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Abstract 

A common goal of microbiome studies is the elucidation of community composition and member 

interactions using counts of taxonomic units extracted from sequence data. Inference of interaction 

networks from sparse and compositional data requires specialised statistical approaches. A popular 

solution is SparCC, however its performance limits the calculation of interaction networks for very 

high-dimensional datasets. Here we introduce FastSpar, an efficient and parallelisable 

implementation of the SparCC algorithm which rapidly infers correlation networks and calculates p-

values using an unbiased estimator. We further demonstrate that FastSpar reduces network 

inference wall time by 2-3 orders of magnitude compared to SparCC. FastSpar source code, 

precompiled binaries, and platform packages are freely available on GitHub: 

github.com/scwatts/FastSpar 

Introduction 

Microbiome analysis, which aims to assay the bacterial communities present in a given sample set, is 

important in many fields spanning from human health to agriculture and environmental ecology. The 

current standard for investigating bacterial community composition is to deep sequence the total 

genomic DNA or the bacterial 16S rRNA gene and analyse the genetic diversity and abundance 

within each sample. Unique sequences or sequence clusters are taken to represent operational 

taxonomic units (OTUs) present in the original sample, and the frequencies of these across samples 

are summarised in the form of an OTU table (Ju and Zhang 2015). In many studies, this data is then 

exploited to construct correlation networks of OTUs spanning sample sets, which can be used to 

infer or approximate interactions between taxa (Nakatsu et al., 2015, He et al., 2017). 

The calculation of OTU correlation values is complicated by the sparse and compositional nature of 

the data. OTU counts are typically normalised by dividing each observation within a sample by the 

total count for that sample, giving a measure of relative abundance. However this transformation 

introduces dependencies between normalised sample observations, such that calculating simple 

correlations from the resulting values is not statistically valid (Aitchison 1982). To perform robust 

and unbiased statistical analysis of sparse compositional data, it is generally first transformed from 

the simplex to Euclidean real space. 

Returning compositional OTU data back to Euclidean real space can be achieved by taking the log 

ratio of OTU fractions. Utilising log-ratios restores independence for each OTU and allows 

components to take on a positive or negative value. Building upon the use of log ratios, Friedman 

and Alm (2012) articulate an important and robust algorithm, SparCC, to estimate the linear Pearson 

Correlation between OTUs from variances of log ratios. Given that correlations cannot be calculated 

directly from log ratio variances, SparCC estimates the correlation statistic by using log ratio 

variances to approximate the true OTU variance on the assumption that the number of strong 

correlates is small (Friedman and Alm 2012). 

A Python 2 implementation of the SparCC algorithm has been released by the authors with several 

ancillary scripts for p-value estimation. However, the performance of this implementation precludes 

analysis of large datasets such as those generated from longitudinal studies (Teo et al., 2017). 

Further, the p-value estimator used by SparCC has been demonstrated to be biased and 

overestimate significance (Phipson and Smyth 2010). 
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Here we present FastSpar, a fast and parallelisable implementation of the SparCC algorithm with an 

unbiased p-value estimator. We demonstrate that FastSpar produces equivalent OTU correlations as 

SparCC while greatly reducing run time and memory consumption on large data sets.  

Implementation 
FastSpar is written in C++11, utilising OpenBLAS and LAPACK via the Armadillo library (Xianyi et al., 

2012; Dongarra et al., 1992; Conrad et al., 2016). The GNU Scientific Library (GSL) provides 

functionality for OTU fraction estimation and threading support is delivered by OpenMP (Dagum et 

al., 1998). In place of the p-value estimator used in SparCC, we utilised an estimator which corrects 

p-value understatement by considering the possibility of recalling repetitious permutations or 

original data during testing (Phipson and Smyth 2010). 

Results 

Algorithm fidelity 
To demonstrate that FastSpar produces equivalent correlations as SparCC, correlation networks 

were constructed by both programs using random subsets of an OTU table generated from the 

American Gut Project 16S rRNA sequence data (www.americangut.org), comprising a total of 6,068 

OTUs and 7,523 samples. For each OTU pair, the mean correlation values calculated across 20 

replicate runs were near identical for FastSpar and SparCC (Fig. 1 and 2). The OTU correlations 

calculated by SparCC and FastSpar are not reproduced exactly as the underlying algorithm begins by 

non-deterministically estimating OTU fractions. Hence replicate runs of either program on the same 

input table produce similar but non-identical results (Fig. 1a-b). To allow direct comparison of the 

algorithms, OTU fractions were pre-computed and provided as an additional input to both SparCC 

and FastSpar (note that the behaviour of the pseudo-random number generators (PRNG) used by 

FastSpar (GSL) and SparCC (numpy) differ, thus seeding the PRNGs is insufficient to enable direct 

comparison). When using the same pre-computed OTU fractions as input, FastSpar and SparCC 

returned identical results (Fig. 1d). These comparisons can be reproduced by running the code at 

github.com/scwatts/fastspar_comparison. 

Performance profiling 
Performance was compared by running FastSpar and SparCC on random subsets of the American 

Gut Project OTU table (Fig. 3). Ten random subsets of each combination of sample sizes (n=250, 500, 

…, 2500) and OTUs (n=250, 500, …, 2500) were generated, and subjected to analysis using FastSpar 

(with and without threading) and SparCC. Wall time and memory usage was recorded using GNU 

time. The analysis was completed in an Ubuntu 17.04 (Zesty Zapus) chroot environment with the 

required software packages (Table 1). Computation was performed with an Intel(R) Xeon(R) CPU E5-

2630 @ 2.30GHz CPU and 62 GB RAM. The performance profiling can be reproduced by running the 

code at github.com/scwatts/fastspar_timing. 

Using 16 threads, FastSpar was up to 821× faster than SparCC, (mean 221× faster; Fig. 3a). Using a 

single thread, FastSpar was up to 118× faster than SparCC (mean 32× faster; Fig. 3a). The memory 

usage of FastSpar was up to 60× less than SparCC (mean 14× less; Fig. 3b). Notably the memory 

performance of SparCC on datasets with 1,000 or more OTUs improves considerably and is due to 

the conditional use of a more memory efficient calculation for the variation matrix (Fig. 3b). This 

conditional calculation appears to be beneficial for SparCC when analysing datasets with 500 or 

fewer OTUs but causes a substantial performance degradation for datasets with 500 to 1,000 OTUs 

(Fig. 4). 
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As expected, both run time and memory principally scale with OTU number rather than sample 

number (Fig. 3c). For large data sets, it is therefore essential to perform pre-processing of the OTU 

table in order to reduce the number of OTUs prior to calculating correlations. This can be achieved 

primarily using two approaches: (1) filtering poorly represented OTUs, or (2) distribution-based 

clustering such as that used in dbOTU3. The latter approach aims to reunite OTUs derived from 

sequencing error with the parent OTU (Preheim et al. 2013) by clustering OTUs based on nucleotide 

edit distance and count distribution. This has the advantage of retaining count information and thus 

improving statistical power. To simplify the workflow for large-scale correlation network analyses of 

microbiome data, FastSpar is packaged with an efficient C++11 implementation of dbOTU3 

(github.com/scwatts/dbotu) that has been optimised for analysis of large datasets by applying 

concurrency design patterns. 

FastSpar provides a more robust and efficient method for inferring correlation networks from large 

microbiome datasets, which was previously intractable yet is likely to become commonplace in 

modern cohort studies.  
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Fig. 1. Comparison of OTU correlation values estimated by FastSpar and SparCC. (A-B) Pairwise 

comparison of correlation values estimated across 20 replicate runs using the same implementation (A, 

SparCC or B, FastSpar). Note the algorithm is non-deterministic as OTU fractions are drawn from a 

probability distribution, hence variation of correlation values between replicates runs is observed with 

either implementation. (C) Pairwise comparison of mean estimates across 20 replicate runs, for SparCC vs 

FastSpar. Note that agreement between the mean estimates of the two implementations is greater than 

the agreement between replicate runs of the same implementation (panels A-B). (D) Direct comparison 

of correlation values generated by SparCC vs FastSpar using the same (i.e. non-random, pre-computed) 

OTU fractions, showing that FastSpar produces an identical result to SparCC. 
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Fig. 2. (A) Distributions and (B) Q-Q plot of pairwise OTU correlation variance in 20 replicate runs of 

FastSpar and SparCC. OTU correlations were calculated for all pairs of 6,068 OTUs across 7,523 samples. 
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Fig 3. Performance profile of FastSpar and SparCC across random subsets of different sizes, extracted 

from the American Gut Project OTU table. (A) Wall time and (B) memory profiles were recorded using 

GNU time. (C) Linear models describing FastSpar (single thread) performance metrics with relation to 

input data dimensions. 
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Fig. 4. Performance profile of (A) FastSpar and (B) SparCC for each individual random subset of the 

American Gut Project OTU table (full table contains 6,068 OTUs and 7,523 samples). Wall time and 

memory profiles recorded using GNU time. 
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Table 1. Software packages with version designations used for performance profiling and output 

comparison. 

 

Package Version 

build-essential 12.1ubuntu2 

git 1:2.7.4-0ubuntu1 

libarmadillo-dev 1:6.500.5+dfsg-1 

libgsl-dev 2.1+dfsg-2 

libopenblas-dev 0.2.18-1ubuntu1 

mercurial 3.7.3-1ubuntu1 

python-numpy 1:1.11.0-1ubuntu1 

python-pandas 0.17.1-3ubuntu2 

python3-numpy 1:1.11.0-1ubuntu1 

r-base-core 3.2.3-4 

time 1.7-25.1 
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