∼ P (θ)
t∏
i=1

P (yi|Yi−1,θ). (9)

We find each term in Eq. 9 sequentially by considering the dynamics of x from one time
point to the next and then correcting that dynamics given the observed data [40]. Assume
that at time point i− 1 the distribution P (xi−1|Yi−1,θ) is Gaussian with a known mean µ∗i−1
andcovariance matrix Σ∗i−1:

P (xi−1|Yi−1,θ) = N (xi−1;µ
∗
i−1,Σ

∗
i−1). (10)

Using the linear noise approximation to describe the dynamics of x, we can, with Eq. 10 providing
the initial condition, integrate Eqs. 5 and 6 over one time interval to time point i to find µi and
Σi and that

P (xi|Yi−1,θ) = N (xi;µi,Σi). (11)

We next wish to extend the conditioning in Eq. 11 to include the data point, yi, at time
point i. To do so, note that

P (xi|Yi,θ) = P (xi|yi,Yi−1,θ)

=
P (yi|xi,Yi−1,θ)P (xi|Yi−1,θ)

P (yi|Yi−1,θ)

∼ P (yi|xi,θ)P (xi|Yi−1,θ) (12)

using Bayes’s rule, conditioning on Yi−1 and θ, and assuming that the measurement noise only
depends on the current value of x. If the measurement noise too has a normal distribution

P (y|x,θ) = N (y; Ux,V) (13)

with U being a constant projection matrix and V being a covariance matrix, then we can
simplify Eq. 12 using the properties of normal distributions [59]. We find that P (xi|Yi,θ) is
also normal with a mean µ∗i and a covariance Σ∗i that satisfy [40]

µ∗i = µi + ΣiU
T (UΣiU

T + V)−1(yi −Uµi)

Σ∗i = Σi + ΣiU
T (UΣiU

T + V)−1(−UΣi). (14)

We see that the prediction of µi and Σi found from µ∗i−1 and Σ∗i−1 using the linear noise
approximation are corrected because of the new data point and the measurement noise.
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The factors in Eq. 9, P (yi|Yi−1,θ) obey

P (yi|Yi−1,θ) =

∫
dxiP (yi|xi,θ)P (xi|Yi−1,θ) (15)

and are therefore the normalizing factors for Eq. 12, satisfying

P (yi|Yi−1,θ) = N (yi; Uµi,UΣiU
T + V). (16)

Hence from a normal prior distribution for x1, P (x1|θ), we use Eq. 15 to find P (y1|θ), the
first term in the factorization of the likelihood in Eq. 9, and Bayes’s rule to find P (x1|y1,θ) ∼
P (y1|x1,θ)P (x1|θ), the starting normal distribution in Eq. 10 for the sequential inference.

To specialize the algorithm to photobleaching, we subtract the autofluorescence, fj , from
each data point before applying the Kalman filter. The Kalman update step, Eq. 14, can result
in unphysical, negative components of µ, which we set to zero and then continue the Kalman
filter.

Application to biophysical models of photobleaching

To explain the observed biexponential decay during bleaching, we consider two populations of
molecules that bleach at different rates

x1
λ1−→ ∅ x2

λ2−→ ∅

for which we can analytically solve Eqs. 5 and 6.
For this model

S =

(
−1 0
0 −1

)
and h =

(
λ1x1
λ2x2

)
and

U = [ν ν] and V = σ2e

in Eq. 13.
Eq. 5 becomes

d

dt

(
µ1
µ2

)
=

(
−λ1µ1
−λ2µ2

)
(17)

so that

µ =

(
x1,0 e

−λ1t

x2,0 e
−λ2t

)
(18)

for initial condition x0. In Eq. 6,

J =

(
−λ1 0

0 −λ2

)
and

STHS =

(
λ1 x1,0 e

−λ1t 0
0 λ2 x2,0 e

−λ2t

)
which upon integration implies

Σ(t) =

(
e−λ1t 0

0 e−λ2t

)[(
x1,0 (eλ1t − 1) 0

0 x2,0 (eλ2t − 1)

)
+ Σ(0)

](
e−λ1t 0

0 e−λ2t

)
. (19)
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Starting the inference

To begin the inference scheme, we must first specify a prior P (x1|θm). To do so, we introduce
two new parameters: x0, which is the total amount of fluorescent protein at time point 0, and α,
which is the partitioning of this fluorescent protein between the slow- and fast-bleaching pools.
We infer both these parameters.

For the Kalman filter, we require that P (x1|θm) be a normal distribution, but we wish to
start x1 at a known value. We therefore assume that P (x1|θm) = N (x1;µ

∗
1,Σ

∗
1), with

µ∗1 = x0

(
1− α
α

)
and Σ∗1 =

(
0 0
0 0

)
. (20)

This distribution is a delta function because Σ∗1 is a matrix of zeros and is not strictly normal.
Nevertheless, Eq. 20 imposes the known initial value µ∗1.

Sampling the posterior probability

To sample from the posterior probability, P (θ|Yt), in Eq. 8 we use both optimization and a
Markov chain Monte Carlo method.

We distinguish between heterogenous parameters, which are specific to each cell (λ1, λ2,
f , x0 and α), and homogeneous parameters, which have the same values for all cells (σe and
ν). The homogenous parameters and x0 have scale-free priors: for example, P (ν) = 1/ν. The
heterogenous parameters other than x0 have flat priors. All priors are proper and bounded
to reasonable physical values. To ensure the expected behaviour is dependent only on the
heterogeneous parameters and to improve the mixing of the Markov chain, we propose the
combination νx0, referred to as b0, rather than x0.

To generate samples from the posterior, we use a Metropolis-within-Gibbs scheme [60] with
the heterogeneous parameters updated separately from the homogeneous parameters. We em-
ploy adaptive parallel tempering to accelerate mixing in the Gibbs sampler [61], which has been
found to perform well on benchmark biochemical models [62]. Specifically, we use 10 chains
with their temperatures chosen adaptively. Parameters are proposed independently, with λ1,
λ2, f and α proposed from a normal distribution and b0, σe and ν proposed from a log-normal
distribution. The scales for the proposal distributions for the heterogeneous and homogeneous
parameters are adaptively selected.

To start the Monte Carlo method, we try to find values of the parameters that maximize the
likelihood P (Yt|θ). We use a nested optimisation scheme [37]:

1. We find starting values for the heterogeneous parameters by fitting a bi-exponential decay
to each cell’s time series.

2. All parameters, including the heterogenous parameters, are then fitted for each cell, inde-
pendently of all other cells, using a particle swarm.

3. We create an initial parameter set for the homogenous parameters by taking the median
of the homogeneous parameters from the individual fits of Step 2.

4. We perform iterative optimisation: first optimising the homogeneous parameters with
the heterogeneous parameters fixed then vice versa until a maximum is reached. Each
individual optimisation used Matlab’s fmincon with the default algorithm.

5. To provide diverse starting points for the chains, half of our chains are initialised at the
parameter values found in Step 4 and the other half are initialised from optima found by
performing the iterative optimisation of Step 4 from random parameters rather than from
those found in Step 3.
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Extending to state-dependent measurement noise

The variance of the measurement noise of Eq. 3 depends on the state of the system — the x1,j

and x2,j . Our inference scheme, however, assumes a constant variance and so is no longer valid.
We therefore approximate Eq. 3 by replacing the explicit state dependence in the variance

by its expected value given Yt−1:

yj |xj ∼ N
(
yj ; Uxj + fj , σ

2
e,0 + Uxjσ

2
e,1 + (Uxjσe,2)

2
)

' N
(
yj ; Uxj + fj , Exj |Yj−1

[
σ2e,0 + Uxjσ

2
e,1 + (Uxjσe,2)

2
])

= N
(
yj ; Uxj + fj , σ

2
e,0 + Uµjσ

2
e,1 + U(µjµ

T
j + Σj)U

Tσ2e,2

)
(21)

The usual update step in the Kalman filter, Eq. 14, can then be used.
This estimate of the likelihood performs comparably with a particle filter and is more robust

[56]. We use the Metropolis-within-Gibbs scheme to sample the posterior probability with log-
normal proposal distributions and scale free priors for the additional homogeneous parameters:
σe,1 and σe,2.

In silico verification

Figure 5. Parameters are well identified for simulated data. We simulated time-series for the
model of Eq. 1 with a distribution of decay rates and initial numbers of proteins similar to those
observed experimentally. (A) For Gaussian measurement noise, we show the probability of the
true value of ν averaged over 5 simulated datasets (and normalized to correct for the kernel
density estimates we use – Methods). A value of 1 would indicate total confidence in the true
value. When the initial number of proteins (y-axis) is large compared to the measurement noise
(x-axis), ν can be accurately inferred. Here ν = 10. (B) Letting ν = 1 and ν = 100 too, we show
the results for all three values of ν as a histogram of log10(νmedian/νtrue). The spike at 1 indicates
ν can usually be correctly inferred. (C) A similar histogram for state-dependent measurement
noise also shows that inference of ν typically remains accurate if more challenging.

We verified our methodology using simulated data (Fig. 5). For additive Gaussian measure-
ment noise, the inference is able to accurately infer ν if the measurement noise is not so high
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as to mask the stochastic fluctuations. This threshold depends on the initial number of pro-
teins. For any magnitude of measurement noise, there will be a sufficiently high initial number
that stochastic fluctuations are detectable. For state-dependent noise, however, the inference no
longer necessarily improves with increasing numbers of protein when the state-dependent noise
is sufficiently large (data not shown).

Estimating the expected numbers of proteins

Given a sample of parameters from the posterior distribution P (θ|Y), and a fluorescence mea-
surement y, we would like to find the posterior distribution of the number of proteins, x:

P (x|y,Y) =

∫
dθP (x|y,θ)P (θ|y,Y)P (y). (22)

We assume that the measurement y does not change the posterior probability of θ: P (θ|y,Y) '
P (θ|Y). Ignoring P (y), which is independent of x, we have

P (x|y,Y) ∼
∫
dθP (x|y,θ)P (θ|Y). (23)

By Bayes’s rule

P (x|y,θ) ∼ P (y|x,θ)P (x)

∼ P (y|x,θ) (24)

assuming a constant prior, P (x).
For Gaussian measurement noise, Eq. 2, we use that

P (y|x,θ) = N (y; νx+ f, σ2e)

=
1

ν
N
(
x;
y − f
ν

,
σ2e
ν2

)
(25)

from the properties of Gaussian distributions. From Eq. 24 then

P (x| y,θ) = N
(
x;
y − f
ν

,
σ2e
ν2

)
(26)

normalizing over x.
For state-dependent measurement noise, Eq. 3, we have

P (y|x,θ) = N
(
y; νx+ f, σ2e,0 + νxσ2e,1 + (νxσe,2)

2
)

(27)

which cannot be straightforwardly inverted to give a normalized distribution in x. We therefore
approximate νx by y so that the variance in Eq. 27 becomes constant. Then

P (x| y,θ) ∝∼ N
(
y; νx+ f, σ2e,0 + yσ2e,1 + (yσe,2)

2
)

= N

(
x;
y − f
ν

,
σ2e,0 + yσ2e,1 + (yσe,2)

2

ν2

)
(28)

similarly to Eq. 26.
Continuing with σ2e as the variance for simplicity (although the results will hold too for the

constant variance in Eq. 28), Eq. 23 becomes

P (x| y,Y) =

∫
dνdσedf N

(
x;
y − f
ν

,
σ2e
ν2

)
P (ν, σe, f |Y) (29)

which we estimate on a grid of x values as an average over the Monte Carlo samples generated
from P (ν, σe, f |Y).
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Multiple measurements: If we have multiple, replicate measurements of fluorescence (each,
for example, from a different cell) and are interested in the distribution of x̄ =

∑
xi/N , we can

use that the distribution of a sum of Gaussian variables is also Gaussian with a mean and a
variance equal to the sum of the mean and variances of all the Gaussian variables in the sum
[16]:

P ( x̄|y,Y) =

∫
dνdσedf N

(
x̄;
ȳ − f̄
ν

,
σ2e
Nν2

)
P (ν, σe, f |Y) (30)

following Eq. 29. Practically, we assume that σ2e/N and f̄/ȳ sufficiently small that we can take
the limiting case:

P ( x̄|y,Y) =

∫
dν δ

(
x̄− ȳ

ν

)
P (ν|Y) . (31)

We use a kernel density representation for P ( x̄|y,Y) with kernels K(x, x′) = logN (x;x′, σK)
and σ2K = 10−2:

P ( x̄|y,Y) =

∫
dx′K(x̄, x′)P (x′|y,Y)

'
∫
dνdx′K(x̄, x′)δ

(
x′ − ȳ

ν

)
P (ν|Y)

=

∫
dν K

(
x̄,
ȳ

ν

)
P (ν|Y) (32)

using Eq. 31. We evaluate the integral in Eq. 32 using the Monte Carlo samples of P (ν|Y).

Combining estimates from all datasets

To have a final estimate of the homogeneous parameters for analysing other microscopy experi-
ments, we combined posteriors from all replicates for all genes (the posteriors in Fig. 6). Writing
{D} = {D1,D2 . . .DN} as the set of data from all replicates, we wish to sample from P (θ| {D}).
We note that the datasets are conditionally independent given θ so that

P (θ| {D}) ∼ P (θ)

N∏
i

P (Di|θ)

∼ P (θ)
N∏ P (θ|Di)

P (θ)

=

∏
i P (θ|Di)
P (θ)N−1

. (33)

We approximate the P (θ|Di) in Eq. 33 with kernel density estimates. If {θi,1, . . .θi,M} is the
set of parameter samples from the posterior P (θ| Di) obtained from our Monte Carlo method,
then

P (θ| Di) '
1

M

M∑
j=1

K(θ,θi,j) (34)

where the kernel functions are isotropic log normal distributions with variance σ2K as before. In
principle, these kernel density estimates allow Eq. 33 to be evaluated at any θ; in practice, we
use a Metropolis algorithm to sample θ to overcome the dimensionality of the parameter space.

This procedure was used to both combine the posteriors for replicate datasets (Fig. 6) for a
given protein (Fig. 3B) and combine the posteriors for all replicates and all proteins (Figs. 3C
& 7).

For Pgk1-GFP, we accounted for the difference of a factor of two in the exposure time used in
the two biological replicates (Table 1). Before combining samples, the samples of νwere doubled
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Figure 6. Inference from individual replicates is typically consistent. For each protein, the
blue histogram is a kernel density estimate of the distribution of protein numbers using different
biochemical measurements [15]; the red histograms show the distribution of inferred numbers
using our analysis for each replicate.

for the three replicates obtained with the low exposure time. Similarly, we doubled the cellular
fluorescence for these three replicates before using the full posterior for ν to estimate protein
numbers.

Estimating the evidence for each model

To compare models of the measurement noise, we calculate Bayes factors, i.e. a ratio of the log
evidence, logP (data|model), for four models — either mono- or biexponential bleaching and
either Gaussian or state-dependent measurement noise. For a given model,M, we estimate the
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evidence, E(M), as follows:

E(M) = P ({D}|M)

=

∫
dθ P ({D},θ|M)

=

∫
dθ P (θ)

N∏
i=1

P (Di|θ,M)

=

[
N∏
i=1

Ei(M)

]∫
dθ

∏N
i=1 P (θ| Di,M)

P (θ)N−1
(35)

where Ei(M) = P (Di|M) is the model evidence for the data set Di. We approximate the
individual evidences, Ei(M), using the Monte Carlo samples for the individual datasets. The
second term we approximate using our samples for combining posteriors and the kernel density
estimate (Eqs. 33 and 34). In both cases, we use the Laplace approximation to find the evidence
and the covariance of the samples to estimate Hessians [42].

In addition to being favoured by the total evidence for all datasets, the bi-exponential bleach-
ing model with state-dependent noise has the highest evidence in the majority of data sets: 25
compared to 8 for bi-exponential decay and Gaussian measurement noise, 6 for mono-exponential
decay and Gaussian noise, and 2 for mono-exponential decay and state-dependent noise.

An informative prior results in only a minor change to the inference

To further test the validity of our model, we repeated the analysis, imposing an informative
log-normal prior for the parameter ν. In so doing, we integrate all available data to obtain a
best estimate of all the parameters in our model. These estimates can be used in analysing
future experiments, for simulations of microscopy data, and can be compared with the estimates
obtained with uninformative priors to assess the reliability of the model. Further, we can again
calculate the evidence for each model to identify, given all the information available, the best
model for our data.

We used an informative log-normal prior for the parameter ν, which is the fluorescence per
molecule, with parameters fitted to the published data of Ho et al. [15]. For each data set, this
parameter ν was confined to be within 1 interquartile range of the median published value: the
mode of the prior was set to the median of the published results and the scale factor set to half
of their interquartile range.

With the informative prior, the bi-exponential model with state-dependent noise is still
selected with a significant Bayes factor (> 104 dB compared to the next best model). The
modes of the posterior distributions for the parameters are shifted at most by a factor of 2
(Fig. 7), which is negligible given that the correct order of magnitude is typically all that is
required. As expected, the parameter ν is shifted down to amend the underestimation of protein
numbers, and the measurement noise parameters (σe,2 and to a lesser extent σe,1 ) are increased
to accommodate the fluctuations in fluorescence that are no longer explained by the now reduced
stochastic fluctuations.

Data availability

Data generated in this work is available at http://dx.doi.org/.
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Figure 7. Tightly restricting the a priori range of ν does not substantially change the inference.
The locations of the modes of the posterior distributions for the data of Fig. 3 maintain the
same order of magnitude even when this data is used to impose an informative prior for the
fluorescence per molecule (distributions with the informative prior in blue; distributions from
Fig. 3C in red).
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