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Abstract. Mathematical frameworks circumventing the need of mechanistic detail exist to build
models of signal transduction networks: graphs, hypergraphs, Boolean Networks, and Petri Nets.

Predicting how a signal transduces in a signaling network is essential to understand cellular

functions and disease. Different formalisms exist to describe how a signal transduces in a given
intracellular signaling network represented in the aforementioned modeling frameworks: elemen-

tary signaling modes, T-invariants, extreme pathway analysis, elementary flux modes and simple

paths. While these signal transduction formalisms are broadly used in their respective frame-
works, few studies have been done emphasizing how these signal transduction methodologies

compare or relate to each other.

We present an overview of how signal transduction networks have been modelled using graphs,
hypergraphs, Boolean Networks, and Petri Nets in the literature. We provide a literary review

of the different formalisms for capturing signal transduction in a given model of an intracellu-

lar signaling network. We also discuss the existing translations between the different modeling
frameworks, and the relationships between their corresponding signal transduction representa-

tions that have been described in the literature. Furthermore, as a new formalism of signal
transduction, we show how minimal functional routes proposed for signaling networks mod-

eled as Boolean Networks can be captured by computing topological factories, a methodology

found in the metabolic networks literature. We further show that in the case of an acyclic
B-hypergraph, the definitions are equivalent. In directed graphs, it has been shown that com-

putations of elementary modes via its incidence matrix correspond to computations of simple

paths and feedback loops. We show that computing elementary modes based on the incidence
matrix of a B-hypergraph fails to capture minimal functional routes.

1. Background

Cells must be able to receive, process and respond appropriately to cues from their surrounding
environment. The signal transduction component in the form of cellular elements that produce a
response to cues from the cell’s environment will be referred from hereon in as a signaling pathway.
The necessity of cells to process different signals causes several signaling pathways to interact with
each other, creating signaling networks. The complexity innate to these networks, both from size
and connectivity, makes computational modeling and analysis a requirement to understand how the
cell communicates with its environment1;2. It is well documented that malfunctions in signaling
pathways from both epigenetic and genetic aberrations lead to several pathologies3;4, especially
cancer. Understanding how a signal transduces is a necessity for the development of therapeutics
and personalized medicine approaches.

A signaling network is usually characterized as having a three-layer structure, with an input
layer, an intermediate layer, and a target layer6. In mathematical models of signaling networks,
the input layer nodes are typically ligands, exterior signals, receptors, or events that initialize the
signal transduction process. The target layer, depending on level of abstraction, may be cellular
responses, transcription factors, genes, metabolites, or processes that can be considered as the
result of a complete signal propagation. The intermediate layer are the conduits of the signal, such
as second messengers and enzymes. See Figure 1 for a prototypical signaling network.

Several kinetic parameters required for detailed mechanistic mathematical models are difficult
to obtain. Furthermore, certain signaling components, such as GTP-binding proteins, act as molec-
ular switches, having an “active” or “inactive” status rather than a continuum. Thus, modelling
frameworks circumventing the necessity of detailed kinetic parameters have been proposed in the
literature, some of which, included in the present work, are reviewed by Samaga and Klamt 7 . A
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detailed review of Kholodenko et al. 8 discusses other methodologies for settings in which more
kinetic information is available for modelling purposes.

We provide an overview of arguably the more commonly used coarse-grained modeling frame-
works of intracellular signaling networks: graphs, hypergraphs, Boolean Networks, and Petri Nets.
We discuss the formalisms that modelers using these frameworks have proposed to capture how
an intracellular signal transduces within a cell. Different formalisms have been shown to relate to
each other9;10;11. We discuss the existing translations and describe different equivalences in the
formalisms for capturing signal transduction. We adopt topological stoichiometric factories from
metabolic network analysis tools12;13 and compare them to elementary signaling modes method-
ology14.

To be sure, several criticisms exist against the aforementioned modeling frameworks, such as
data discretization, coarseness, and time-discreteness. At no point do we wish to argue that any of
the modeling frameworks mentioned are the “be all end all” of modeling. What is worth remarking,
however, is that in order to understand biology, modeling is necessary; even cell lines and organoids
are models of what happens in vivo. To this date, no mathematical model is able to incorporate
all the diversity of biological processes and spatial heterogeneity. Furthermore, biological data is
usually noisy and sparse, and thus detailed mechanistic models are often not feasible. Thus, a
coarse-grained modeling approach is often necessary. A recent critical review15 discusses in detail
and provides references to the basis of using Boolean models in biology and also discusses some of
the dynamics that cannot be captured by Boolean Networks.

2. Modeling frameworks for Signal Transduction Networks: an overview of their
respective literature

We will first introduce the modeling frameworks considered in this work and the mathematical
formalisms necessary. Definitions and details can be found in the supplementary information.

Graphs. Graph theory has been widely used in systems biology16;17;18. Graphs are used to repre-
sent the elements and interactions in different complex biological systems. For intracellular signal-
ing networks, its associated graph is commonly a signed directed graph hereon deemed interaction
graphs, as in Klamt et al. 19 . We note that the nomenclature interaction graph, is non-standardized.
In the context of Boolean Networks, Klarner and Siebert 20 use the nomenclature interaction graph
for an unsigned directed graph. In interaction graphs, the nodes represent biological constituents
(e.g. enzymes, metabolites, transcription factors), and edges represent interactions between the
nodes. The signed edge stands for the type of interaction, i.e. activating (+) or inhibitory (−). As
previously remarked19, it might not be possible to determine a direction of influence, or it might
not be desirable to establish a direction of influence. Such interactions are best treated by different
frameworks, or with a bidirectional edge19. If the interaction type is unknown, sometimes a label
of 0 is used6, although this is not a standard signed directed graph representation.

Scott et al. 21 use weighted graphs as a framework to represent protein interaction networks,
where the weights stand for the reliability of the prediction of interaction of two proteins. This
methodology is used to find signaling pathways in yeast protein interaction networks. Another
graphical approach to represent signaling networks is to use bipartite graphs, such as pathway
graphs 22. A pathway graph is a bipartite graph G = (M, I,E) where M stands for the set of
nodes of the network, I stands for the set of interaction nodes, and E is the set of edges connecting
the nodes from M to nodes from I and vice versa. This methodology was used to model the
epidermal growth factor receptor signaling network. The authors developed this methodology to
analyze signaling networks where only the existence of reactions and identities of products and
reactants are known, i.e. biochemical networks.

Hypergraphs. Hypergraphs are generalizations of graphs, where the edges can connect more than
two nodes. Analogously, we have directed hypergraphs.

Hypergraphs remain underutilized in computational biology23. They are, a canonical topolog-
ical representation of biochemical reaction networks12;13;24. If for each hyperedge e, the tail and
the head are disjoint, the incidence matrix stores the information of whether node i participates in
reaction j as a product or a reactant. Thus, the incidence matrix of a hypergraph reveals the under-
lying structure of a metabolic network without necessarily taking into account mass-conservation.
Transcription regulatory networks have been modeled using a matrix formalism25, which can be
seen as the incidence matrix of a hypergraph . When more information is available in the case of
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Computing Signal Transduction 3

signaling networks, the stoichiometric coefficients can be adjusted to have arbitrary positive inte-
gers, such as in a model of the JAK-STAT signaling network26. In Klamt et al.; Saez-Rodriguez
et al. 19;27 Boolean Networks are represented as logical hypergraphs. Logical hypergraphs are
B-hypergraphs where the tails of the hyperedges have a sign associated to them. However, there
are hypergraphs that do not correspond to Boolean Networks where the functions are written in
minimal Disjunctive normal Form. For example, the hyperedge in Figure 8 would correspond to a
Boolean function fx2

= x1 ∧ ¬x1 = 0.
A signaling hypergraph 28;29 is a triplet (V,V ,E ), where E is a set of directed hyperedges e

connecting hypernodes, subsets of elements that act as a single unit, e.g. a protein-complex.
A model of the network regulating the release of β-catenin following Wnt signaling using this
framework is found in Ritz et al. 29 .

Boolean Networks. Boolean Networks in biology are usually attributed to the work of Kauffman30

and Thomas31.

Definition 2.1. Consider a system X of n species (e.g. genes, proteins) to which we assign the
variables x1, . . . , xn. Each of the variables takes a value in the set {0, 1}. A Boolean Network is
a pair (k, F ) where k = {0, 1} and F = (f1, . . . , fn) : kn −→ kn, where each local update function
fi : kn → k is a Boolean function in n variables.

Every Boolean Network has an underlying directed graph, namely, its static graph or wiring
diagram W 32 where each species xi corresponds to a node xi, and an edge connects xi to xj if
fxj depends on xi with a sign corresponding to whether the effect of xi on xj is activating or
inhibitory. In other words, the edge from xi to xj is positive if

fxj (x2, · · · , xi−1, 0, xi+1, · · · , xn) ≤ fxj (x2, · · · , xi−1, 1, xi+1, · · · , xn)

and negative if the inequality is reversed33. In some cases, the resulting wiring diagram W will
have edges where the sign of the edge is not well defined. For example, consider the Boolean
function fx3 = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2). Then x1 and x2 have both an activating and inhibiting
effect on x3. In this case, the edge from xi to x3 can be replaced by two arrows from xi to x3 with
a positive and negative sign for i = 1, 2. Alternatively, a single arrow from xi to x3 can be used
with a zero label albeit the wiring diagram would not be a signed directed graph in the standard
sense.

The dynamics are determined by its local updating functions and update schedule strategy. The
synchronous updating is where each node updates its value simultaneously. In the asynchronous
timing schedule34;35, the nodes update their values at different times, either deterministically or
stochastically. From the respective update schedule strategy, the state transition graph of a Boolean
Network can be derived, a directed graph G = (V,E) where the nodes of the graph correspond to
elements in {0, 1}n and the edges are determined by both the update scheduling strategy and the
update functions of the Boolean Network.

Different update strategies yield different dynamics, with subtleties: steady-state attractors are
the same both for synchronous and asynchronous updates of a Boolean Network. Stable motifs36

and trap spaces37;38, that is, trap sets with particularly simple dynamics, are also independent of
the particular updating schedule strategy.

Boolean Networks have been widely used to analyze signaling networks. Saez-Rodriguez et al. 27

constructed a 94-node and 123-interaction Boolean Network model of T-cell activation. Mai and
Liu 39 introduced a Boolean model to analyze pro-apoptotic pathways. A signaling pathway mod-
eling the regulation of epithelial to mesenchymal transition (EMT) in primary liver cancer can be
found in Steinway et al. 40 . Zhang et al. 41 provide a Boolean model for survival signaling in large
granular lymphocyte leukemia. Calzone et al. 42 constructed a 25 node Boolean Network incor-
porating the relationships between the NF-κβ pathway, a simplified apoptosis signaling pathway
and a necrosis signaling network, regulating how the cell “chooses” its fate.

Several Boolean models of diverse systems, including intracellular signaling networks, are stored
in repositories such as Cell Collective43 and BioModels44.

Petri Nets. We briefly introduce Petri Nets and refer the reader to45 for details or to the supple-
mentary information.

Definition 2.2. Petri Nets are bipartite directed multigraphs, consisting of two types of nodes,
places P = {p1, · · · , pm} and transitions T = {t1, · · · , tn}, and a set E of directed arcs weighted
by natural numbers connecting only nodes of different types.
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A place p ∈ P in a Petri Net may carry any non-negative number of tokens m(p), called its
marking.

The dynamics of a Petri Net is given by its marking, and fireable transitions. Read-arcs are
bidirectional edges representing requirement of the presence of markings but do not consume
tokens. The incidence matrix of a Petri Net corresponds to the topology of the network. Similar
to self-loops in graphs and hypergraphs, the incidence matrix of a Petri Net does not represent
read-arcs.

Chaouiya et al.; Steggles et al. 9;10 describe translations from Boolean Networks to Petri Nets.
In particular, Petri Nets are able to display the dynamic properties of Boolean Networks, both
under the synchronous and asyncrhronous updating strategies. Thus Petri Nets generalize Boolean
Networks. Due to accumulation of the tokens, and consumption/production of tokens in the firing
of transitions, Petri Nets can naturally describe types of biological processes such as biological
consumption/reaction and inhibitions.

Introduced by Carl Petri46, and in biology to analyze metabolic networks47;48, Petri Nets have
been used to model diverse systems. A model of the pheromone response pathway in Saccaromyces
cerevisiae appears in Sackmann et al. 45 . A model for the tumor necrosis factor receptor 1-mediated
NF-κB regulated signaling pathway appears in Amstein et al. 49 . Li et al. 50 translate molecular
interactions to Petri Net components, and used it to model an apoptosis network. Li et al. 51 model
a Petri Net as coupled “signal transduction components,” a set of substances that make an enzyme
active. Coloured Petri Nets, where tokens are allowed to have different data types, are used by
Zevedei-Oancea and Schuster 6 to model signaling networks with only activations and reactions.
The Signaling Petri Net 52, a synchronized Petri Net with an event generator, appeared in53 to
model the response of Langerhans cells to interferon regulatory factors. For a general overview of
Petri Nets in biology, see Chaouiya; Koch and Chaouiya 54;55 .

3. Capturing signal pathways in the different modeling frameworks

Motivating question: Given a set of source nodes X and a set of target nodes T in a signaling
network, what nodes and edges are involved in transducing a signal from X to T ?

We seek to review the different forms of answering this question using the aforementioned
formalisms.

In graphs. In graph models of signaling networks, signaling pathways are often represented as sim-
ple paths or shortest paths. For example, Klamt et al. 19 compute feedback loops and simple paths
from input nodes to output nodes from an interaction graph. Feedback loops in the representations
of signaling networks are connected with the dynamics of the biological network56;57. Paths and
cycles are given an activating or inhibiting measure based on the parity of the sign. Klamt et al. 19

classify nodes as activators, inhibitors or ambivalent. Minimal path sets (MPS)58 comprises of the
set of all paths from input layer to target layer and feedback. Sigflux 58, a measure of importance
of nodes in the network based on the amount of feedback loops and paths they are part of, uses
the concept of MPSs.

Lee and Cho 59 proposed an algorithm for estimating how a signal propagates through a network
purely based on an interaction graph. The algorithm predicts the direction of activity of nodes
change in the network (down-regulated vs up-regulated) given an input.

Zevedei-Oancea and Schuster 6 compute rooted trees to compute all the nodes influenced by
an input node. Similarly, reversing the directionality of the arrows, by computing rooted trees one
might find the nodes which affect output nodes. Scott et al. 21 propose computing two-terminal
series-parallel graphs as a way to capture parallel signaling pathways. Nassiri et al. 60 weight
the edges of the graph using the normalized similarity index61. Paths from input node to target
nodes are weighted via a formula incorporating both node weights and edge weights, and the path
with the highest weight is a likely candidate for a path from input to target node dominating the
signaling process.

In hypergraphs. The concept of B-connection29 describes the notion that all reactants must be
present for a signaling reaction to occur. There is another concept also usually referred to as B-
hyperpaths in the literature64, although these two definitions are not equivalent, even in the case
of B-hypergraphs65. Extreme pathways were computed on the JAK-STAT signaling network26.
Extreme pathways are special cases of elementary modes66. A similar definition to that of a B-
hyperpath can be found in methodology for metabolic networks, the concept of a topological factory
(see S.I.) which we adapt here since we will compare this to an object proposed in Boolean Networks.
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Computing Signal Transduction 5

In the case of a metabolic network modeled as a hypergraph with stoichiometry matrix S, if v ∈ R|E |
denotes the flux of every reaction in the network (or in the case of quasi-stoichiometry, the amount
of times a hyperedge is used), then Sv specifies the net production, or net change occurring. The
notation (Sv)A denotes the entries of Sv corresponding to A ⊆ V . Notice that this is equivalent to
how the net change in the marking in Petri Nets is computed. The analogous concept of elementary
modes is the concept of a stoichiometric factory under the steady-state assumption (See the SI).
In B-hypergraph, stoichiometric factories are unions of minimal topological factories12.

In Boolean Networks. We now mention methodologies for analyzing signal transduction networks
modeled as Boolean Networks. For a Boolean Network, we can apply techniques of analyzing
signal transduction capabilities in directed graphs via its wiring diagram for computing signaling
pathways. One advantage of Boolean Networks is the ability to exhibit dynamical information of
the system in addition to their structural information.

Stable motifs 36;79 are a bridge between the structure and the dynamics of a Boolean Network.
In particular, stable motifs are independent of the update scheduling strategy. Stable motifs are
closely related to the concepts of trap spaces38. Using the MAPK pathway modeling cell fate
decisions80, the minimal trap spaces are computed and used to give a lower bound on the number
of cyclic attractors38. To compute trap spaces, a graph expansion method is used; the prime
implicant graph which is a unique hypergraph expansion of a Boolean Network not depending on
any particular normal form. Maheshwari and Albert 81 label the edges of the interaction graphs
with causal logic, e.g. if fx3 = x1 ∨ x2, then the arrows from x1 to x3 and from x2 to x3 are
labelled as sufficient arrows (permanent activation of either one of them suffices to activate x3
regardless of the rest of the network.) These causal edges can sometimes be chained together to
give information on the causal relationships of two nodes in the network that are far apart, and
can be used to compute the logic backbone of the network, a vast simplification of the Boolean
structure of the network. Furthermore, it can also be used to compute some stable motifs and for
network reduction purposes.

An accepted technique to analyze Boolean Networks is based on the idea that long term behavior
of networks is captured by their attractors68, often associated with cellular phenotypes and cellular
responses69;35;70; some of the attractors in Fumia and Martins 71 are associated to a proliferative
phenotype in cancer cells. Related to attractors, is the computations of the basin of attractors;
the initial states that lead to an attractor. For attractor analysis, reduction techniques have
been proposed in the literature; for example, using the concept of Stable Motifs 36, and via the
polynomial dynamical system representation72;73. It is generally impossible however to determine
the complete dynamical evolution of a Boolean Network from its structure alone74;75. For a survey
of results connecting the dynamics and structure see Paulevé and Richard 76 . Functional cycles,
i.e. cycles that generate attractors, in the interaction graph of a Boolean Network are connected
to the long term behavior of a Boolean Network67.

An Elementary Signaling Mode (ESM)14, based on structural analysis of a Boolean Network, is
a minimal set of elements of the network that can perform signal transduction from initial node to
nodes in the target layer. The network is expanded by introducing complementary nodes for nodes
inhibited by other nodes or are inhibiting other nodes. Wang et al.14 introduce a “composite”
node to represent conditionally dependent relationships. See e.g. Figure 2, Wang and Albert 14

for details.
The expansion of a network provides a useful compromise between the wiring diagram (struc-

ture) and the full representation of a signaling network and rids the wiring diagram of some
ambiguities. In fact, if the complete network expansion where both composite nodes and comple-
mentary nodes are added for every node in the network are used34, the update rules can be read
directly from the expanded network. For computations of elementary signaling modes, different
signaling network expansions have been used such as expansions where composite nodes are added
for logical dependencies34, and complementary nodes are added for every node in the network.
In contrast, other expansions only add composite nodes77 to represent synergy. Therefore, one
needs to first provide a mathematical definition of ESMs to make it computationally amenable in
systems biology software. Wang et al. 78 provide a similar concept for graphs with dependent edges
namely, the concept of a minimal functional route (MFR). Dependent edges represent necessary
and sufficient conditions for signal transduction from a set of nodes x1, · · · , xj to a node y. Again

the network is expanded to a new network Ĝ by adding composite nodes to represent dependent
edges (see Figure 3 and refer to Wang et al. 78 for details). In the special case of a graph with no
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dependent edges, computations of MFRs from s to t is the same as computing simple paths from
s to t.

Computing simple paths or shortest paths from source node to target node might miss key
information from the signal transduction process. For example, consider the graph on the left
in Figure 7. The only shortest path from s to t is the path s, r, 2, 3, where r is the red node.
Therefore, computing simple paths would miss the fact that node 1 is necessary for a complete
signal transduction process from s to t. In general, there is no relationship between the number of
minimal functional routes and the number of simple (or shortest) paths from a source node s to a
target node t ( Figure 4.)

In Petri Nets. Similar to Boolean Networks, Petri Nets allow modeling the dynamics of a signaling
network. To analyze the long term behavior of a Petri Net, one is often interested in the behavioral
properties of a Petri Net, such as computing the coverability graph of the Petri Net, the bound-
edness of the Petri Net and whether or not the net has dead markings55. Unfortunately, similarly
to analyzing the state graph of a Boolean Network, many of these questions are computationally
limiting, and thus one often resorts to structural analysis methods.

In the framework of Petri Nets, the commonly used methodology for capturing signaling path-
ways is T-invariants. In the case that there is a sequence of transitions realizing a vector y, a
T-invariant y corresponds to a sequence of transitions that does not change the given marking45.
In the framework of metabolic networks, minimal T-invariants are counterparts to elementary
flux modes82;83, although elementary flux modes are more general due to the fact that reactions
are allowed to be reversible. A place invariant is the counterpart of moiety conservation83. As
previously mentioned, read-arcs are not reflected in the incidence matrix. Therefore, T-invariant
analysis without taking into account this extra structure could yield T-invariants that are mean-
ingless. To take this into consideration Sackmann et al. 45 introduce the concept of a feasible
T-invariant to be a minimal set of transitions that can fire in sequence under the initial mini-
mal marking, without changing the marking and discuss how to handle read-arcs for T-invariant
analysis, such as considering read-arcs as unidirectional arrows or bridging T-invariants. The idea
is that feasible T-invariants stand for minimal sub-entities of the Net relevant to capture signal
transduction. The concept of feasible T-invariants is further developed to Manatee invariants49,
a minimal linear combination of T-invariants whose induced network is feasible under the initial
marking.

4. Comparing different formalisms: A perspective

In this section we discuss some translations between the formalisms found in the literature. We
also discuss what we see, from our perspective, as some of the advantages and disadvantages of
the different formalisms.

An interaction graph is the easiest to construct, both from literature and data, and are easily
interpretable. Signed directed graphs have been heavily studied by researchers above a broad
spectrum of fields and efficient tools and algorithms have been developed to detect the signaling
pathways in interactions graphs, such as shortest and simple paths, feed-back loops and cycles.
Once more information becomes available, either from the literature, or from experimental work,
interaction graphs can be extended into a different framework. Hypergraphs allow to express co-
operativity of components and allow a useful representation of Boolean Networks in the form of a
logical hypergraph19.

Boolean Networks and Petri Nets each offer a dynamical model of a signaling network. Both
Boolean Networks and Petri Nets have a large community of researchers in the biological sciences.
Interestingly, every Boolean Network can be seen as a Petri Net9;10;84. Chaouiya et al. 9 gives
a translation from the Boolean framework to a 1-safe standard Petri Net (the multistate case
can be found in Chaouiya et al. 85 ). Assuming one starts with a valid marking (the sum of the
tokens between a gene and its complement is 1), the reachability graph of the corresponding Petri
Net is equivalent to the fully asynchronous updating state graph of the corresponding Boolean
Network. In particular, notice that given a valid marking, a realizable T-invariant is a multiset
of transitions that does not change the given marking, and since the reachability graph and state
graph of the Boolean regulatory network are equivalent, the counterparts of cycles in the state
transition graph of a Boolean model are T-invariants. Stegless et al.10;84 provided a translation
from Boolean Networks to Petri Nets focusing on gene regulatory networks for the synchronous
updating timing schedule. A related approach can be found in Sackmann et al. 45 , where insight
on how to translate logical rules into the Petri Net framework is given. As previously remarked55,
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Petri Nets are useful for representing consumption and production mechanisms, whereas Boolean
Networks are more appropriate to model regulatory interactions (a regulator can alter the state of
a target, whereas the state of the regulator does not change itself)55.

The graph expansion method of Wang and Albert 14 gives a hypergraph structure which can
easily be translated into a Petri Net. However, the dynamics of the Boolean Network are not
preserved under this translation. This expansion method is closely related to the translation
from Chaouiya et al. 9 , although the latter heavily relies on either read-arcs or inhibitory arcs to
preserve the dynamics. Similarly, the unique prime implicant graph of a Boolean Network is a
B-hypergraph37;38, and can easily be translated into a Petri Net structure or into a graph with
composite nodes. It should be further investigated how this translation preserves the dynamics.

From a modeling perspective, Boolean Networks are easier to set up than Petri Nets. Several
tools exist to both model and analyze Boolean Networks86;87;88;90;89;91;92;93.

Petri Nets are the most general, although they have a smaller track-record of being used in
the modeling of intracellular signaling networks. However, Petri Nets allow the most flexibility in
terms of the processes being modeled: they are natural representations of reaction networks, and
due to read-arcs they allow flexibility in the signaling processes they can model. Interestingly, there
are existing translations from 1-bounded Petri Nets to a family of Boolean Networks11. Under the
given translation, the authors show that dead markings correspond to a solution of a system of
polynomial equations over finite fields. Furthermore, recovering P-invariants and T-invariants of
the original Petri Net is straightforward. For every place-transition Petri Net, there is an associated
bipartite graph structure, and in particular, a hypergraph structure. In particular, we may apply
the concepts for analyzing hypergraphs, such as hyperpaths and topological factories, to Petri Nets.

Well-known reversible construction to create bipartite graphs from hypergraphs23 exist. Natu-
rally, every graph can be considered as a special case of a hypergraph. The signaling hypergraphs
can be converted to standard graphs in two different ways29. To show how closely related the
methodologies across different frameworks are, we show some new results.

Some new results. We show that minimal functional routes (MFRs), and thus elementary signal-
ing modes (ESMs), are special cases of topological factories previously described12;13 once graphs
with composite nodes are translated into a hypergraph structure. In particular, the concept of
topological factories extends the concept of MFRs.

Let G be a graph with composite nodes78 and no self-loops and with the added property that
if (x, c1) is an edge where c1 is a composite node, then there is no edge (c1, x). Such graphs can
be attained from the wiring diagram with no self-loops where we know which edges are dependent
via the Boolean function of the nodes14;34;77. Furthermore such graphs can easily be converted to
a B-hypergraph by collapsing incoming edges into a composite node c1 into the tail of a hyperedge
(see Figure 5). Due to the assumptions, we have a hypergraph with the property that for every
edge e in the B-hypergraph, H(e) ∩ T (e) = ∅. In the S.I., we include a proof that the set of
MFRs from s to a sink node t is contained in the set of minimal topological factories from s to t.
Furthermore, if the expanded graph is an acyclic connected graph with a single source and a single
target node, then computing the set of MFRs is the same as computing the minimal topological
factories (proofs are in the S.I.) In expanded graphs with cycles, there are minimal topological
factories from s to t that are not MFRs (see Figure 6).

Given a directed graph G, node s and node t and an incidence matrix A, there is a close
relationship between simple paths from s to t and elementary modes of a slightly adjusted incidence
matrix19. It is natural to wonder if for a given directed graph with dependent edges, the analogous
process as in Klamt et al. 19 can be used to compute MFRs via the incidence matrix of its respective
hypergraph. In the supplementary information we show that in some hypergraphs with cycles (see
e.g. Figure 7), there are minimal functional routes that do not correspond to elementary flux modes
of the adjusted incidence matrix following the method in Klamt et al. 19 . In fact, stoichiometric
factories also fail to compute minimal functional routes (Figure 7).

We remark that this is not surprising. Computations of elementary flux modes is based on a
steady state assumption, that “concentrations” of internal nodes do not change. This is the same
assumption for the computation of T-invariants in a Petri Net, where a T-invariant accounts for
a preservation of tokens. However, conservation laws for signaling networks are difficult to define
due to signal amplification motifs.
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5. Conclusion

Several different methodologies exist for modeling signaling networks. The reality is that based
on the particular components of the signaling network to be studied and the data available, the
formalism chosen should be carefully considered, and sometimes hybrid approaches are needed94.
Particularly useful methodologies, when we don’t have enough detailed mechanistic parameters
such as kinetic rates of change are graphs, Boolean Networks, hypergraphs and Petri Nets. We
have discussed some of the advantages and disadvantages of the different frameworks. Many
of the different methodologies for studying signaling networks, e.g. elementary modes, minimal
T-invariants, minimal P-invariants, etc. were introduced for studying reaction networks with a
steady state assumption. However, they have successfully been used to capture signaling pathways
in mathematical models of signaling networks. The discussion found in Behre and Schuster 95

for applying elementary flux mode analysis to enzyme cascades show a class of signaling networks
where the methodology of T-invariant analysis is directly applicable and not just a formal approach.

We discussed the different methodologies used to estimate how signals are transduced from input
layer to target layer. We provided toy examples showing, that although similar, these different
methodologies can be strikingly different. Therefore, it is necessary to not only consider the
modelling framework, but the appropriate formalism capturing signal transduction. Using only
one formalism misses the diversity of strategies the cell uses to transduce a signal.

Some work has been done showing the use of relating the frameworks to each other, which
we have discussed in this review9;11;10;82. We also related the topological factories to minimal
functional routes. It seems reasonable to adopt the concept of topological factories to signaling
networks, generalizing the concept of a minimal functional route by allowing nodes to be internally
activated, rather than being forced to be activated from an external source. The use of topological
factories in signaling networks should be carefully assessed in future work. Relating frameworks
with each other opens up the tool-box to analyze how a signal transduces within a cell. Further-
more, understanding how the different methodologies relate to each other will lead to a better
understanding of what actually happens in vivo inside of a cell.

In graphs with dependent edges, topological factories generalize minimal functional routes. Cat-
egorizing graphs with dependent edges such that the concept of minimal functional routes and
minimal topological factories are equivalent is of interest. Furthermore, due to the connection
between elementary modes with the steady state assumption using the incidence matrix of a graph
and T-factories in graphs with no dependent edges19, it would be interesting to categorize graphs
where the minimal S-factories and T-factories are the same.
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Glont, Michael Hucka, Gaël Jalowicki, Sarah Keating, Vincent Knight-Schrijver, Audald
Lloret-Villas, Kedar Nath Natarajan, Jean-Baptiste Pettit, Nicolas Rodriguez, Michael Schu-
bert, Sarala M. Wimalaratne, Yangyang Zhao, Henning Hermjakob, Nicolas Le Novère, and
Camille Laibe. BioModels: ten-year anniversary. Nucl. Acids Res., 43:D542–D548, 2015. doi:
10.1093/nar/gku1181.

[45] Andrea Sackmann, Monika Heiner, and Ina Koch. Application of petri net based analysis
techniques to signal transduction pathways. BMC Bioinformatics, 7(1):482, 2006.

[46] A Carl. Petri. kommunikation mit automaten. PhD, University of Bonn, West Germany,
1962.

[47] Venkatramana N Reddy, Michael L Mavrovouniotis, Michael N Liebman, et al. Petri net
representations in metabolic pathways. In ISMB, volume 93, pages 328–336, 1993.

[48] Venkatramana N Reddy, Michael N Liebman, and Michael L Mavrovouniotis. Qualitative
analysis of biochemical reaction systems. Computers in biology and medicine, 26(1):9–24,
1996.

[49] Leonie Amstein, Jörg Ackermann, Jennifer Scheidel, Simone Fulda, Ivan Dikic, and Ina Koch.
Manatee invariants reveal functional pathways in signaling networks. BMC Systems Biology,
11(1):72, 2017.

[50] Chen Li, Qi-Wei Ge, Mitsuru Nakata, Hiroshi Matsuno, and Satoru Miyano. Modelling and
simulation of signal transductions in an apoptosis pathway by using timed petri nets. Journal
of biosciences, 32(1), 2007.

[51] Chen Li, Shunichi Suzuki, Qi-Wei Ge, Mitsuru Nakata, Hiroshi Matsuno, and Satoru Miyano.
Structural modeling and analysis of signaling pathways based on petri nets. Journal of bioin-
formatics and computational biology, 4(05):1119–1140, 2006.

[52] Derek Ruths, Melissa Muller, Jen-Te Tseng, Luay Nakhleh, and Prahlad T Ram. The signaling
petri net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-
specific signaling networks. PLoS computational biology, 4(2):e1000005, 2008.

[53] Marta E Polak, Chuin Ying Ung, Joanna Masapust, Tom C Freeman, and Michael R Ardern-
Jones. Petri net computational modelling of langerhans cell interferon regulatory factor net-
work predicts their role in t cell activation. Scientific Reports, 7(1):668, 2017.

[54] Claudine Chaouiya. Petri net modelling of biological networks. Briefings in bioinformatics, 8
(4):210–219, 2007.

[55] Ina Koch and Claudine Chaouiya. Discrete modelling: Petri net and logical approaches. In
Systems Biology for Signaling Networks, pages 821–855. Springer, New York, 2010.

[56] Leon Glass and Stuart A Kauffman. The logical analysis of continuous, non-linear biochemical
control networks. Journal of theoretical Biology, 39(1):103–129, 1973.

[57] Onn Brandman and Tobias Meyer. Feedback loops shape cellular signals in space and time.
Science, 322(5900):390–395, 2008.

[58] Wei Liu, Dong Li, Jiyang Zhang, Yunping Zhu, and Fuchu He. Sigflux: a novel network feature
to evaluate the importance of proteins in signal transduction networks. BMC bioinformatics,
7(1):515, 2006.

[59] Daewon Lee and Kwang-Hyun Cho. Topological estimation of signal flow in complex signaling
networks. Scientific reports, 8(1):5262, 2018.

[60] Isar Nassiri, Ali Masoudi-Nejad, Mahdi Jalili, and Ali Moeini. Discovering dominant pathways
and signal–response relationships in signaling networks through nonparametric approaches.
Genomics, 102(4):195–201, 2013.

[61] Isar Nassiri, Ali Masoudi-Nejad, Mahdi Jalili, and Ali Moeini. Normalized similarity index:
An adjusted index to prioritize article citations. Journal of Informetrics, 7(1):91–98, 2013.

[62] Paola Vera-Licona, Eric Bonnet, Emmanuel Barillot, and Andrei Zinovyev. Ocsana: optimal
combinations of interventions from network analysis. Bioinformatics, 29(12):1571–1573, 2013.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/272344doi: bioRxiv preprint 

https://doi.org/10.1101/272344
http://creativecommons.org/licenses/by/4.0/


12 LUIS SORDO VIEIRA AND PAOLA VERA-LICONA

[63] Regina Samaga, Axel Von Kamp, and Steffen Klamt. Computing combinatorial intervention
strategies and failure modes in signaling networks. Journal of Computational Biology, 17(1):
39–53, 2010.

[64] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Directed hypergraphs
and applications. Discrete applied mathematics, 42(2-3):177–201, 1993.

[65] Lars Relund Nielsen and Daniele Pretolani. A remark on the definition of a b-hyperpath.
Technical report, 2001.

[66] Jason A Papin, Joerg Stelling, Nathan D Price, Steffen Klamt, Stefan Schuster, and Bern-
hard O Palsson. Comparison of network-based pathway analysis methods. Trends in biotech-
nology, 22(8):400–405, 2004.

[67] Jean-Paul Comet, Mathilde Noual, Adrien Richard, Julio Aracena, Laurence Calzone, Jacques
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Figure 1. A prototypical signaling network. After a ligand binds to a receptor,
the signal transduction cascade starts. The red arrows denote inhibitory pro-
cesses. The intermediate layer activates a transcription factor which bind to a
portion of the DNA and transcribes messenger RNA (mRNA) and non-coding
RNA (ncRNA). ncRNA degrades mRNA which ultimately gets translated to a
protein.
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Figure 2. The interaction graph of the Boolean Network is shown on the left. To
expand the network, we add a complimentary node for each node of the network
representing the absence or inactivity of a network component. These nodes are
represented by −xi. The update functions for these nodes are the logical negations
of the update rules of xi. For example, the update rule for −x2 is now −x2 =
¬x1 ∨ x3.
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Figure 3. The edges in red are dependent edges. This represents that in order
for node C to receive the signal, the signal from both A and B are necessary. On
the right is the expanded graph, where a composite node is shown in red. In order
for a signal to be transduced to C, both upstream nodes from the composite nodes
must be included.

Figure 4. The composite nodes are shown in red. There are m simple (or short-
est) paths from s to t and n minimal functional routes from s to t
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Figure 5. B-hypergraph from expanded graph. Adapted from78 Figure 1(b).
On the left, an expanded AND-OR graph. The composite node is shown in red,
original nodes are shown in yellow. On the right, the corresponding hypergraph.
The input node 1 has been connected to an environment transition I1 and the
target node has been connected to an environment transition O1. for computations
of elementary flux modes.

Figure 6. Not all topological factories are minimal functional routes from s to
t. There is no MFR from s to t since transduction of a signal from s to t would
require including node 1. However, there is no simple path from s to node 1.
R1, R2, R3 is a topological factory from s to t. In the case the graph is acyclic,
MFRs from s to t are the same as the topological factories from s to t.
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Figure 7. A minimal functional route (and thus topological factory) that is not
an S-factory. Using the incidence matrix as the stoichiometric matrix for this
hypergraph, there is no S-factory from s to t. However, it is a minimal functional
route from s to 3.

Figure 8. A hyperedge that does not correspond to a logical Boolean function.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/272344doi: bioRxiv preprint 

https://doi.org/10.1101/272344
http://creativecommons.org/licenses/by/4.0/

	1. Background
	2. Modeling frameworks for Signal Transduction Networks: an overview of their respective literature
	3. Capturing signal pathways in the different modeling frameworks
	4. Comparing different formalisms: A perspective
	Some new results

	5. Conclusion
	Abbreviations
	Declarations
	Ethics approval and consent to participate
	Consent to publish
	Availability of data and materials
	Competing interests
	Funding
	Author's contributions
	Acknowledgements
	Supplementary Information

	References

