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Abstract 
Summary: PathfindR is a tool for pathway enrichment analysis utilizing active 
subnetworks. It identifies gene sets that form active subnetworks in a protein-protein 
interaction network using a list of genes provided by the user. It then performs pathway 
enrichment analyses on the identified gene sets. Further, using the R package 
pathview, it maps the user data on the enriched pathways and renders pathway 
diagrams with the mapped genes. Because many of the enriched pathways are usually 
biologically related, pathfindR also offers functionality to cluster these pathways and 
identify representative pathways in the clusters. PathfindR is built as a stand-alone 
package but it can easily be integrated with other tools, such as differential 
expression/methylation analysis tools, for building fully automated pipelines. In this 
article, an overview of pathfindR is provided and an example application on a 
rheumatoid arthritis dataset is presented and discussed. 
 
Availability: The package is freely available under MIT license at: 
https://github.com/egeulgen/pathfindR  
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1. Introduction 
High-throughput technologies have revolutionized biomedical research by enabling 
comprehensive characterization of biological systems. These technologies allow 
researchers to identify a list of differentially expressed genes/proteins or differentially 
methylated genes, which most likely play a role in the formation of the phenotype. 
However, this list often falls short of providing mechanistic insights into the underlying 
biology of the disease being studied1. Therefore, we face a challenge posed by high-
throughput experiments: extracting relevant information that allows us to understand the 
underlying mechanisms from a long list of genes or shortly, finding a needle in the 
haystack. 
One approach, which reduces the complexity of analysis while simultaneously providing 
great explanatory power, is identifying groups of genes that function in the same 
pathways, i.e. pathway analysis1. Pathway analysis has been successfully and 
repeatedly applied to gene expression2,3, proteomics4 and DNA methylation data5, in 
addition to various other applications6-10. 
However, there are drawbacks to pathway analysis. Most importantly, the statistics used 
by pathway analysis approaches usually consider the number of genes in a list alone 
and are independent of the values associated with genes, such as fold-changes or p 
values. By treating each gene equally, they also assume that each gene is independent 
of the other genes. Because they ignore information on interactions of genes, directly 
performing pathway analysis on a gene set is not completely informative.  
For a given list of significant genes, an active subnetwork is defined as a group of 
interconnected genes in a protein-protein interaction network (PIN) that mostly consists 
of significant genes. In short, active subnetworks define distinct disease-associated sets 
of interacting genes. For the identification of active subnetworks, various algorithms 
have been proposed, such as greedy algorithms11-19, simulated annealing20-21, genetic 
algorithms22-26 and mathematical programming-based methods27-31.  
With pathfindR, we propose to leverage interaction information from active subnetworks 
to extract the most relevant pathways, utilizing both the p values of individual genes and 
information from a PIN. In the pathfindR approach, information from four resources are 
integrated to determine the mechanisms underlying the disease: (i) differential 
expression/methylation information obtained through omics analyses, (ii) interaction 
information through the protein-protein interaction network, (iii) Kyoto Encyclopedia of 
Genes and Genomes (KEGG)32,33 pathways, (iv) clustering of related pathways and 
establishment of representative pathways. 
The pathfindR package was developed based on a previous approach developed by our 
group for genome-wide association studies (GWASes): Pathway and Network-Oriented 
GWAS Analysis (PANOGA)34. PANOGA was successfully applied to uncover the 
underlying mechanisms in GWASes of various diseases, such as rheumatoid arthritis35, 
intracranial aneurysm36, epilepsy37 and Behcet’s disease38. pathfindR applies an 
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approach similar to PANOGA to “omics” experiments with additional functionality, 
further described below. 
In this article, we present the details on pathfindR along with an example application on 
rheumatoid arthritis (RA) differential expression data. 
 

2. Methods 
2.1. The pathfindR Case Study - Analysis on RA Data 
The dataset GSE15573 was obtained from the National Center for Biotechnology 
Information (NCBI) - Gene Expression Omnibus (GEO). This dataset aimed to 
characterize gene expression profiles in the peripheral blood mononuclear cells of 18 
RA patients versus 15 healthy subjects. We performed differential expression analysis 
between these two groups using the R39 package limma40. The differentially-expressed 
genes (DEGs) with adjusted p values ≤ 0.05 (n = 571) were used to create the example 
input dataset RA_input. This dataset includes the gene symbols, log-fold-change values 
and adjusted p values for the DEGs. 
Active subnetwork search and enrichment analysis of the RA differential-expression 
data was performed with pathfindR using the greedy active subnetwork search 
algorithm and the Biogrid PIN. 
Next, the enriched pathways were clustered and representative pathways were 
obtained. 
The analysis approach is explained in detail below. 
2.2. Protein-protein Interaction Networks 
The user can choose between the protein-protein interaction data of KEGG, Biogrid41,42, 
GeneMANIA43 and InTact44.  
The KEGG PIN was created by an in-house script using the KEGG pathways on 
December 31, 2017. The relations among genes were added to the PIN as undirected 
links, removing any duplicate interactions.  
For the GeneMania PIN, only interactions with weights ≥ 0.0006 were kept, allowing 
only strong interactions. 
All PINs were formatted as simple interaction files (SIFs) for use in analyses.  
The user can also use a PIN of their choice by supplying the path of the SIF to the 
wrapper function run_pathfindR. 
2.3. Scoring of Subnetworks 
In pathfindR we followed the scoring scheme that was proposed by Ideker et al.20. p 
value of each gene is converted to z-score using Eq. 1 and the score of a subnetwork is 
calculated using Eq. 2. In Eq. 2, A is the set of genes in the subnetwork and k is its 
cardinality. 
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In the same scoring scheme, there is also a Monte Carlo approach for the calibration of 
the scores of subnetworks against background distribution. Using randomly selected 
genes, 2000 subnetworks of each possible size are constructed and for each possible 
size, the mean and standard deviation of the score is calculated. These values are used 
to calibrate subnetwork score using Eq. 3. 
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2.4. Active Subnetwork Search Algorithms 
Currently, there are three algorithms implemented in the pathfindR package for active 
subnetwork search: greedy algorithm, simulated annealing algorithm and genetic 
algorithm. 
2.4.1. Greedy Algorithm 
Greedy algorithm is the problem-solving/optimization concept that chooses locally the 
best option in each stage with the hope of reaching the global optimum. In active 
subnetwork search, this is generally applied by starting with a significant seed node and 
considering addition of a neighbor in each step to maximize the subnetwork score. In 
pathfindR, we used the approach in Chuang et al.13: This algorithm considers addition of 
a node within a specified distance d to the current subnetwork. In our method maximum 
depth from the seed can also be set. With the default parameters, our greedy method 
considers addition of direct neighbors (d=1) and forms a subnetwork with a maximum 
depth of 1 for each seed. Because the expansion process runs for each significant seed 
node, several overlapping subnetworks emerge. In pathfindR, overlapping subnetworks 
are handled by discarding a subnetwork that overlaps with a higher scoring subnetwork 
more than a threshold, which is set to 0.5 by default. 
2.4.2. Simulated Annealing Algorithm 
Simulated annealing improves the greedy search by accepting non-optimal actions to 
increase exploration in the search space. The probability of accepting a non-optimal 
action decreases in each iteration. In active subnetwork search context, the search 
begins with a set of randomly chosen genes (that will be referred to as genes in “on” 
state), connected components in this candidate solution are found and the scores are 
calculated. In each iteration the state of a random node is changed from on to off, vice 
versa, connected components are found in the new solution and their scores are 
calculated. If the score improves, the change is accepted, if the score decreases, the 
change is accepted with a probability proportional to the temperature parameter that 
decreases in each step. 
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2.4.3. Genetic Algorithm 
Genetic Algorithm is a bio-inspired algorithm that mimics natural selection by 
implementing fitness-based parent selection, crossover of genes and mutation. In our 
genetic algorithm implementation, candidate solutions represent on/off state of each 
gene. In the algorithm, we used rank selection and uniform crossover. In each iteration, 
the fittest solution of the previous population is preserved if the highest score of the 
current population is less than the previous population’s score. In every ten iterations, 
the worst scoring 10% of the population is changed with random solutions. Because 
uniform cross-over and addition of random solutions make adequate contribution to 
exploration of the search space, mutation is off in default settings. 
2.5. Active Subnetwork-Oriented Pathway Enrichment Analysis 
Our active subnetwork-oriented pathway enrichment is implemented as the wrapper 
function run_pathfindR. The overview of the approach is presented in Figure 1.  
Initially, the input is filtered so that all p values are less than or equal to the given 
threshold (default is 0.05). Next, gene symbols that are not found in the PIN are 
identified. If aliases of these gene symbols, obtained through the R package 
org.Hs.eg.db45, are found in the PIN, the symbols are converted to the corresponding 
aliases.  
The processed data is used for active subnetwork search. The identified active 
subnetworks are then filtered via the following criteria: (i) has a score larger than the 
given threshold (default is 3) and (ii) contains at least a specified number of DEGs 
(default is 2).  
Using the genes in each of the remaining subnetworks, pathway enrichment analyses 
are performed via one-sided hypergeometric testing. The enrichment tests use the 
genes in the PIN as the gene pool. Using the genes in the PIN instead of the whole 
genome provides more statistical strength because active subnetworks are identified 
using only the genes in the PIN. The p values obtained from the enrichment tests are 
adjusted using the Bonferroni method. 
Pathways with adjusted p values larger than the given threshold (default is 0.05) are 
discarded. This process of active subnetwork search and enrichment analysis is 
repeated for a selected number of iterations (default is 10 iterations for greedy and 
simulated annealing algorithms, 1 for genetic algorithm). These iterations are executed 
in parallel via the R package foreach46. 
Finally, the lowest and the highest adjusted p values, the number of occurrences over 
all iterations and up-regulated and down-regulated DEGs in each enriched pathway are 
returned as a data frame. Additionally, Hypertext Markup Language (HTML) format 
reports with the pathfindR enrichment results, linked to the visualizations of the 
pathways, as well as the table of converted gene symbols are created. The pathway 
diagrams are created using the R package pathview47. These diagrams display the 
involved genes colored by change values on a KEGG pathway graph. 
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2.6. Pathway Clustering and Partitioning 
Enrichment analysis usually yields a large number of related pathways. In order to 
establish representative pathways among similar groups of pathways, we propose that 
clustering can be performed via an approach based on a method described previously 
by Chen et al48. This approach is described below: 
Firstly, an overlap index matrix OI containing overlap indices between all pairs of 
pathways is calculated. For each pathway Pi in the dataset, let Gi be the set of all genes 
in Pi. For a pair of pathways Pi and Pj, OIi,j is defined in Eq. 4. 
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Afterwards, defining each row oi of the matrix OI as the gene overlap profile of pathway 
Pi, the Pearson correlation coefficients Ri,j are calculated for each pair of oi and oj. 
These are then transformed into pairwise distances PDi,j = 1 - Ri,j. This distance 
calculation approach is implemented in pathfindR as the function cluster_pathways. 
Using this distance metric PD, pathways are clustered via hierarchical clustering with 
the desired agglomeration method. Via a shiny49 application, the hierarchical clustering 
dendrogram is visualized. In this application, the user can select the agglomeration 
method and the distance value at which to partition the tree. The representative 
pathway for each cluster is chosen as the pathway with the smallest “lowest p” value. 
The dendrogram with the cut-off value marked with a red line is dynamically visualized 
and the resulting cluster assignments of the pathways and annotation of representative 
pathways are presented as a table. This table can be saved as a comma-separated 
values (CSV) file. 
This clustering and portioning method is implemented as the wrapper function 
choose_clusters in the pathfindR package. 
 

3. Results of Analysis on RA Data 
In the analysis of the RA differential expression data, pathfindR identified 36 KEGG 
pathways to be enriched (Table S1). Upon examination of these pathways, some 
appeared to be biologically related, such as various signaling pathways. Therefore, 
clustering of these 36 KEGG pathways was performed. Upon manual inspection, the 
clustering dendrogram was cut at a distance of 0.66 (Figure 2), and 13 representative 
pathways were obtained (Table 1). Below, we discuss the functional relevance of the 
identified representative pathways to the pathogenesis of RA. 
The most significantly enriched pathway was “Spliceosome”. Autoimmune response to 
the spliceosome was previously reported in numerous autoimmune diseases, including 
RA50. Moreover, a recent study revealed there is a significant alteration of spliceosome 
components in RA patients51. This study suggested that alterations in the spliceosome 
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could be associated with the development of RA and could also drive development of 
cardiovascular disease by altering the atherothrombotic profile in patients. 
“Pathogenic Escherichia coli infection” was found to be the representative pathway of 
the cluster, which also included the pathways, “Bacterial invasion of epithelial cells”, 
“Shigellosis” and “Salmonella infection”. The association between these pathways, 
suggesting a response to infection, and RA development is not certain. However, in a 
review on microbial infections and RA, it was reported that infections play an important 
role in the initiation and advancement of RA52. The review also discusses potential 
mechanisms whereby infection may promote the development of RA, such as 
generation of neo-autoantigens, molecular mimicry, and bystander activation of the 
immune system. 
There is currently no study that explains the association of “RNA transport” with RA. 
However, a recent study that analyzed dysregulated genes in RA also found that DEGs 
were enriched in “RNA transport” among other pathways53. This implies that 
dysregulation of “RNA transport” may play an important role in RA.  
The association between the “Neurotrophin signaling pathway” and RA is well 
supported by literature. A 2005 study compared nerve growth factor (NGF), brain 
derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4) 
concentrations in the serum of spondyloarthritis (SpA), rheumatoid arthritis (RA) and 
osteoarthritis (OA) patients, and healthy subjects54. Significantly higher concentrations 
of NT-4 and lower concentrations of BDNF were reported in disease group compared to 
healthy controls. Another study investigated the mRNA expression of BDNF and NGF in 
synovial fluid cells of RA, SpA and OA patients55. It was detected that NGF was 
expressed at significantly higher levels in RA and SpA patients than in the OA group. A 
recent study that investigated the methylation patterns affecting the pathogenesis of RA 
identified that the differentially methylated genes participated in the “Neurotrophin 
signaling pathway”56 among others. This provides a further level of evidence on the 
involvement of this pathway in RA pathogenesis. 
The “NF-kappa B signaling pathway” is known to play a key role in RA pathology. The 
transcription factor nuclear factor kappa B (NF-κB) is accepted as a pivotal regulator of 
inflammation in RA along with other aspects of RA pathology57. Studies in animal 
models of RA demonstrated the efficacy of inhibitors of this pathway. Therefore, the 
“NF-kappa B signaling pathway” is also considered a therapeutic target in RA58.  
We identified the “Parkinson’s disease” pathway as the representative pathway in the 
cluster which also included “Huntington's disease”. The association between RA and 
neurodegenerative diseases is not entirely clear. However, a recent study investigated 
genome-wide pleiotropy between Parkinson’s disease (PD) and autoimmune diseases 
and found a genetic link between PD and RA59. This study identified 4 loci with genetic 
risk variants conveying risk of both PD and RA. This genetic evidence supports our 
transcriptomic finding and suggests that PD and RA are affected by or induce similar 
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biological processes. One of such common processes is likely inflammation: Known to 
be a key process in RA, inflammation is also reported to be etiologically involved in 
PD60.  
“cGMP-PKG signaling pathway” enrichment is supported by two studies, which showed 
that RA shared epitope (an HLA-DRB1-encoded 5-amino acid sequence motif carried 
by most of RA patients) acted as a signal transduction ligand that interacted with cell 
surface calreticulin, triggered nitric oxide-mediated signaling events in opposite cells, 
and affected cGMP levels61,62. 
The representative pathway “Mismatch repair” (MMR) consisted of only genes 
downregulated in RA. Supporting our finding, Lee et al. also identified suppressed MMR 
enzyme expression in RA63. This study also observed abundant microsatellite instability 
in RA synovium most likely due to MMR deficiency. 
We also identified the “Citrate cycle (TCA cycle)” as one of the representative pathways. 
The cluster of this representative pathway also included “Pyruvate metabolism” and 
“Glycolysis – Gluconeogenesis”, suggesting a dysregulation in energy metabolism. This 
finding is supported by Yang et al. who screened different proteins and metabolites in 
the synovial fluid samples of 25 RA patients and 10 normal subjects to explore the 
pathogenesis of RA64. Ultimately, they identified energy metabolism disorder as a 
contributing factor of RA. 
 

4. Conclusion 
PathfindR is an R package that enables active subnetwork-oriented pathway analysis, 
complementing the gene-phenotype associations identified through differential 
expression/methylation analysis. Initially identifying active subnetworks in a list of 
significant genes and then performing pathway enrichment analysis of these active 
subnetworks makes the best use of interaction information between the genes. This, in 
turn, helps uncover novel in addition to known mechanisms underlying the disease, as 
demonstrated in the RA example. 
As stated above, the pathfindR approach is based on PANOGA. This package extends 
the use of the active subnetwork-oriented pathway analysis approach to omics data. 
Additionally, pathfindR provides numerous improvements and useful new features, 
listed in detail below. 
To overcome inconsistent annotation issues, pathfindR converts gene symbols that are 
not in the PIN to alias symbols that are in the PIN. This ensures that the majority of 
genes from the experiment can be mapped to the PIN and the user can make the best 
use of the data at hand. 
The package provides three active subnetwork search algorithms. The user is therefore 
able to choose between the different algorithms to obtain the optimal results. 
For the greedy and simulated annealing active subnetwork search algorithms, the 
search and enrichment processes are executed several times. By summarizing results 
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over the iterations and identifying consistently enriched pathways, the stochasticity of 
these algorithms is overcome. Because the genetic algorithm is time-exhaustive, it is 
executed only once. 
In addition to the data frame object, the package provides an HTML report with links to 
a table of the active subnetwork-oriented pathway enrichment results and a table of 
converted gene symbols. The table of enrichment results contains links to the pathway 
diagrams of individual pathways. These diagrams display the involved genes colored by 
change values. 
pathfindR also allows for clustering of related pathways. This allows for further 
abstraction of the data and reduces the complexity of analysis. 
All features in pathfindR work together to enable identification of dysregulated pathways 
that potentially reflect the underlying pathological mechanisms. We believe that this 
approach will allow researchers to better answer their research questions and discover 
novel mechanisms.  
 
The pathfindR package is available on: https://github.com/egeulgen/pathfindR 
 

5. References 
1. Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches 

and outstanding challenges. PLoS Comput Biol. 2012;8(2):e1002375. 
2. Emmert-streib F, Glazko GV. Pathway analysis of expression data: deciphering 

functional building blocks of complex diseases. PLoS Comput Biol. 
2011;7(5):e1002053. 

3. Werner T. Bioinformatics applications for pathway analysis of microarray data. 
Curr Opin Biotechnol. 2008;19(1):50-4. 

4. Wu X, Hasan MA, Chen JY. Pathway and network analysis in proteomics. J 
Theor Biol. 2014;362:44-52. 

5. Wang XX, Xiao FH, Li QG, Liu J, He YH, Kong QP. Large-scale DNA methylation 
expression analysis across 12 solid cancers reveals hypermethylation in the 
calcium-signaling pathway. Oncotarget. 2017;8(7):11868-11876. 

6. Schilling CH, Schuster S, Palsson BO, Heinrich R. Metabolic pathway analysis: 
basic concepts and scientific applications in the post-genomic era. Biotechnol 
Prog. 1999;15(3):296-303. 

7. Xia J, Wishart DS. MetPA: a web-based metabolomics tool for pathway analysis 
and visualization. Bioinformatics. 2010;26(18):2342-4. 

8. Welch RP, Lee C, Imbriano PM, et al. ChIP-Enrich: gene set enrichment testing 
for ChIP-seq data. Nucleic Acids Res. 2014;42(13):e105. 

9. Ganter B, Giroux CN. Emerging applications of network and pathway analysis in 
drug discovery and development. Curr Opin Drug Discov Devel. 2008;11(1):86-
94. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/272450doi: bioRxiv preprint 

https://doi.org/10.1101/272450
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Zheng W, Zhang Z, Liu C, et al. Metagenomic sequencing reveals altered 
metabolic pathways in the oral microbiota of sailors during a long sea voyage. 
Sci Rep. 2015;5:9131. 

11. Sohler F, Hanisch D, Zimmer R. New methods for joint analysis of biological 
networks and expression data. Bioinformatics. 2004;20(10):1517-1521. 

12. Breitling R, Amtmann A, Herzyk P. Graph-based iterative Group Analysis 
enhances microarray interpretation. BMC Bioinformatics. 2004;5:100. 

13. Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of 
breast cancer metastasis. Mol Syst Biol. 2007;3:140. 

14. Nacu S, Critchley-Thorne R, Lee P, Holmes S. Gene expression network 
analysis and applications to immunology. Bioinformatics. 2007;23(7):850-858. 

15. Ulitsky I, Shamir R. Identification of functional modules using network topology 
and high-throughput data. BMC Syst Biol. 2007;1:8. 

16. Ulitsky I, Shamir R. Identifying functional modules using expression profiles and 
confidence-scored protein interactions. Bioinformatics. 2009;25(9): 1158-1164. 

17. Karni S, Soreq H, Sharan R. A network-based method for predicting disease-
causing genes. J Comput Biol. 2009;16(2):181-189. 

18. Fortney K, Kotlyar M, Jurisica I. Inferring the functions of longevity genes with 
modular subnetwork biomarkers of Caenorhabditis elegans aging. Genome Biol. 
2010;11(2):R13. 

19. Doungpan N, Engchuan W, Chan JH, Meechai A. GSNFS: Gene subnetwork 
biomarker identification of lung cancer expression data. BMC Medical Genomics. 
2016;9(Suppl 3):70. 

20. Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and 
signalling circuits in molecular interaction networks. Bioinformatics. 2002;18 
Suppl 1:S233-240. 

21. Guo Z, Wang L, Li Y, Gong X, Yao C, Ma W, Wang D, Li Y, Zhu J, Zhang M, 
Yang D, Rao S, Wang J. Edge-based scoring and searching method for 
identifying condition-responsive protein-protein interaction sub-network. 
Bioinformatics. 2007;23(16):2121-2128. 

22. Klammer M, Godl K, Tebbe A, Schaab C. Identifying differentially regulated 
subnetworks from phosphoproteomic data. BMC Bioinformatics. 2010;11:351. 

23. Ma H, Schadt EE, Kaplan LM, Zhao H. COSINE: COndition-SpecIfic sub-NEwork 
identification using a global optimization method. Bioinformatics. 
2011;27(9):1290-1298. 

24. Wu J, Gan M, Jiang R. A genetic algorithm for optimizing subnetwork markers for 
the study of breast cancer metastasis. Proceedings of Seventh International 
Conference on Natural Computation (ICNC); 2011 26-28 July; Shanghai, China. 

25. Amgalan B, Lee H. WMAXC: a weighted maximum clique method for identifying 
condition-specific sub-network. PLoS ONE. 2014;9(8):104993. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/272450doi: bioRxiv preprint 

https://doi.org/10.1101/272450
http://creativecommons.org/licenses/by-nc-nd/4.0/


26. Ozisik O, Bakir-Gungor B, Diri B, Sezerman OU. Active Subnetwork GA: A Two 
Stage Genetic Algorithm Approach to Active Subnetwork Search. Current 
Bioinformatics. 2017;12(4):320-328. 

27. Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Muller T. Identifying functional 
modules in protein-protein interaction networks: an integrated exact approach. 
Bioinformatics. 2008;24(13):i223-231. 

28. Zhao XM, Wang RS, Chen L, Aihara K. Uncovering signal transduction networks 
from high-throughput data by integer linear programming. Nucleic Acids Res. 
2008;36(9):e48. 

29. Qiu YQ, Zhang S, Zhang XS, Chen L. Identifying differentially expressed 
pathways via a mixed integer linear programming model. IET Syst Biol. 
2009;3(6):475-486. 

30. Backes C, Rurainski A, Klau GW, Müller O, Stöckel D, Gerasch A, Küntzer J, 
Maisel D, Ludwig N, Hein M, Keller A, Burtscher H, Kaufmann M, Meese E, 
Lenhof HP. An integer linear programming approach for finding deregulated 
subgraphs in regulatory networks. Nucleic Acids Res. 2012;40(6):e43. 

31. Beisser D, Brunkhorst S, Dandekar T, Klau GW, Dittrich MT, Muller T. 
Robustness and accuracy of functional modules in integrated network analysis. 
Bioinformatics 2012; 28(14):1887-1894. 

32. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. 
Nucleic Acids Res. 2000;28(1):27-30. 

33. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new 
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 
2017;45(D1):D353-D361. 

34. Bakir-gungor B, Egemen E, Sezerman OU. PANOGA: a web server for 
identification of SNP-targeted pathways from genome-wide association study 
data. Bioinformatics. 2014;30(9):1287-9. 

35. Bakir-gungor B, Sezerman OU. A new methodology to associate SNPs with 
human diseases according to their pathway related context. PLoS ONE. 
2011;6(10):e26277. 

36. Bakir-gungor B, Sezerman OU. The identification of pathway markers in 
intracranial aneurysm using genome-wide association data from two different 
populations. PLoS ONE. 2013;8(3):e57022. 

37. Bakir-gungor B, Baykan B, Ugur İseri S, Tuncer FN, Sezerman OU. Identifying 
SNP targeted pathways in partial epilepsies with genome-wide association study 
data. Epilepsy Res. 2013;105(1-2):92-102. 

38. Bakir-gungor B, Remmers EF, Meguro A, et al. Identification of possible 
pathogenic pathways in Behçet's disease using genome-wide association study 
data from two different populations. Eur J Hum Genet. 2015;23(5):678-87. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/272450doi: bioRxiv preprint 

https://doi.org/10.1101/272450
http://creativecommons.org/licenses/by-nc-nd/4.0/


39. R Core Team (2017). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-
project.org/ [last accessed: March 2, 2018]. 

40. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression 
analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 
2015;43(7):e47. 

41. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a 
general repository for interaction datasets. Nucleic Acids Res. 2006;34(Database 
issue):D535-9. 

42. Chatr-aryamontri A, Oughtred R, Boucher L, et al. The BioGRID interaction 
database: 2017 update. Nucleic Acids Res. 2017;45(D1):D369-D379. 

43. Warde-farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction 
server: biological network integration for gene prioritization and predicting gene 
function. Nucleic Acids Res. 2010;38(Web Server issue):W214-20. 

44. Hermjakob H, Montecchi-palazzi L, Lewington C, et al. IntAct: an open source 
molecular interaction database. Nucleic Acids Res. 2004;32(Database 
issue):D452-5. 

45. Marc Carlson (2017). org.Hs.eg.db: Genome wide annotation for Human. R 
package version 3.5.0. 

46. Microsoft and Steve Weston (2017). foreach: Provides Foreach Looping 
Construct for R. R package version 1.4.4. https://CRAN.R-
project.org/package=foreach [last accessed: March 2, 2018]. 

47. Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based 
data integration and visualization. Bioinformatics. 2013;29(14):1830-1. 

48. Chen YA, Tripathi LP, Dessailly BH, Nyström-persson J, Ahmad S, Mizuguchi K. 
Integrated pathway clusters with coherent biological themes for target 
prioritisation. PLoS ONE. 2014;9(6):e99030. 

49. Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson 
(2017). shiny: Web Application Framework for R. R package version 1.0.5. 
https://CRAN.R-project.org/package=shiny [last accessed: March 2, 2018]. 

50. Hassfeld W, Steiner G, Studnicka-benke A, et al. Autoimmune response to the 
spliceosome. An immunologic link between rheumatoid arthritis, mixed 
connective tissue disease, and systemic lupus erythematosus. Arthritis Rheum. 
1995;38(6):777-85. 

51. Ruiz-Limon P, Perez-Sanchez C, Ortega-Castro R, et al. AB0104 Alterations of 
spliceosome components in leukocytes from patients with rheumatoid arthritis 
influence their autoimmune and inflammatory profile, and the development of 
cardiovascular disease. Ann Rheum Dis. 2017;76(Suppl 2):1082.3-1082. 

52. Li S, Yu Y, Yue Y, Zhang Z, Su K. Microbial Infection and Rheumatoid Arthritis. J 
Clin Cell Immunol. 2013;4(6) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/272450doi: bioRxiv preprint 

https://doi.org/10.1101/272450
http://creativecommons.org/licenses/by-nc-nd/4.0/


53. Hao R, Du H, Guo L, et al. Identification of dysregulated genes in rheumatoid 
arthritis based on bioinformatics analysis. PeerJ. 2017;5:e3078. 

54. Rihl M, Kruithof E, Barthel C, et al. Involvement of neurotrophins and their 
receptors in spondyloarthritis synovitis: relation to inflammation and response to 
treatment. Ann Rheum Dis. 2005;64(11):1542-9. 

55. Barthel C, Yeremenko N, Jacobs R, et al. Nerve growth factor and receptor 
expression in rheumatoid arthritis and spondyloarthritis. Arthritis Res Ther. 
2009;11(3):R82. 

56. Lin Y, Luo Z. Aberrant methylation patterns affect the molecular pathogenesis of 
rheumatoid arthritis. Int Immunopharmacol. 2017;46:141-145. 

57. Makarov SS. NF-kappa B in rheumatoid arthritis: a pivotal regulator of 
inflammation, hyperplasia, and tissue destruction. Arthritis Res. 2001;3(4):200-6. 

58. Jue DM, Jeon KI, Jeong JY. Nuclear factor kappaB (NF-kappaB) pathway as a 
therapeutic target in rheumatoid arthritis. J Korean Med Sci. 1999;14(3):231-8. 

59. Witoelar A, Jansen IE, Wang Y, et al. Genome-wide Pleiotropy Between 
Parkinson Disease and Autoimmune Diseases. JAMA Neurol. 2017;74(7):780-
792. 

60. Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson's 
disease. Br J Pharmacol. 2007;150(8):963-76. 

61. Ling S, Lai A, Borschukova O, Pumpens P, Holoshitz J. Activation of nitric oxide 
signaling by the rheumatoid arthritis shared epitope. Arthritis Rheum. 
2006;54(11):3423-32. 

62. De almeida DE, Ling S, Holoshitz J. New insights into the functional role of the 
rheumatoid arthritis shared epitope. FEBS Lett. 2011;585(23):3619-26. 

63. Lee SH, Chang DK, Goel A, et al. Microsatellite instability and suppressed DNA 
repair enzyme expression in rheumatoid arthritis. J Immunol. 2003;170(4):2214-
20. 

64. Yang XY, Zheng KD, Lin K, et al. Energy Metabolism Disorder as a Contributing 
Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic 
Study. PLoS ONE. 2015;10(7):e0132695.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/272450doi: bioRxiv preprint 

https://doi.org/10.1101/272450
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: Representative pathways that were enriched in the RA differential-expression 
data. Pathway Description indicates the description of the given KEGG pathway. Occ. 
indicates the occurrence, i.e., the number of times the pathway was identified to be 
enriched over 10 iterations. Lowest p and Highest p indicate the lowest and highest p 
values calculated for the given pathway over all iterations. Up-regulated and Down-
regulated indicate the up- and down-regulated DEGs that are involved in the given 
pathway. 
 

Pathway Description Occ. Lowest p Highest p Up-regulated Down-regulated 

Spliceosome50,51 10 1.10E-06 1.50E-06 SF3B6, LSM3, 
BUD31 

SNRPB, SF3B2, 
U2AF2, PUF60, 
HNRNPA1, PCBP1, 
SRSF5, SRSF8, 
SNU13, DDX23, 
EIF4A3 

Pathogenic Escherichia 
coli infection52 10 1.90E-05 2.50E-03 LY96, TLR5 ABL1, ITGB1, TUBB, 

ACTB, ACTG1 

RNA transport53 10 3.30E-05 2.20E-03 NUP214 

GEMIN4, EIF4A3, 
RNPS1, SRRM1, 
NUP62, NUP93, 
UBE2I, RANGAP1, 
SUMO3, EIF2S3, 
EIF2B1 

Neurotrophin signaling 
pathway54-56 4 5.20E-05 6.80E-04  

CRKL, FASLG, 
SH2B3, ABL1, 
MAGED1, IRAK2, 
IKBKB, CALM1, 
CALM3 

NF-kappa B signaling 
pathway57,58 1 8.50E-04 8.50E-04 LY96 

IKBKB, PRKCQ, 
CARD11, TICAM1, 
PARP1, UBE2I 

Parkinson's disease59,60 2 2.90E-03 2.90E-03 

NDUFA1, 
NDUFB3, 
UQCRQ, 
COX6A1, 
COX7A2, 
COX7C, ATP5E, 
ATP5J 

ATP5G2, SLC25A5, 
VDAC1, UBE2G1 

cGMP-PKG signaling 
pathway61,62 2 4.30E-03 4.30E-03  

NFATC3, SRF, 
ATP2A2, CREB1, 
ADCY7, SLC25A5, 
VDAC1, CALM1, 
CALM3 

Mismatch repair63 2 7.70E-03 7.70E-03  MLH1, POLD2, RPA1 

Citrate cycle (TCA 
cycle)64 5 7.90E-03 7.90E-03  MDH2, PDHA1, PDHB 

SNARE interactions in 
vesicular transport 3 1.70E-02 1.70E-02 STX10, STX6 BET1L, SNAP23, 

STX2 
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Proteasome 5 1.80E-02 1.80E-02  PSMD7, PSMB10 

Vibrio cholerae 
infection 8 2.10E-02 3.70E-02 ATP6V0E1, 

ATP6V1D 
ARF1, ATP6V0E2, 
ACTB, ACTG1, PDIA4 

Cysteine and 
methionine metabolism 4 3.00E-02 3.00E-02  

MRI1, MAT2B, 
AHCYL2, DNMT1, 
GOT1, MDH2 

 
Supplementary Table 1: Table of enriched pathways identified in the analysis of the 
RA differential-expression data with pathfindR. KEGG ID indicates the KEGG ID of the 
pathway. Pathway indicates the description of the pathway. Occ indicates the 
occurrence, i.e., the number of times the pathway was identified to be enriched over 10 
iterations. Lowest p and Highest p indicate the lowest and highest p values calculated 
for the pathway over all iterations. Up_regulated and Down_regulated indicate the up- 
and down-regulated DEGs that are involved in the given pathway. Cluster indicates the 
cluster the pathway is assigned to upon clustering of the pathways. Status indicates 
whether the pathway is the representative pathway or a regular member in its cluster. 
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Figure Legends 
Figure 1: Flow diagram of the pathfindR active subnetwork-oriented pathway 
enrichment analysis approach 
Figure 2: Clustering dendrogram of enriched pathways identified in the RA differential 
expression dataset. Vertical axis indicates the pairwise distance. The horizontal red line 
indicates the height at which the dendrogram is cut. The representative pathways, i.e. 
the pathways with the lowest p value in each cluster, are indicated as bold text. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/272450doi: bioRxiv preprint 

https://doi.org/10.1101/272450
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/272450doi: bioRxiv preprint 

https://doi.org/10.1101/272450
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/272450doi: bioRxiv preprint 

https://doi.org/10.1101/272450
http://creativecommons.org/licenses/by-nc-nd/4.0/

