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Introduction 1 
Recent technological advances increased the resolution of transcriptomics from cell populations 2 
(“bulk”) to single cells1. While only few cells were assessed in initial projects2,3, evolving technologies 3 
now allow the analysis of thousands of cells4–6, with the largest publicly available dataset currently 4 
comprising more than 1.3 million cells7. In contrast to bulk RNA sequencing (RNA-seq), single cell (sc) 5 
technologies are much more demanding due to high technical variation with zero-inflation being a 6 
major property8. As a consequence, a myriad of novel computational approaches and tools have been 7 
developed for the different scRNA-seq technologies9, but these thriving innovations also constitute a 8 
lack of widely accepted gold standards for data analysis. By construction, many of the proposed 9 
algorithms and approaches address only certain steps in the analytical scRNA-seq workflow, are 10 
adapted to certain scRNA-seq technologies, or cannot be easily combined with other tools, limiting 11 
their broad applicability. Notable exceptions are software packages like Monocle10, Seurat11 and 12 
Scanpy12, which are well documented, cover big parts of the analysis workflow, and are flexible in their 13 
application; nevertheless, due to their command line-based environments, they are still restricting 14 
access to scRNA-seq for the broader life and medical sciences community. More user-friendly tools 15 
with graphical user interfaces have been introduced, like Granatum13, which offers a local installation, 16 
or the online tool ASAP14 and the commercial solution SeqGeq15. In their current versions, they offer 17 
popular analysis algorithms, yet are limited in scalability in a multi-user setting, data security, usability 18 
of data varying in size over several orders of magnitude, and integration of own analytical concepts. 19 
Especially for largest-scale single cell genomics undertakings like the Human Cell Atlas (HCA)16, existing 20 
tools provide only limited analytical performance due to inefficient resource allocation for exploding 21 
memory and computing requirements for datasets in the magnitude of millions of cells, thus 22 
underscoring the necessity for a powerful software solution tailored to efficiently handle mega-23 
analyses through distributed computing.  24 

Single cell genomics - with scRNA-seq leading the way - will revolutionize the life and medical 25 
sciences8,17–19. Here, we postulate that an analytical ecosystem for single cell genomics applications 26 
will foster research and development in this field. Such an ecosystem should give computational 27 
experts a platform to make their tools available to a broader audience in a user-friendly fashion, allow 28 
high-end users to develop individualized workflows, and provide the novice user a computational 29 
environment to get acquainted with the special computational requirements for single cell analysis. 30 
Furthermore, such an ecosystem should serve as a platform for the community to share public datasets 31 
with a broader audience by following the FAIR Guiding Principles for scientific data management and 32 
stewardship20, provide a scalable infrastructure for projects with large datasets even across numerous 33 
institutions, host benchmarking capabilities for newly developed algorithms for the analysis of scRNA-34 
seq data, and even serve as a portal for large international projects such as the HCA16. Finally, an 35 
analytical ecosystem must implement best practice measures that agree with institutional and 36 
governmental data security regulations. To address all these requirements, we have developed 37 
FASTGenomics (https://fastgenomics.org) as a powerful, efficient, versatile, robust, safe and intuitive 38 
analytical ecosystem for single-cell transcriptomics. Access to the FASTGenomics ecosystem and its 39 
functionality is granted for free upon registration to allow unrestricted interaction with the single cell 40 
genomics community and especially academia. Furthermore, as suggested by the HCA white paper and 41 
guided by representatives of the HCA, the implementation of FASTGenomics as a portal for the HCA is 42 
currently on its way.  43 

 44 
 45 
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App Store in FASTGenomics serves as platform for novel algorithms 46 
At the heart of FASTGenomics is a hybrid app store (Figure 1A) optionally composed of public (cloud) 47 
and private (local) app repositories hosting algorithms for calculations and data visualization. Novel 48 
algorithms can be provided as new apps by the computational biology community (Figure 1B). The 49 
well-documented application program interface (API) (Supplementary Information “Description of 50 
the API of FASTGenomics”) defines data input and output (Figure 1C) and allows seamless integration 51 
into the FASTGenomics ecosystem. Apps submitted to the public app repository 52 
(https://github.com/fastgenomics) are included in the complete end-user environment 53 
(Supplementary Information “Detailed description of end-user experience of the FASTGenomics 54 
ecosystem”). Additionally, designing customized workflows integrating custom-made apps is a major 55 
feature of FASTGenomics (Figure 1D). Furthermore, the workflow editor allows to adjust 56 
parametrization of apps, thus providing a maximum of analytical flexibility. Currently, workflow editing 57 
is done via the command line, the next version of the workflow editor is planned to provide an intuitive 58 
graphical user interface with functionality to share custom workflows (Supplementary Figure S1).  59 

 60 

Architecture, scalability and data security of the Docker-based hybrid model of FASTGenomics  61 
The FASTGenomics ecosystem has been implemented as a Docker21-based cloud solution, which can 62 
also be used as a local environment with a community-wide app repository (hybrid design) allowing to 63 
share data, apps and workflows, but also information, expertise and knowledge about single cell 64 
genomic analyses (Figure 1A, for a user perspective,  Supplementary Figure S2 for architectural 65 
specifications, for more details see Supplementary Information “Technical realization of 66 
FASTGenomics with Docker-based cloud solution”). Alternatively, entirely local installations – as they 67 
might be required within industry – are also possible. While ensuring standardization and reduced 68 
administrative burden, the modular, docker-based hybrid cloud solution of FASTGenomics also 69 
provides the necessary scalability to run projects with very large datasets. A dynamic allocation and 70 
flexible use of available resources will achieved by leveraging Kubernetes technology in the next 71 
release of the platform22,23.   72 

In its current version, FASTGenomics is being developed according to EU-GDPR (General Data 73 
Protection Regulation) and the German Federal Data Protection Act (“Bundesdatenschutzgesetz”, 74 
BDSG), one of the strictest data protection laws in the world. To minimize security issues related to 75 
multi-user access to the platform and the use of custom apps, FASTGenomics implements a rigorous 76 
multi-layer security concept of data encryption, controlled access and transfer to protect study data 77 
(expression tables, sample metadata and analysis results) as well as user data from unauthorized 78 
access and manipulation (Supplementary Figure S3). A data protection concept has been developed 79 
accordingly and will be continuously updated according to legal requirements (Supplementary 80 
Information “Data Security Concept within FASTGenomics”).  81 

 82 

User-friendly computational environment 83 
Within the FASTGenomics ecosystem, analyses can be initiated and monitored from essentially any 84 
web-compatible hardware with a web browser, without requiring extensive computing or memory 85 
resources locally. For the end-user following registration, FASTGenomics provides an interface for data 86 
upload (Supplementary Figure S4A, Supplementary Information “Description of data upload via 87 
upload Dock in FASTGenomics”), starting from count tables and experimental metadata, followed by 88 
standardized quality checks, e.g. average molecule counts, gene types, and quantification of batch 89 
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effects (Supplementary Figure S4C-E), and two pre-defined data analysis and visualization workflows, 90 
‘Subtype Discovery’ and ‘Pseudo Time Analysis’ (Figure 1D). The former includes a neural network 91 
approximation of the parametric tSNE24 and a 3D visualization of cells with coloring according to cluster 92 
assignments, gene expression and metadata (see also Supplementary Table 1). Each analysis results 93 
in the definition of genes of interest and a functional categorization with the help of external 94 
databases, e.g. Gene Ontology (GO25). Workflows in FASTGenomics end with a summary, a detailed 95 
description of all analysis steps including information about algorithms, software, versions, and 96 
parametrizations used as well as input data and results produced (Figure 1D, Supplementary Figure 97 
S5A, S5B, Supplementary Information “Description of Summary of any given analysis”). The summary 98 
is intended to maximize reproducibility and transparency of the analysis, which could be made 99 
available e.g. in scientific publications or within documentation required in regulatory environments.   100 

 101 

Platform for sharing datasets for further public exploitation 102 
Another important feature of FASTGenomics is a standardized package for public dataset presentation, 103 
which we utilized to present 10 recently published datasets ranging from 482 to 68,579 cells per 104 
dataset (Supplementary Table 2)5,26–34. Available datasets can be connected with standard workflows 105 
provided by FASTGenomics, but also with customized apps and workflows as exemplified for a previous 106 
MARS-Seq dataset (Supplementary Figure S6)31. By combining a dataset with the initial analysis, the 107 
data can be examined by anybody following the same algorithmic settings as previously reported in 108 
the literature. Moreover, this also allows to compare different analysis strategies directly on the same 109 
platform. We also performed concordance analyses for selected datasets presented in FASTGenomics 110 
(Figure 2A) and focus here on a dataset with 3,005 cells published by Zeisel et al.34. Using the BACKSPIN 111 
clustering algorithm, a total of 9 clusters that were assigned to 7 classes of cell types were previously 112 
identified in the dataset, while after our neural network-based dimensionality reduction a subset of 113 
2,375 cells could be assigned to 16 clusters. Thus, the FASTGenomics ‘subtype discovery’ standard 114 
workflow revealed a more fine-grained cluster structure than the BACKSPIN algorithm while preserving 115 
the co-clustering of functionally closely related cell types. In particular, neuronal and glial cell types 116 
were clearly distinguished from each other as well as from vasculature; in more detail, 117 
oligodendrocytes and pyramidal neurons were each assigned to one FASTGenomics cluster, while 118 
interneurons were clustered to six main classes. Quantitatively this translates to an adjusted mutual 119 
information value of 0.75 and median concordance rates of 96.5% for FASTGenomics and 90% for 120 
BACKSPIN (Figure 2AB, Supplementary Information). Such measures might be also used to estimate 121 
specialized analyses settings in previously published datasets. Collectively, the option to freely share 122 
previously published large datasets on FASTGenomics allows intuitive and interactive cross-123 
examination, which goes far beyond the current options in scientific publications.  124 

 125 

FASTGenomics provides higher flexibility and scalability compared to existing platforms 126 
Next, we intended to compare FASTGenomics to the three currently available GUI-based platforms 127 
ASAP14, Granatum13 and SeqGeq15 (for detailed setup see Supplementary Information “Setup of ASAP, 128 
Granatum and SeqGeq for comparison with FASTGenomics”). We utilized five datasets ranging from 129 
1,92033 to 68,579 cells29 and compared for data upload, pre-processing cell clustering, differential gene 130 
expression analysis, pseudo time analysis and analysis summary. In their default configuration, among 131 
the four evaluated tools, only FASTGenomics performed all steps with all datasets (Figure 2C). We 132 
furthermore determined the resources needed by FASTGenomics to compute analyses with different 133 
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dataset sizes (experiment details in “Resource Requirements of a FASTGenomics Analysis 134 
Workflow”). Analysis runtime and memory requirements are both strongly correlated and depend on 135 
the number of cells analyzed; furthermore, analysis of all datasets across the tested size range is 136 
feasible with a contemporary desktop computer (Figure 2D).   137 

 138 

Outlook 139 

In upcoming versions of FASTGenomics, datasets, apps and workflows can be shared in private 140 
spaces/sections between collaboration partners prior to publishing, thus providing the infrastructure 141 
for multi-institutional collaboration projects. Furthermore, import/export apps will be implemented 142 
to be fully interoperable with established analysis software tools like Monocle10, Scanpy12, Scater35, 143 
Seurat11, etc., but also with data repositories like Gene Expression Omnibus (GEO)36. Finally, a 144 
connection of FASTGenomics to major laboratory information management systems (LIMS) for the 145 
import of experimental variables as metadata for new datasets as well as the export of the analysis 146 
summary back to the experimenters’ LIMS is currently evaluated and discussed with future users.  147 

 148 

Conclusion 149 

Taken together, FASTGenomics is designed as a secure, flexible, scalable but also standardized 150 
platform for single cell RNA-seq data, open to the scientific community. A major feature is to provide 151 
highest reproducibility and transparency for single cell data analysis to the whole community. Due to 152 
its modular and open structure it could also serve as a platform for community-wide benchmarking for 153 
novel algorithms and even serve as one of the tertiary portals planned within the HCA data 154 
coordination platform of the Human Cell Atlas16. Furthermore, by design, it scales already routinely to 155 
more than 5x104 cells per project and prototype apps suggest that scaling to 106 cells is also possible. 156 
Moreover, its hybrid design will also allow using FASTGenomics on premise, which might be of interest 157 
to clinical research and the pharmaceutical industry.   158 

 159 

Figure Legends 160 

Figure 1: FAST Genomics ecosystem. (A) Hybrid app store concept. To provide both the advantages of 161 
community access to the FASTGenomics framework as well as the security of a private working 162 
environment, FASTGenomics runs in the cloud and can also be installed on premise. The cloud 163 
installation allows the usage of public apps and exchange with the global research community, whereas 164 
the on-premise installation could run on a local cluster. Additional local app repositories and data 165 
storage can be added for private access only.  (B) Typical structure of a FASTGenomics workflow. All 166 
FASTGenomics workflows consist of calculation apps (such as quality checks, data normalization, 167 
dimensionality reduction, clustering, …) that take inputs and consecutively produce new results for 168 
upstream calculation apps. Selected outputs of the calculation workflow are displayed in the browser 169 
with the help of visualization apps in the according visualization workflow. (C) Structure of a 170 
FASTGenomics app. Apps are Docker containers that interact with the FASTGenomics framework using 171 
an interface for data input and a configuration file providing necessary parameters for the analysis. 172 
Each FASTGenomics app dynamically generates a summary of the analysis performed by the app that 173 
is collected by the FASTGenomics summary service. Depending on app type, different channels are 174 
used for results, calculation apps write output to disk, whereas visualization apps send output to the 175 
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web browser. The use of the Docker framework enables app developers to implement algorithms in 176 
any programming language of choice. A detailed tutorial for the development of calculation and 177 
visualization apps as well as sample code can be found at the public FASTGenomics app repository 178 
(https://github.com/fastgenomics). (D) Workflow definitions and app concept: workflow definitions 179 
are configuration files that describe the calculation and visualization apps used for a specific workflow. 180 
User-defined workflows can be added simply by creating new workflow definitions, which may recycle 181 
previously defined apps. In particular, apps for the exploration of gene candidate lists with the help of 182 
DE analysis and functional annotation are typical candidates for multi-workflow apps. All workflows 183 
end with a detailed summary of the analyses performed to ensure maximum transparency and 184 
reproducibility. 185 

 186 

Fig 2: Reproducibility of workflows and performance of FASTGenomics. (A) Clustering results of 187 
individual cells generated with the standard ‘subtype discovery’ workflow in FASTGenomics were 188 
compared to published findings by determination of the adjusted mutual information (AMI). Immune 189 
cell datasets29,31 displayed a lower degree of concordance than neuronal34, cancer27 and retinal tissue5 190 
datasets, presumably due to the lower RNA content of immune cells29 and the lower number of genes 191 
expressed27. (B) FASTGenomics (FG) cluster assignments compared to published cell types34. For each 192 
FG cluster, the proportion of main cell types (inner circle) and subtypes (outer circle) are shown. The 193 
FASTGenomics standard ‘subtype discovery’ workflow clearly distinguished single-cell transcriptomes 194 
at higher resolution than main cell types, but with lower resolution than the published subclustering 195 
approach. Based on single-cell transcriptomic data, biologically meaningful subclasses were generated 196 
by the FASTGenomics ‘subtype discovery’ workflow, classifying neuronal and glial cells, vasculature 197 
and immune cell types in distinct units. (C) Performance comparison between FASTGenomics and three 198 
additional GUI-based platforms for single cell analysis. FASTGenomics (https://fastgenomics.org) was 199 
compared to the online tool ASAP (https://asap.epfl.ch/) and local installations of Granatum 200 
(http://garmiregroup.org/granatum/app) and SeqGeq (https://www.flowjo.com/solutions/seqgeq) 201 
installed on a 64 bit Windows 10 machine with Intel i7 6700K CPU and 32 GB RAM). Comparison was 202 
performed in 7 categories (data upload, data preprocessing, cell clustering, differential gene 203 
expression, functional analysis, pseudotime analysis, analysis summary). Datasets of various sizes, 204 
ranging from 1,920 to 68,579 cells5,29,32–34 were used to assess scalability of the platforms. The size of 205 
the largest dataset, for which an analysis task could be accomplished is shown for all evaluated 206 
pipelines. (D) Required resources for analysis of data sets of various sizes5,29,32–364. Maximum memory 207 
usage (blue dots) and overall analysis runtime (red dots) to complete data normalization, 208 
dimensionality reduction and cell clustering are shown depending on the number of cells contained in 209 
each analyzed dataset. 210 

  211 
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