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Abstract13

While widespread genome sequencing ushers in a new era of preventive medicine,

the tools for predictive genomics are still lacking. The greatest hurdle in diag-

nosis of rare disease is validation for variants of unknown significance. RAG

deficiency presents at an early age with a distinct phenotype of combined im-

munodeficiency with granuloma and/or autoimmunity. Allele frequency of a

SNV in the general population is an indicator of the functional or structural

importance of a particular amino acid residue. However, rare diseases are of-

ten attributable to variants in genes which are highly conserved. Mutation of

a conserved residue does not confirm pathogenicity and functional validation

must be confirmed to correctly identify a monogenic disorders such as RAG de-

ficiency. We present protein variants in RAG1 and RAG2 which are most likely to

be seen clinically as disease-causing. Our method of mutation rate residue fre-
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quency builds a map of most probable mutations allowing pre-emptive func-

tional analysis. We compare the accuracy of our predicted probabilities to pre-

viously established functional measurements.
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Introduction26

Costs associated with genomic investigations continue to reduce [1] while the27

richness of data generated increases. Globally, the adoption of wide scale genome28

sequencing implies that all new-born infants may receive screening for pathogenic29

genetic mutation in an asymptomatic stage, pre-emptively [2]. The one di-30

mensionality of individual genomes is now being expanded by the possibility31

of massive parallel sequencing for somatic variant analysis and by single-cell32

or lineage-specific genotyping; culminating in a genotype spectrum. In whole33

blood, virtually every nucleotide position may be mutated across 105 cells [3].34

Mapping one's genotype across multiple cell types and at several periods dur-35

ing a person's life may soon be feasible [4]. Such genotype snapshots might36

allow for prediction and tracking of somatic, epigenetic, and transcriptomic37

profiling.38

The predictive value of the screening highly depends on the computation39

tools used for data analysis and its correlation with functional assays or prior40

clinical experience. Interpretation of that data is especially challenging for vari-41

ants of unknown significance. There is a need for predictive genomic modelling42

with aims to provide a reliable guidance for therapeutic intervention for pa-43

tients harbouring genetic defects for life threatening disease before the illness44

becomes clinically significant. Although, most genomic investigations currently45

are not predictive for clinical outcome. The study of predictive genomics is ex-46

emplified by consideration of gene essentiality, accomplished by observing in-47

tolerance to loss-of-function variants. Several gene essentiality scoring meth-48
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ods are available for both the coding and non-coding genome [5]. Approxi-49

mately 3,000 human genes cannot tolerate the loss of one allele [5]. The great-50

est hurdle in monogenic disease is the interpretation of variants of unknown51

significance while functional validation is a major time and cost investment52

for laboratories investigating rare disease. Severe, life-threatening immune dis-53

eases are caused by genetic variations in almost 300 genes [6, 7] however, only54

a small percentage of disease causing variants have been characterised with55

functional studies. Our investigation aims to apply predictive genomics as a56

tool to identify pathogenic genetic variants that are most likely to be seen in57

patient cohorts.58

We present the first application of our novel approach of predictive genomics59

using Recombination activating gene 1 (RAG1) and RAG2 deficiency as a model60

for a rare primary immunodeficiency caused by autosomal recessive variants.61

RAG1 and RAG2 encode lymphoid-specific proteins that are essential for V(D)J62

recombination. This genetic recombination mechanism is essential for a ro-63

bust immune response by diversification the T and B cell repertoire in the thy-64

mus and bone marrow, respectively [8, 9]. RAG deficiency is mesured by in65

vitro quantification of recombination activity. Hypomorphic RAG1 and RAG266

mutations with residual V(D)J recombination activity (in average 5-30%) re-67

sult in a distinct phenotype of combined immunodeficiency with granuloma68

and/or autoimmunity (CID-G/A) [2, 10, 11]. RAG1 and RAG2 are highly con-69

served genes but disease is only reported with autosomal recessive inheritance.70

Only 44% of amino acids in RAG1 and RAG2 are reported as mutated on Gno-71

mAD and functional validation of clinically relevant variants is difficult. Pre-72
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emptive selection of residues for functional validation is a major challenge; a73

selection based on low allele frequency alone is infeasible. A shortened time be-74

tween genetic analysis and diagnosis means that treatments may be delivered75

earlier. With such tools, patients with RAG deficiency may receive hematopoi-76

etic stem cell transplant [12] or be provided mechanism-based treatment [13].77

GnomAD was queried to identify conserved residues using a Boolean score78

C (0 or 1, although allele frequency can be substituted). The gene-specific mu-79

tation rate Mr of each residue was calculated from allele frequencies. The gene-80

specific residue frequency R f was also calculated and together the values calcu-81

late the most probable disease-causing variants which have not yet been iden-82

tified in patients. We term the resulting score a mutation rate residue frequency83

(MRF); where MRF =C ×Mr ×R f . For visualisation, a noise reduction method84

was also applied where the average MRF per 1% interval is displayed with a85

cut-off threshold at the 75th percentile.86

Results87

RAG1 and RAG2 conservation and mutation rate residue frequency.88

Fig 1 presents the most probable unidentified disease-causing variants in RAG1/2.89

Phenotypic, epigenetic, or other such weighting data may also be applied to90

this model. Variants with a low MRF may still be damaging but resources for91

functional validation are best spent on gene regions with high MRF. Clusters92

of conserved residues are shown in Fig 1(i) however; these clusters do not pre-93

dict the likelihood of clinical presentation. Raw MRF scores are presented in94

Fig 1(ii). A histogram illustrates the MRF without Boolean scoring applied and95
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Fig 1(iii) presents a clearer visualisation. Table S1 provides all MRF scores for96

both proteins as well as raw data used for calculations and the list of validated97

residues of RAG1 and RAG2.98

MRF score versus known variant pathogenicity measure99

The functional validation of these predictions is presented in Fig 1(v). We have100

previously measured the recombination activity of RAG1 and RAG2 disease-101

causing variants in several patients [14]. We have combined the known func-102

tional activity from other extensive reports [15], to compare a total of 44 vari-103

ants. RAG deficiency is measured by the level of recombination potential. We104

expected that damaging mutations (resulting in low recombination activity in105

vitro) would be identified with high MRF scores. MRF pathogenicity prediction106

correctly identified damaging mutations in RAG1 and RAG2 (Fig 1(v)). Variants107

reported on GnomAD which are clinically found to cause disease have signifi-108

cantly higher MRF scores than variants which have not been reported to cause109

disease (Fig 1(v)). Table S1 provides all MRF scores for both proteins as well as110

raw data used for calculations and the list of validated residues of RAG1 and111

RAG2.112

Allele frequency is generally the single most important filtering method for113

rare disease in whole genome (and exome) sequencing experiments. RAG1 and114

RAG2 have probability of being loss-of-function intolerant (pLI) scores of 0.00115

and 0.01, respectively. Mutations under pressure from purifying selection are116

more likely to cause disease than common variants. However, allele frequen-117

cies of rare variants reported on GnomAD cannot differentially predict likeli-118
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hood of causing disease. This is particularly important for recessive diseases119

such as RAG deficiency. As such we find no significant difference between clini-120

cally damaging variants and those which have not been reported yet as disease-121

causing, illustrating the reasoning for our method design (Fig 1 (vi)). Many122

non-clinically-reported rare variants may cause disease; the MRF score identi-123

fies the top clinically-relevant candidates. Conserved residues with the highest124

MRF for both RAG1 and RAG2 are mapped onto the protein structure in Fig 3125

and frequently show high MRF at DNA contact points. The accuracy for cor-126

rectly identifying all disease-causing variants reported to date is shown in (Fig127

1(vii). We found >80% accuracy for 21 known variants tested, >50% accuracy128

for 48 tested and <50% accuracy for only 23 tested. The raw values comparing129

functional pathogenicity and MRF scores are illustrated in Fig 2.130

False positives in Transib domains do not worsen probability prediction131

A set of conserved motifs in core RAG1 are shared with the Transib transposase,132

including the critical DDE residue catalytic triad [16]. Ten RAG1 core motifs are133

conserved amongst a set of diverse species including human [16]. To assess the134

influence of false positive effect on MRF prediction the conserved residues in135

this dataset are compared to GnomAD allele frequencies and MRF score. Fig 4136

(i) plots the MRF (lacking the Boolean component C ) for conserved Transib mo-137

tif residues, non-conserved Transib motif residues, and non-Transib residues.138

Fig 4 (ii) shows the percentage of these which are reported as mutated on Gno-139

mAD. Removing reported variants by applying C , the resulting effect on incor-140

rectly scoring MRF in the conserved Transib motifs remains neutral. Com-141

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2018. ; https://doi.org/10.1101/272609doi: bioRxiv preprint 

https://doi.org/10.1101/272609
http://creativecommons.org/licenses/by-nc-nd/4.0/


bined Annotation Dependent Depletion (CADD) scoring [17] is an important142

bioinformatics filtering method. We compare MRF to the PHRED-scaled RAG1143

CADD scores for all possible SNVs (Fig 5). While CADD is a valuable scoring144

method its purpose is not to predict likelihood of variation.145

Discussion146

Determining disease-causing variants for functional analysis typically aims to147

target conserved gene regions. On GnomAD 55.99% of RAG1 (approx. 246,000148

alleles) has no reported variants. Functionally validating unknown variants in149

genes with this level purifying selection is generally infeasible. Conserved re-150

gions are likely high importance regions, yet determining the likelihood of pa-151

tients presenting with mutations in these clusters requires a scoring mecha-152

nism. An example of such clustering of highly scoring MRFs occured in the153

RAG1 catalytic RNase H (RNH) domain at p.Ser638-Leu658 which is also con-154

sidered a conserved Transib motif. Targeting clearly defined regions with high155

MRF scores allows for functional validation studies tailored to the most clinically-156

relevant protein regions. Phenotypic, epigenetic, or other such weighting data157

may also be applied to this model. Variants with a low MRF may still be damag-158

ing but resources for functional validation are best spent on gene regions with159

high MRF. Table S1 lists the values for calculated MRFs for RAG1 and RAG2.160

We have presented a basic application of MRF scoring for RAG deficiency.161

Furthermore, we have suggested its genome-wide application with to the infor-162

mation retrieval method; term frequency, inverse document frequency (t f −163

i d f ). In this case the“term” will represent an amino acid residue r while the164
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“document” represents a gene g such that,165

r f − i g f r,g = r f r,g × i g f r (1)

We may view each gene as a vector with one component corresponding to each166

residue mutation in the gene, together with a weight for each component that is167

given by (1). Therefore, we can find the overlap score measure with the r f − i g f168

weight of each term in g .169

Score(q, g ) = ∑
r∈q

rf-igfr,g .

We expand here briefly on the technical description of this method. Log weight-170

ing may offer clearer disease-causing variant discovery depending on the scor-171

ing method. In respect to MRF scoring, this information retrieval method might172

be applied as follows; the r f − i g f weight of a term is the product of its r f173

weight and its i g f weight (Wr,g = r f r,g × log N
g f r

) or (Wr,g = (1 + logr f r,g ) ×174

log N
g f r

). That is, firstly, the number of times a residue mutates in a gene (r f =175

r f r,g ). Secondly, the rarity of the mutation genome-wide in N number of genes176

(i g f = N /g f r ). Finally, ranking the score of genes for a mutation query q by;177

Score(q, g ) = ∑
r∈q∩g

rf-igfr,g

The score of the query (Score(q, g )) equals the mutations (terms) that appear178

in both the query and the gene (r ∈ q ∩ g ). Working out the r f − i g f weight for179

each of those variants (r f .i g f r,g ) and then summing them (
∑

) to give the score180

for the specific gene with respect to the query.181

During clinical investigations using personalised analysis of patient data,182

further scoring methods may be applied based on disease features. A patient183
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with autoinflammatory features may require weighting for genes such as MEFV184

and TNFAIP3, whereas a patient with mainly immunodeficiency may have weighted185

scoring for genes such as BTK and DOCK8. A patient phenotype can contribute186

a weight based on known genotype correlations separating primary immunod-187

eficiencies or autoinflammatory diseases [6]. However, validation of these ex-188

panded implementations requires a deeper consolidation of functional stud-189

ies than is currently available. A method with similar possible applications for190

human health mapping constrained coding regions has been recently released191

[18]. This study employed a method which included weighting by sequencing192

depth. We have not included this method as our analysis was gene-specific but193

implementation is advised when calculating genome-wide MRF scores.194

Predicting the likelihood of discovering novel mutations has implications195

in genome-wide association studies (GWAS). Variants with low minor allele fre-196

quencies have a low discovery rate and low probability of disease association197

[19]; an important consideration for rare diseases such as RAG deficiency. An198

analysis of the NHGRI-EBI catalogue data highlighted diseases whose average199

risk allele frequency was low. Autoimmune diseases had risk allele frequen-200

cies considered low at approximately 0.4 [19]. Without a method to rank most201

probable novel disease-causing variants, it is unlikely that GWAS will identify202

very rare disease alleles (with frequencies <0.001). It is conceivable that a num-203

ber of rare immune diseases are attributable to polygenic rare variants. How-204

ever, evidence for low-frequency polygenic compounding mutations will not be205

available until large, accessible genetics databases are available, exemplified by206

the NIHR BioResource Rare Diseases study [14]. An interesting consideration207
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when predicting probabilities of variant frequency, is that of protective muta-208

tions. Disease risk variants are quelled at low frequency by negative selection,209

while protective variants may drift at higher allele frequencies [20].210

The cost-effectiveness of genomic diagnostic tests is already outperforming211

traditional, targeted sequencing [1]. Even with substantial increases in data212

sharing capabilities and adoption of clinical genomics, rare diseases due to213

variants of unknown significance and low allele frequencies (<0.0001) will re-214

main non-actionable until reliable predictive genomics practices are developed.215

Bioinformatics a a whole has made staggering advances in the field of genet-216

ics [21]. Challenges which remain unsolved, hindering the benefit of national217

or global genomics databases, include DNA data storage and random access218

retrieval [22], data privacy management [23], and predictive genomics analy-219

sis methods. Variant filtration in rare disease is based on reference allele fre-220

quency, yet the result is not clinically actionable in most cases. Development of221

predictive genomics tools may provide a critical role for single patient studies222

and timely diagnosis [13].223

Conclusion224

We provide the amino acid residue list for RAG1 and RAG2 which have not been225

reported to date but are most likely to present clinically as RAG deficiency. This226

method may be applied to other diseases with hopes of improving prepared-227

ness for clinical diagnosis.228
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Methods229

Population genetics230

GnomAD (version r2.0.2) [24] was queried for the canonical transcripts of RAG1231

and RAG2 from population genetics data of approximately 146,000 alleles;232

ENST00000299440 (RAG1) 1495 vaiants (including filtered: 1586),233

GRCh37 11:36532259-36614706 and ENST00000311485 (RAG2) 786 varaitns (in-234

cluding filtered: 831), GRCh37 11:36597124 - 36619829. Data was filtered to235

contain the identifiers: frameshift, inframe deletion, inframe insertion, mis-236

sense, stop lost, or stop gained. Reference transcripts were sourced from En-237

sembl in the FASTA format amino acid sequence; transcript: RAG1-201238

ENST00000299440.5 [HGNC:9831] and transcript: RAG2-201 ENST00000311485.7239

[HGNC:9832]. These sequences were converted to their three-letter code for-240

mat using One to Three from the Sequence Manipulation Suite241

(http://bioinformatics.org/sms2/mirror.html).242

Input sets used GnomAD variant allele frequencies and reference sequences243

processed as cvs files, cleaned and sorted to contain only coding amino acid244

residues, amino acid code, residue number, alternate variants, allele frequen-245

cies of variants, and a score (C ) of 0 or 1 where 1 represented no reported246

variants. A score was also given where multiple alternate variants existed. A247

separate statistics report was generated from this processed input data. The248

percentage of conserved residues was calculated (55.99% of amino acids con-249

tained no reported variants in RAG1, 55.98% in RAG2). The count of variants250

per residue was found for both proteins. The ratio was also found per residue251
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conservation rate / mutation rate. Basic protein statistics were generated using252

reference canonical transcript sequences of RAG1 and RAG2 with the Sequence253

Manipulation Suite. The residue frequency was calculated based on the respec-254

tive polypeptide chain length.255

The calculated mutation rate value and residue frequency score together256

produce the mutation rate residue frequency as shown in Table S1. Our inves-257

tigation used the Boolean C score of 0 or 1 to weight mutation rate residue fre-258

quencies. An important consideration for future application is whether to use259

this Boolean score or a frequency score. In the clinical setting, the likelihood of260

de novo mutations versus inherited mutations have different impact on reces-261

sive and dominant diseases. The likelihood of a patient presenting with a par-262

ticular (predicted) variant is more likely if the variant exists even at a very low263

frequency in the patients ancestral population. Therefore, an allele frequency264

may be used to replace C in many investigations.265

Data visualisation266

For our visualisation of MRF scores, small clusters of high MRF were of more267

significance than individual highly conserved residues. Therefore, we applied a268

1% average filter where values were averaged over a sliding window of N num-269

ber of residues (10 in the case of RAG1, 6 in the case of RAG2). However, when270

using Boolean scoring C , this method should be applied before C . Alternatively,271

if using allele frequency scoring, this visualisation method can be applied sub-272

sequently. Lastly, for a clear distinction of MRF clusters a cut-off threshold was273

applied at the 75th percentile (0.0168 in RAG1).274
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A gene map for coding regions in RAG1 and RAG2 were populated with (1)275

Boolean C score from population genetics data, (2) raw MRF scores, and (3)276

MRF clusters with 1% average and cutoff threshold. GraphPad Prism was used277

for heatmaps and Adobe Adobe Illustrator and Photoshop were used for protein278

domain illustrations.279

Validation of MRF against functional data280

The recombination activity of RAG1 and RAG2 was previously measured on 44281

known pathogenic variants [14, 15]. Briefly, the pathogenicity of variants in282

RAG1 and RAG2 are measured functionally in vitro by expression of RAG1 and283

RAG2 in combination with a recombination substrate plasmid containing re-284

combination signal sequences which are targeted by RAG complex during nor-285

mal V(D)J recombination. Recombination events are assessed by quantitative286

real-time PCR using comparative CT. The inverse score of recombination activ-287

ity (0-100%) is used to quantify pathogenicity of variants in our study. Compar-288

ison between known pathogenicity scores and MFR was done by scaling MRF289

scores from 0-100% (100% being highest probability of occurring as damaging).290
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Table S1: MRF data tables. The complete RAG1 and RAG2 amino acid residue MRF scores are

provided along with known clinically pathogenic variant residues and raw data used for calcu-

lations.
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Figure 1: RAG1 and RAG2 conservation and mutation rate residue frequency. (i) Gene con-

servation score, non-conserved 0 and conserved 1. (ii) Histogram; raw MRF score. Heatmap;

MRF prediction for conserved residues, graded 0 to 0.05. (iii) MRF score averaged with 1%

intervals for each respective gene and cut-off below 75th percentile, graded 0 to 0.03 (Noise

reduction method). (iv) Gene structure with functional domains. (v) Clinically damaging vari-

ants reported on GnomAD have significantly higher MRF scores than non-pathogenic variants.

(Unpaired t test. RAG1 P value 0.002** RAG2 P value 0.0339*). (vi) GnomAD allele frequency

<0.0001. No significant difference in allele frequency is found between clinically damaging

variants and non-clinically reported. (vi) Accuracy of MRF scoring compared to functionally

validated pathogenicity.
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Figure 2: MRF score vs. known variant pathogenicity measure. Predicted pathogenicity likeli-

hood (based on maximum and minimum MRF score as a percentage) is shown in red. In blue,

the functionally measured recombination activity of each variant where complete loss of pro-

tein activity is measured as 100% pathogenicity. These values are summarised in Fig 1v(ii).
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Figure 3: The RAG1 (blue) and RAG2 (grey) protein structure with MRF scores. (i) Protein dimers

and (ii=iv) monomers illustrating the three highest category MRF scores for predicted clinically-

relevant variants. Increasing in MRF score; yellow, orange, red. DNA contact points are integral

to protein function and generally score as high MRF residues. (PDB:3jbw)
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Figure 4: False positives in Transib domains do not worsen probability prediction. The Transib

domains contain critical conserved protein residues. (i) False positives are simulated by scoring

Transib domains MRF without their Boolean conservation weight C . (ii) Allele frequencies on

GnomAD have inversely proportional conservation to simulated false-positive MRF scoring.

(iii) When the Boolean component C is applied in MRF calculation the effect of false positives

remains non-significant, illustrating the non-negative impact of MRF for pathogenicity rate

prediction.
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Figure 5: RAG1 PHRED-scaled CADD score versus GnomAD conservation rate and MRF score.

Allele frequency conservation rate (top) is vastly important for identifying critical structural

and functional protein regions. The impact of mutation in one of these conserved regions is

often estimated using CADD scoring (middle). The MRF score (bottom)(visualised using the

75th percentile with 1% averaging) highlights protein regions which are most likely to present

clinically and may require pre-emptive functional investigation.
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