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Abstract 

Humans and other animals constantly evaluate their decisions in order to learn and 

behave adaptively. Experimentally, such evaluation processes are accessed using 

metacognitive reports made after decisions, typically using verbally formulated 

confidence scales. When subjects report high confidence, it reflects a high certainty of 

being correct, but a low confidence might signify either low certainty about the 

outcome, or a high certainty of being incorrect. Hence, metacognitive reports might 

reflect not only different levels of decision certainty, but also two certainty directions 

(certainty of being correct and certainty of being incorrect). It is important to test if 

such bi-directional processing can be measured because, for decision-making under 

uncertainty, information about being incorrect is as important as information about 

being correct for guidance of subsequent behavior. We were able to capture implicit 

bi-directional certainty readouts by asking subjects to bet money on their perceptual 

decision accuracy using a six-grade wager scale (post-decision wagering, PDW). To 

isolate trial-specific aspects of metacognitive judgments, we used pre-decision 

wagering (wagering before the perceptual decision) to subtract, from PDW trials, 

influences resulting from non-trial-specific assessment of expected difficulty and 

psychological biases. This novel design allowed independent quantification of 

certainty of being correct and certainty of being incorrect, showing that subjects were 

able to read out certainty in a bi-directional manner. Certainty readouts about being 

incorrect were particularly associated with metacognitive sensitivity exceeding 

perceptual sensitivity (i.e. meta-d' > d'), suggesting that such enhanced metacognitive 

efficiency is driven by information about incorrect decisions. Readouts of certainty in 

both directions increased on easier trials, and both certainty directions were also 

associated with faster metacognitive reaction times, indicating that certainty of being 

incorrect was not confounded with low certainty. Finally, both readouts influenced the 

amount of money subjects earned through PDW, suggesting that bi-directional 

readouts are important for planning future actions when feedback about previous 

decisions is unavailable. 

Keywords: certainty, confidence, metacognition, metacognitive efficiency, post-

decision wagering, post-decisional evidence 

Abbreviations: pre-decision wagering (PreDW), post-decision wagering (PDW), 

delayed match-to-sample task (DMST) 
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1. Introduction 

Humans and other animals are able to assess their own cognitive processes 

(perception, memory and decisions) to flexibly adapt their behavior (Fleming and 

Lau, 2014; Hampton, 2009; Kepecs and Mainen, 2012). This metacognitive 

assessment can be understood as readouts of a varying certainty – probability 

distributions over contributing random variables – associated with inherently 

uncertain sensory evidence and cognitive processes (Kepecs, 2013; Ma and Jazayeri, 

2014; Pouget et al., 2016) and is especially useful for planning post-decisional actions 

under uncertainty (Fleming et al., 2012a; Kepecs and Mainen, 2012; Kiani et al., 

2014).  

Most previous work on assessing decision certainty utilized confidence judgments 

(Fleming et al., 2012; Hebart et al., 2014; Heereman et al., 2015; Persaud et al., 

2007), which can be computationally defined as subjective probability of having done 

a correct decision (Pouget et al., 2016). However, while confidence is a form of 

certainty about being correct, these measures are not equivalent (Fleming and Daw, 

2017; Pouget et al., 2016). For example, a recent study indicated that there might be a 

continuum in the knowledge one has about having done something wrong and 

something right (Boldt & Yeung, 2015) and, in this context, confidence might vary 

with certainty levels but also with what we name ‘certainty directions’: one direction 

for the certainty of being correct, and the opposite direction for the certainty of being 

incorrect. Hence, confidence ranges from 0 (high certainty of being incorrect) to 1 

(high certainty of being correct) with confidence around 0.5 corresponding to 

intermediate levels of certainty of either being correct or incorrect. Such bi-directional 

certainty might influence future actions in a continuous bi-directional way. Imagine a 

man in a hurry going to the supermarket and deciding whether to enter an aisle to 

search for a specific product. If he is uncertain about his decision (confidence around 

0.5), he will probably slow down and search for the product from a distance, staying 

close to other aisle options. This might not be the best way to find the product, but it 

is the best way to avoid spending the main resource (in this case, time) on this 

uncertain decision. If he is highly certain about the decision, the planning of a next 

action might have two distinct outcomes depending on the certainty direction. If he is 

certain about choosing the correct aisle (high certainty of being correct and therefore 

confidence close to one), he will walk down this aisle to search for the product 
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closely. On the other hand, if he is certain he made an incorrect decision (high 

certainty of being incorrect and, therefore, confidence close to zero), he will turn 

around and walk to another aisle. Another compelling example of the relationship 

between confidence and bidirectional certainty is the “change of mind” phenomenon 

that has been linked to confidence declining below 0.5 during the execution of the 

decision (Resulaj et al., 2009; van den Berg et al., 2016). 

Although as exemplified, both certainty directions might result from the same 

decisional context, it was not until recently that they were studied concomitantly 

(Boldt & Yeung, 2015; Fleming and Daw, 2017; Yu et al., 2015). Prior to this, the 

assessment of information associated with erroneous decisions was extensively 

studied in the context of the error monitoring and detection, typically with binary 

reports (e.g. Charles et al., 2013; Rabbitt, 1966; Rabbitt & Rodgers, 1977; Yeung & 

Summerfield, 2012), whereas previous confidence evaluation studies considered 

mainly the graded certainty of being correct (e.g. Fleming et al., 2012; Hebart et al., 

2014; Heereman et al., 2015; Kepecs and Mainen, 2012; Kiani and Shadlen, 2009). 

These studies provided important knowledge about the metacognition of perceptual, 

memory-based and value-based decision-making (e.g. Fleming and Dolan, 2012a; 

Hampton, 2001; Kiani and Shadlen, 2009; Monosov and Hikosaka, 2013).  

Nonetheless, even the studies that addressed both certainty directions did not 

dissociate the relative influence of certainty in correct or incorrect decisions on 

confidence reports and metacognitive ability.  Moreover, although research on 

different animal species implicated non-language-related cognitive processes in a 

computational framework of metacognition (Kepecs and Mainen, 2012; Kiani and 

Shadlen, 2009; Meyniel et al., 2015; Pouget et al., 2016), the ability to use certainty of 

being correct and certainty of being incorrect implicitly, without verbal confidence 

scale formulations, has not been measured in the same experiment.  

The aim of this study was to capture probabilistic readouts that could provide separate 

quantifiable measures of each certainty direction without relying on explicit verbal 

formulations, and to test the hypothesis that implicit assessments of both certainty of 

being correct and certainty of being incorrect result in more adaptive post-decisional 

behaviors. To this end, we designed a novel experiment in which trials with post-

decision wagering (PDW; Persaud et al., 2007) were interleaved with trials in which 

subjects were instructed to bet money before the perceptual decisions (Pre-decision 
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wagering, PreDW). As briefly described here and in detail in the Methods (section 

2.6), we compared PDW and PreDW in order to isolate the trial-specific decisional 

information used in readouts of certainty of being correct and certainty of being 

incorrect, and to quantify these readouts. 

To tease apart these trial-specific readouts, we relied on the design in which in both 

PreDW and PDW trials subjects could use information about expected difficulty 

presented at the beginning of each trial to choose their wagers (Fig. 1). Moreover, 

subjects‟ psychological biases were expected to have similar influence on their 

wagering behavior in both PreDW and PDW. For example, loss-averse subjects were 

expected to wager lower than non-loss-averse subjects.  

On the other hand, only when subjects wagered after the perceptual decision (PDW 

trials) they could add trial performance-specific information - such as the certainty 

level and the certainty direction associated with the trial decision - to the non-trial-

specific information in order to wager more adaptively. Hence, we subtracted 

certainty-related PreDW measures (based on non-trial-specific information) from 

certainty-related PDW measures (based on both trial-specific and non-trial-specific 

information) to isolate the PDW trial-specific information used during certainty 

readouts (Fig. 2). Thus, the use of PreDW baseline, which accounted for non-trial-

specific biases and expectations, was instrumental for isolating the readouts of 

certainty during PWD. Using this approach, we calculated certainty of being correct 

by comparing PreDW and PDW measures associated with correct perceptual 

decisions. And, separately, we calculated certainty of being incorrect by comparing 

PreDW and PDW measures associated with incorrect perceptual decisions.  

We found that subjects indeed wagered accordingly with non-trial-specific 

information during PreDW trials, whereas they used trial-specific information to bet 

money more efficiently during PDW. Importantly, the trial-specific information was 

used to read out both certainty directions. To our knowledge, this is the first 

measurement of the bi-directional assessment of metacognitive information (readouts 

of certainty of being correct and certainty of being incorrect) based on implicit reports 

and using the same paradigm. Our measurements showed that humans are able to 

assess whether they have made correct or incorrect decisions and use this information 

to behave adaptively without the need of verbal formulations. Moreover, although the 

readouts of certainty of being correct influenced subjects‟ earnings, it was the ability 
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to read out certainty of being incorrect that affected most the amount of money earned 

during PDW. These results demonstrate the importance of readouts of certainty of 

being incorrect in confidence judgments and suggest their adaptive value for the 

future actions. 

 

2. Methods 

2.1 Subjects 

Eighteen subjects (6 males; mean age 25.7 years) were recruited via an online 

platform of the University of Goettingen. All subjects had normal or corrected-to-

normal vision. Data from one subject was discarded because of insufficient number of 

trials in some of the conditions. Subjects were paid according to their performance 

(please see below). The experimental procedures were approved by the local ethics 

committee. 

 

2.2 Experimental setup 

Subjects sat in front of an LED screen (1600 x 1200 resolution) at 51 cm viewing 

distance and responded manually using two capacitive proximity sensors (buttons) 

connected to the computer via parallel port. Subjects positioned their head over an 

adjustable chin rest and had their head fixed with an adjustable strap for better 

stabilization. Gaze position was acquired with 60 Hz miniature infrared eye tracker 

camera and ViewPoint 2.8.6.21 software (Arrington Research). The task was 

controlled via MATLAB (Mathworks Inc) using the Psychophysics toolbox 

(http://psychtoolbox.org/). Subjects performed practice trials until they became 

familiar with this experimental setup. 

 

2.3 Delayed match-to-sample task  

Subjects completed 360 trials of a visual delayed match-to-sample (DMTS) task in 

which they had to find, between two options, the match for a preceding sample, which 

consisted of one gray circle of 1.5° of visual angle radius with an oblique black bar 

crossing its center (Fig. 1). Ten different sample options were generated by varying 

the bar orientation in counterclockwise rotation from the horizontal plane (from 18° to 
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58.5°). One of these ten samples was presented pseudo-randomly at the beginning of 

each trial in the center of the screen. During match-to-sample presentation, one 

sample-like image was presented 9° to the right and another one 9° to the left of the 

center of the screen (eye fixation spot). One of them had a bar in the same orientation 

as the sample (match) and the other one had a bar in a different orientation (non-

match). Subjects responded by using the button of the hand positioned in the same 

side of the screen of the image selected as the match (Fig. 1A). Five difficulty levels 

were created by different orientation contrasts between the match and the non-match 

(from 4.5° to 22.5°; Fig. 1B). Trials with different difficulty levels were grouped into 

three families. The overall level of difficulty of each family was determined by the 

different proportions of trials of each difficulty level. The sample color - green, blue 

or red – cued these families: easy, medium or hard, respectively (Fig. 1C).  

Subjects were informed before the experiment that colors were related to different 

levels of difficulty, but they were not told about the link between specific colors and 

difficulty of each family. 

 

2.4 Pre-decision wagering, post-decision wagering and the control task 

The metacognitive decision was a wagering task in which subjects were asked to bet 

money on the correctness of their perceptual decision. They won the wagered money 

for correct DMTS decisions and lost it for incorrect DMTS decisions. In half of the 

360 trials, subjects wagered after the DMTS decision (Post-decision wagering, PDW) 

and in the other half of the trials subjects wagered before the DMTS decision (Pre-

decision wagering, PreDW). PreDW and PDW trials were pseudo-randomly 

interleaved. PreDW was used as baseline condition in further analyses (see section 

2.6). During wagering, subjects made the metacognitive decisions by selecting first to 

wager high (wager categories 4, 5 and 6) or low (wager categories 1, 2 and 3), and 

afterwards by selecting a specific wager category among low or high options. 

Subjects had to select a specific wager within 3 s by using the button of the hand 

positioned in the same side of the corresponding selected option. This two-stage 

wager selection procedure was used so that we could assess reaction times (see 

section 3.6) despite the graded response scale used for metacognitive decisions: the 

first stage binary response was intended to preclude additional influences on the 
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reaction times due to variability in the urgency to select a specific wagering option 

along the scale.  

In addition to the wagering, we used a control task, in which subjects had to select a 

visually-cued response option. This task worked as an “instructed” wagering (Fig. 1) 

and did not influence subjects‟ earnings. It aimed to equalize, across PDW and 

PreDW trials, the cognitive effort due to intervening distractions (visual stimulation, 

object selection, and corresponding time interval). On PDW trials, subjects performed 

the control task before the DMTS decision, at the same period they were wagering on 

PreDW trials, and vice-versa for PreDW trials.  

Subjects started the experiment with 10 Euros and could earn up to 30 Euros 

according to their performance. They wagered on the correctness of every DMTS 

decision using the following pay-off matrix, which was explained to them before the 

experiment: 

Table 1. Wagering payoff matrix. 

DMTS 

decision 
Low wagers High wagers 

Correct 2 cents 5 cents 8 cents 11 cents 14 cents 17 cents 

Incorrect -2 cents -5 cents -8 cents -14 cents -17 cents -20 cents 

As can be seen from the pay-off matrix, if subjects wagered low, they were rewarded 

and punished in the same way for correct and incorrect perceptual decisions, 

respectively. But when they wagered high, their incorrect perceptual decisions were 

punished with 3 cents more than they would have earned for correct DMTS decisions. 

This pay-off matrix was designed during pilot experiments in which subjects reported 

that they knew they were performing generally above the chance level (50%) and thus 

could earn money by simply wagering high all the time. To counteract this strategy, 

we encouraged subjects to evaluate every perceptual decision by punishing high 

wagers associated to incorrect DMTS decisions more than low wagers. 

 

2.5 Trial timeline 

Eye and hand movements were controlled throughout the trial. Each trial started with 

the appearance of a red sport and a gray framed-square in the center of the screen. 

Subjects were positioned in the rest position when they fixated the gaze inside the eye 
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fixation window (3º visual angle radius around the red spot) and, concomitantly, 

positioned the right and left thumbs over two separate buttons. After a variable delay 

in the rest position (0.5-1 s), the sample was presented in the center of the screen for 1 

s. After sample presentation, subjects had to maintain the rest position for another 1 s 

before the control task (for PDW trials) or the wagering task (for PreDW trials). 

Another period of 1s separated control/PreDW from the match-to-sample task. 

Subjects had up to 1.5 s to select the image they believed was the match. After the 

perceptual decision report and another interval of 1 s, subjects performed the 

wagering task (PDW trials) or the control task (PreDW trials, Fig. 1A). 

 

Figure 1. (A) Task design. The appearance of a red spot (for eye fixation) and of a gray framed-square 

(indicating buttons status) in the screen center signaled the trial start (pre-rest). The brightening of the 

red spot and the onset of the gray filled square indicated that subjects correctly adopted the rest 

position. The sample was then presented in the center of the screen for 1 s. During PDW trials, subjects 

first performed the control task. The letters H („high‟) and L („low‟) were presented on each side of the 

screen. The presentation sides varied randomly. A blue square appeared above a specific “wager” and 

subjects had first to select high or low and then use the same button repeatedly to select the instructed 

“wager” option. The selection always moved from center-out. Overall, subjects had 3 s to select the 

instructed “wager”. Then, subjects performed the match-to-sample task by choosing the image they 

believed was the match. Next, subjects performed the actual PDW wagering task, which was similar to 

the control task except that, after freely choosing high or low wager category, subjects could move the 

yellow square that appeared above one of the three specific wagers to select a desired option. PreDW 

trials were similar to PDW trials, with the difference that the wagering task and the control task order 
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in the trial timeline was reversed. (B) Five difficulty levels were created by different orientation 

contrasts between the match and the non-match (linearly from 4.5° to 22.5°). (C) Proportion of trials in 

easy family (green), medium family (blue) and hard family (red) from each difficulty level (1 to 5). 

There was no trial-by-trial feedback about the correctness of match selection. One 

feedback about the overall earnings collected so far was presented during a break that 

occurred after 180 complete trials, and the final earned value was presented after 360 

complete trials. Trials in which subjects broke eye or hand fixation requirements, or 

were too slow to respond in one of task response periods, were aborted and repeated 

at a later time. 

 

2.6 Slope-based measurements for certainty of being correct and incorrect: 

importance of PreDW baseline 

We developed a new approach (named slope-based measurements) to calculate 

separate readouts of certainty of being correct and certainty of being incorrect. These 

measurements are based on linear fits derived from the proportions of correct or 

incorrect perceptual decisions that each of the 6 wagers was assigned to. These 

proportions were calculated by dividing the number of correct trials each wager was 

assigned to by the total number of correct trials (wager-specific proportion of correct 

trials) and, separately, dividing the number of incorrect trials each wager was 

assigned to by the total number of incorrect trials (wager-specific proportion of 

incorrect trials). For example, if a subject assigned the lowest wager to 15 of the 30 

incorrect trials, this wager‟s proportion of incorrect trials is 50%. If the second lowest 

wager was assigned to 9 of the 30 incorrect trials, its proportion of incorrect trials is 

30%, so on and so forth. Next, we fitted a linear regression to the 6 wager-specific 

proportions of correct trials and another linear regression to the 6 wager-specific 

proportions of incorrect trials. The slopes of those fits were named “slope-correct” 

and “slope-incorrect”, respectively, and were associated with the ability to read out 

each certainty direction. Hence, subjects whose proportions of correct trials increased 

towards the highest wager would demonstrate, through this positive slope-correct, the 

ability to read out certainty of being correct (see Fig. 2B). 

However, a problem of using this approach for PDW in isolation is that, in addition to 

trial-specific information, those wager-specific proportions might also be influenced 

by unspecific factors such as the general task difficulty and psychological biases (e.g. 
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loss aversion or overconfidence). For example, subjects with higher loss aversion 

and/or facing harder perceptual difficulty might choose low wagers more often than 

high wagers, independently of their performance in the preceding decision. In this 

case, the resulting slope would not be zero, but negative, even without any assessment 

of trial-specific performance. In order to disentangle the influences of such unspecific 

factors from the assessment of trial-specific performance, we used the PreDW task as 

the baseline for the slope-based measurements. During PreDW, subjects could only 

access their average performance in each of the three difficulty families, which were 

indicated by the sample color (green, blue or red for the three families: easy, medium 

or hard, respectively, Fig. 1C). Importantly, subjects were not able to predict, at the 

moment they were wagering, their actual trial performance. Consequently, subjects 

should end up assigning the wagers randomly to correct and incorrect trials, 

generating similar PreDW slope-correct and PreDW slope-incorrect values. This 

similarity is a requirement for the baseline condition, and it is present in our results 

(see section 3.2 for further information). 

During PDW, on the other hand, subjects might have access to their trial-specific 

DMTS performance. The better they assess this information (i.e. metacognitive 

ability), the more PDW slope-correct and PDW slope-incorrect become distinct from 

each other and from baseline PreDW slopes. This happens when subjects are able to 

assign high wagers more often to correct trials and low wagers more often to incorrect 

trials, relative to the PreDW baseline. The difference between PDW slope-correct 

(Postcor) and PreDW slope-correct (Precor) characterizes the readout of certainty of 

being correct. When subjects are able to detect correct trials, Postcor is larger than 

Precor (Fig. 2B). The same calculation is done independently for incorrect DMTS 

decisions, with inverted assumption: when subjects are able to detect incorrect 

perceptual decisions, Postinc is smaller than Preinc (Fig. 2C).  

Subjects‟ metacognitive ability (the ability in detecting correct and/or incorrect 

DMTS decisions on a trial-by-trial basis) will be reflected in the sum of their abilities 

to read out certainty of being correct and certainty of being incorrect. The 

metacognitive ability reaches highest levels when subjects are able to read out both 

certainty directions (Fig. 2D).  
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It is important to emphasize that, although we use words “identify” and “detect”, we 

believe that reading out certainty is a probabilistic process. Therefore the readouts 

reflect the detection of correct and incorrect perceptual decisions in a probabilistic 

manner (Pouget et al., 2016). 

 

 

Figure 2. A proposed framework for calculating readouts of certainty of being correct and certainty of 

being incorrect based on the slopes of linear fits to wager-specific proportions of correct and incorrect 

trials. (A) Pre-decision wagering (PreDW) baseline. Slope-correct (the angle between the light blue 

linear fit and the horizontal plane) and slope-incorrect (angle between the light red linear fit and the 

horizontal plane) when subjects cannot detect correct or incorrect trials (no decision yet has been 

made). Since subjects cannot tell correct from incorrect trials, each wager has the same proportion of 

correct and incorrect trials and therefore the slopes should be the similar (Preinc = Precor). In this 

example, subjects use low wagers more often than high wagers (e.g. because they are risk-averse, or 

have a low overall confidence in their performance), which leads to negative baseline slopes. (B) 

Similarly, post-decision wagering (PDW) slope-correct (Postcor, blue) and slope-incorrect (Postinc, red) 

when subjects can only detect correct DMTS decisions. PDW slope-correct is larger than PreDW 

slope-correct, indicating the readout of certainty of being correct, which is measured by subtracting 

PreDW slope-correct (Precor) from PDW slope-correct (Postcor). The readout of certainty of being 

incorrect is still at zero level (Preinc = Postinc). (C) PDW slope-correct and PDW slope-incorrect when 

subjects can only detect incorrect trials. PDW slope-incorrect (Postinc) is smaller than PreDW slope-

incorrect (Preinc), indicating the readout of certainty of being incorrect. (D) PDW slope-correct and 

PreDW slope-incorrect when subjects can detect both correct and incorrect perceptual decisions. 

Postcor and Postinc are different from Precor and Preinc, respectively. In this case, slope-based 

metacognitive ability (the sum of both certainty readouts) is influenced both by the readout of certainty 

of being correct and by the readout of certainty of being incorrect. 
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2.7 D-prime (d') and meta-d' calculation, and relationship to slope-based 

metacognitive ability 

In the section 3.5 of Results we compare the slope-based metacognitive ability with 

an established measure of metacognitive ability, meta-d' (Maniscalco and Lau, 2012). 

Meta-d' was calculated using the parameters of the Signal Detection Theory model as 

applied in Maniscalco and Lau (2012) code available online 

(http://www.columbia.edu/~bsm2105/type2sdt/archive/index.html). This method 

estimates the value of perceptual (Type 1) sensitivity (d') that would have been 

required to produce the observed metacognitive hits and false alarms (Type 2 

sensitivity). Since the wager-specific proportions of correct and incorrect trials, or in 

other words the accuracy-conditional probabilities of using each wager, are also used 

for the calculation of the standard Type 2 receiver operating characteristics, ROC, the 

same data go into the calculation of meta-d' and into the calculation of the slope-based 

PDW-only estimates. Therefore, these two measures are closely related (in our data 

they present a correlation of R=0.9, p<0.0001; imperfect correlation might be due to 

meta-d' being dependent on the Type 1 criterion, and because it uses a probit 

regression while the slope-based analysis uses linear regression).  

Nevertheless, the main difference between the meta-d' and the slope-based 

metacognitive ability is that the latter is predicated upon the comparison between 

PDW vs. PreDW and allows (as our results suggest) distinguishing between the two 

certainty directions. Meta-d', on the other hand, is calculated using only PDW but 

cannot distinguish between the two certainty directions. The major advantage of 

meta-d‟ is that it is calculated on the same scale as d' and, therefore, these two 

measures can be directly compared. The metacognitive efficiency, defined as meta-d' 

divided by d' (meta-d'/d'), reflects the comparison between how well subjects used the 

information available for metacognitive decisions and for perceptual decisions 

(Maniscalco and Lau, 2012). 

Based on the d' and meta-d' estimates, we created two groups of metacognitive 

efficiency by dividing the subjects into those who performed better on metacognitive 

PDW decisions compared to perceptual DMTS decisions (high metacognitive 

efficiency group, meta-d'/d'>1) and those who performed better in the DMTS task 

than during PDW (low metacognitive efficiency group, meta-d'/d'<1). Since values of 

meta-d'>d' would not be predicted if the same evidence is used for the Type 1 and the 
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following Type 2 decisions (Maniscalco and Lau, 2012), we compared these two 

groups in order to investigate if a higher metacognitive efficiency could be associated 

with access to additional information that was not available for the Type 1 decision 

(Yu et al., 2015; Fleming and Daw, 2017). 

 

2.8 Statistical analysis 

We performed one-way, two-way and mixed-effects ANOVAs, linear correlations or 

t-tests using MATLAB (Mathworks Inc), as specified in the Results. R (The R 

Foundation) was used to perform multiple regression and linear mixed-effects 

regression models (R package nlme; Pinheiro et al., 2007). The mixed-effects 

ANOVAs and the linear mixed-effects regression models allowed us to include all 

data (unbalanced design) and still utilize repeated measures when appropriate. When 

required, post-hoc tests were performed and corrected using Bonferroni correction. 

 

3. Results 

17 human subjects were asked to carry out a visual perceptual decision of varying 

difficulty (delayed match-to-sample, DMTS task) and a wagering task either before 

(pre-decision wagering, PreDW) or after (post-decision wagering, PDW) the 

perceptual decisions. Trial types (PreDW and PDW) and difficulty levels were 

randomly interleaved. 

 

3.1 Subjects performed similarly in the DMTS task during PDW or PreDW trials, and 

wagered according to the information available in each trial type 

We performed a two-way ANOVA for repeated measures to assess if perceptual 

performance varied between trial types (PreDW and PDW, factor 1) and among 

difficulty levels (factor 2). As expected, subjects performed better in the DMTS task 

on trials of lower difficulty (mean±SE for difficulty levels 1 to 5: 86.7±3.3 81.4±2.2 

75.0±3.0 67.8±2.4 49.7±2.7%; F4,64=51.439, p<0.0001). There was no difference in 

average DMTS performance between PreDW and PDW trial types (F1,16=2.104, 

p=0.17) and no interaction effect (F4,64= 0.970, p=0.43), showing that subjects 

performed similarly in PreDW and PDW trial types across the five difficulty levels. 
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We next tested, with separate linear mixed-effects regression models for PreDW and 

PDW trials, if there were differences in wagering behavior among the five difficulty 

levels or among the three families. As described in Methods, families had different 

proportions of trials of each difficulty level (Fig. 1C), and were signaled to subjects 

by the color of the sample. As expected, during PreDW trials subjects wagered 

according to the families (p<0.001 for all pair-wise comparisons between families), 

and not according to the actual trial difficulty level, which was unknown to the 

subjects at the moment they were wagering (p>0.05 for all difficulty levels; Fig. 3A). 

In PDW trials, although there was a significant difference between easy and hard 

families (p<0.05), this difference was driven by the actual difficulty levels (p<0.05 for 

the comparisons between all difficulty levels, except between difficulty levels 1 and 

2; Fig. 3B). 

These results show that during PreDW subjects understood the differences among the 

families and wagered according to them. The results also indicate that during PDW 

trials subjects did not rely solely on the sample color (which signaled the average 

difficulty of each family). Instead, they also used trial-specific information accessed 

through the direct comparison between the two match options (trial-specific difficulty 

level).  

 

Figure 3. Means and standard errors of PreDW (A) or PDW (B) wagers for each perceptual difficulty 

level within each perceptual difficulty family: easy (green), medium (blue) and hard (red). 

 

With exception of d' and meta-d' calculations, the following results are based on 

measurements averaged across the five difficulty levels. In these measurements, we 
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first averaged the results of different difficulty levels for one subject, and then we 

calculated averages across subjects. In the section 3.7 we present data on separate 

difficulty levels to establish their relationship with subjects‟ metacognitive readouts.  

 

3.2 Slope-based measurements reveal that on average subjects read out both certainty 

directions 

As described in the section 2.6, slope-correct and slope-incorrect are independent 

measures used to quantify readouts of certainty of being correct and certainty of being 

incorrect, respectively. These slopes are based on linear regressions fitted to the 

wager-specific proportions of correct and incorrect trials (Fig. 2). To isolate trial-

specific readouts, we created a baseline condition derived from PreDW trials. PreDW 

provided us with general wagering trends that subjects might have developed based 

on non-trial-specific information (such as expected difficulty and psychological 

biases) which, when subtracted from PDW slopes, should provide slope differences 

resulting only from trial-specific information.  

Since PreDW is based solely on non-trial-specific information, subjects should assign 

wagers randomly to the following correct and incorrect perceptual decisions and, in 

contrast to PDW, PreDW slope-correct should be similar to PreDW slope-incorrect 

(Fig. 4A). We used two-way ANOVA for repeated measures to test if slope-correct is 

different from slope-incorrect (factor 1) depending on the trial type (PDW or PreDW, 

factor 2). Independently of the other factor, PreDW slopes did not differ from PDW 

slopes (F1,16=0.007, p=0.93) but slope-correct differed from slope-incorrect 

(F1,16=64.039, p<0.0001). The interaction effect revealed that slope-correct and slope-

incorrect were different depending on the trial type (F1,16=42.493, p<0.0001). 

Importantly, the post-hoc test showed that this difference occurred during PDW trials 

(t16=9.433, p<0.01; Fig. 4B), but not during PreDW trials (t16=2.204, p>0.05, Fig. 

4A), suggesting that PreDW is a reliable baseline.   

After verifying that we have a valid baseline, we tested if subjects were able to 

independently read out certainty of being correct and certainty of being incorrect, by 

calculating the difference between PreDW and PDW slopes separately for correct and 

incorrect decisions. PDW slope-correct was significantly higher than PreDW slope-

correct (t16=3.6115, p<0.01), indicating that on average subjects read out certainty of 
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being correct and used this information to wager more adaptively after the decisions. 

Similarly, PDW slope-incorrect was significantly more negative than PreDW slope-

incorrect (t16=-3.7327, p<0.01). These slope-based measures indicated that on average 

subjects were able to use trial-specific information to avoid wagering high after 

incorrect perceptual decisions, while wagering high after correct decisions (Fig. 4C). 

 

Figure 4. Means and standard errors of linear fits for correct trials (blue lines and shaded bands) and 

incorrect trials (red lines and shaded bands) for (A) PreDW (baseline) and (B) PDW, fitted to the data: 

means and standard errors of wager-specific proportion of correct trial (blue curves) and incorrect trials 

(red curves). (C) Mean and standard error of PDW slope-correct minus PreDW slope-correct (blue line 

and shaded band) and of PDW slope-incorrect minus PreDW slope-incorrect (red line and shaded 

band), for all subjects. See Supplementary Figure S1 for PreDW and PDW data plotted separately for 

each difficulty. 

 

3.3 High and low metacognitive efficiency groups had similar performance in 

perceptual decisions but differed in metacognitive ability 

In the present experiment, d' (Type 1 sensitivity) reflects how well subjects identified 

the match during DMTS decisions; and meta-d' (Type 2 sensitivity) reflects how well 

subjects used wagers to identify correct and incorrect DMTS decisions. We used 

Maniscalco and Lau (2012) method to measure d' and meta-d' on the same scale and 

to compare them directly (section 2.7). We plotted meta-d' as a function of d', and 

distinguished between two groups of subjects: a group of 11 subjects with meta-d'>d', 

falling above the diagonal (high metacognitive efficiency group), and a group of 6 

subjects with meta-d'<d', falling below the diagonal (low metacognitive efficiency 

group; Fig. 5A). 

Since we used a post-hoc grouping approach, it was important to check if the 

measurements (d' and meta-d') we used to create those groups varied significantly in 

the intergroup comparison. We applied a mixed-effect ANOVA with two factors: type 
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of measurement (d' and meta-d', within-subjects) and group (meta-d'>d' and meta-

d'<d', between-subjects). Meta-d' was not different from d' across the entire sample 

(F1,15=1.118, p=0.31), and there was no group difference averaging the two 

measurements (F1,15=4.256, p=0.06). However, the interaction effect was significant 

(F1,15=24.995, p<0.001). Post-hoc tests revealed that the two groups had the same d' 

(t15=0.051, p=0.96), but the group of subjects with high metacognitive efficiency had 

higher meta-d' than the group of subjects with low metacognitive efficiency 

(t15=3.198, p<0.05; Fig. 5B). This result allowed us to compare the two groups 

knowing that intergroup differences were not associated with differences in subjects‟ 

performance in the DMTS task (Type 1 sensitivity), but only with their performance 

during PDW (Type 2 sensitivity). 

 

Figure 5. (A) Meta-d' plotted as a function of d'. Eleven subjects with meta-d‟>d‟ (high metacognitive 

efficiency group) fell above the equality diagonal (green area), and 6 subjects with meta-d'<d' (low 

metacognitive efficiency group) fell below the diagonal (blue area). (B) Means and standard errors of d' 

and meta-d' values for each group: meta-d'>d' (green bars) and meta-d'<d' (blue bars; *p<0.05). 

 

3.4 Only the group of subjects with higher metacognitive efficiency read out certainty 

of being incorrect 

To test if the differences between PDW and PreDW slopes which we found for all 

subjects together (section 3.2) were present in both low and high metacognitive 

efficiency groups, we performed two mixed-effect ANOVAs (PDW and PreDW 

slopes, within-subjects factor 1; groups, between-subjects factor 2), for slope-correct 

and slope-incorrect measures. The first ANOVA revealed that slope-correct was 

higher for PDW compared to PreDW trials (F1,15=10.218, p<0.01) without group 
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difference (F1,15=0.017, p=0.90; meta-d'>d': t10=2.791, p<0.02; meta-d'<d': t4=2.892, 

p<0.05) or interaction between the factors (F1,15=0.433, p=0.52; Fig. 6A), indicating 

that group differences in metacognitive efficiency were not driven by the readouts 

about the certainty of being correct. The second ANOVA revealed that slope-

incorrect was also different between PDW and PreDW (F1,15=11.070, p<0.01) without 

group difference (F1,15=1.825, p=0.20). However, the interaction effect was 

significant (F1,15=4.888, P<0.05) and the post-hoc test revealed that PDW slope-

incorrect was different from PreDW slope-incorrect only for the high metacognitive 

efficiency group (t10=-4.742; p<0.01; Fig. 6A). Figures 6B and 6C further illustrate 

the difference between PWD and PreDW slopes for the two groups. Altogether, these 

results indicate that the difference between the groups in regard to the slope-based 

metacognitive ability, defined as the sum of readouts of certainties of being correct 

and incorrect (metacognitive ability 7±1 for the meta-d'>d' group and 3±1 for the 

meta-d'>d' group, non-paired t-test, t15=2.748, p<0.05), was due to the ability of 

subjects with high metacognitive efficiency to read out certainty of being incorrect.  

 

Figure 6. (A) Means and standard errors of PDW slope-correct (dark blue bars), PreDW slope-correct 

(light blue bars), PDW slope-incorrect (dark red bars), PreDW slope-incorrect (light red bars) from all 

subjects (“all”), high metacognitive efficiency group (“high”) and low metacognitive efficiency group 

(“low”; *p<0.05, **p<0.01 for differences between PDW and PreDW). (B) Mean and standard error of 

PDW slope-correct minus PreDW slope-correct (blue line and shaded band) and of PDW slope-

incorrect minus PreDW slope-incorrect (red line and shaded band), for high metacognitive efficiency 

group. The text in the top of the panel shows mean and standard error of slope-based metacognitive 

ability. (C) Same as B, but for the low metacognitive efficiency group. All measurements represent 

data across difficulty levels (averaged within each subject) and then averaged across subjects. 

 

The contribution of reading out certainty of being incorrect to metacognitive ability 

was further supported by the fact that several subjects from the high metacognitive 
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efficiency group had perceptual performance below the chance level (50%) in the 

lowest wager category (Fig. 7A). To demonstrate this, we used mixed-effects 

ANOVA to test if the perceptual performance varied across the wager categories 

(within-subjects factor 1) and if this variation was similar between the high and low 

metacognitive efficiency groups (between-subjects factor 2). As expected, subjects 

performed better on trials in which they selected higher wagers (F4,60=23.837, 

p<0.0001). Importantly, the interaction effect showed that while the groups had the 

same general perceptual performance (F1,15=0.107, p=0.75), wager-specific perceptual 

performances were different between them (F4,60=7.077, p<0.0001; Fig. 7A). While 

the perceptual performance of the meta-d'<d' group varied from 58.7% in the lowest 

wager to 82.1% in the highest wager, the meta-d'>d' group had a range varying from 

below chance performance in the lowest wager (43.1%) to 94.7% in the highest 

wager. The perceptual performance in the wager category 1 for the meta-d'>d' group 

was significantly below the chance level (t10=-2.569, p<0.05).  

To further investigate this result, we calculated the correlation between perceptual 

performance in the wager category 1 and metacognitive efficiency across subjects 

(Fig. 7B). We found a strong negative correlation (R=-0.8, p<0.0001) between these 

two factors. This result is not surprising since meta-d' is calculated based on accuracy-

conditional probabilities of using each wager level (see section 2.7). However meta-d' 

is influenced by all wager categories and it is noteworthy that the performance for 

wager category 1 is most correlated with meta-d'/d' compared to performance in the 

other categories (second highest correlation was R=-0.56, data not shown), indicating 

a specific relevance of certainty about being incorrect for metacognitive efficiency. 

Most importantly, while several subjects with high metacognitive efficiency presented 

perceptual performance below the chance level for this wager category, none of the 

subjects with low metacognitive efficiency showed it. We interpret this result as a 

compelling demonstration that the meta-d'>d' subjects were able to read out certainty 

of being incorrect to detect incorrect perceptual decisions and to assign the lowest 

wager to them. 
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Figure 7. (A) Means and standard errors of perceptual performance for each metacognitive efficiency 

group (meta-d'>d': green line and band; meta-d'<d': blue line and band). Perceptual performance for the 

meta-d'>d' group (green curve) is below chance level in the lowest wager (*p<0.05). The horizontal 

dashed black line represents the chance level (50%) for the DMTS task. (B) Scatter plot and the 

correlation between perceptual performance in the lowest wager category 1 and metacognitive 

efficiency (meta-d'/d') across subjects (subjects from the group meta-d'>d' are in green and subjects 

from the group meta-d'<d' are in blue). The horizontal dashed black line represents the chance level for 

the DMTS task. 

 

3.5 Slope-based metacognitive ability is compatible with meta-d' 

Since the slope-based measure that relies on the comparison of PreDW and PDW is 

an alternative approach we developed to assess separate contributions of certainty in 

being incorrect or correct to metacognitive ability, we compared it to meta-d', an 

established and widely used measure. It is important to emphasize that the meta-d' and 

the PDW-only slope-based calculations are based on the same data (see section 2.7), 

therefore we expect a good match between the slope-based and meta-d' approaches, 

provided that the other component of the slope-based metacognitive ability, PreDW 

slopes, is indeed serving as a reliable baseline. 

A strong positive correlation between the slope-based metacognitive ability and meta-

d' (R=0.88, p<0.0001) indicates that the slope-based approach can be considered a 

valid measure of metacognitive ability, with the advantage of allowing independent 

quantification of certainty of being correct and certainty of being incorrect readouts 

(Fig. 8).  
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Figure 8. Correlation between two different measures of metacognitive ability. For each subject, the 

novel slope-based metacognitive ability measure is plotted against meta-d' value. The black line is the 

best linear fit between the two measurements. Subjects are colored according to the metacognitive 

efficiency group (green, high metacognitive efficiency, blue, low metacognitive efficiency), numbers 

indicate subject labels. 

 

The separate correlation between the slope-based readout of being correct and the 

meta-d' was not significant (R=0.42, p=0.089), while the correlation between the 

slope-based readout of being incorrect and the meta-d' was significant (R=0.57, 

p=0.016). In line with these findings, a multiple linear regression between meta-d' and 

separate readouts of certainty in both directions showed a stronger influence of 

certainty of being incorrect on the meta-d' (β=0.260, t14=6.495, p<0.001), as 

compared to certainty of being correct (β=0.211, t14=5.657, p<0.001). 

 

3.6 Wager-specific metacognitive reaction times indicate increasing certainty in both 

directions of the wager scale 

In the present experiment, each trial had two manual response periods. Perceptual 

reaction times („RT1‟) reflect the time subjects took to report the DMTS decision. On 

average, subjects had faster RT1 when reporting easier DMTS decisions 

(F4,60=11.553, p<0.0001). Metacognitive reaction times („RT2‟) reflect the time 

subjects took to choose between high or low wagers. Perceptual and metacognitive 

reaction times were also calculated separately for each wager (wager-specific RT1 

and wager-specific RT2) to test the influence of perceptual reaction times on 
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subsequent wagering behavior, as well as the relationship between certainty and 

metacognitive reaction times. 

The mixed-effect ANOVA on perceptual RT1s (within-subjects factor 1: wagers, 

between-subjects factor 2: metacognitive efficiency group) showed that RT1s were 

associated with the subsequent selection of the wager (F5,75=21.140, p<0.0001). The 

association was unidirectional, with RT1s decreasing when followed by high wagers. 

The interaction effect showed that subjects from the high metacognitive efficiency 

group responded faster during perceptual decisions preceding some of the wagers 

(F5,75=4.004, p<0.01; Fig. 9A). There was no main effect of the group, perhaps 

because the low efficiency group included only 6 subjects (F1,15= 3.223, p=0.09). 

The mixed-effect ANOVA on metacognitive RT2s (within-subject factor 1: wagers, 

between-subjects factor 2: metacognitive efficiency group) showed that mean wager-

specific RT2s also differed among wagers (F5,75=10.087, p<0.0001). Across all 

subjects, RT2s were shorter in the wager categories 1 and 6 than in the middle wagers 

3 and 4 (pair 1 and 3: t16=-3.514, p<0.05; pair 4 and 6: t16=2.546, p<0.05; Bonferroni-

corrected), generating an inverted U-shape function of wager-specific RT2 (Fig. 9B). 

Since faster reaction times are associated with increased certainty (Kiani et al., 2014), 

this result further supports our hypothesis that certainty increases in both directions of 

the wager scale. We associate fast metacognitive reaction times in the wager category 

1 with increased certainty of being incorrect, and fast metacognitive reaction times in 

the wager category 6 with increased certainty of being correct. But although the 

inverted U-shape seemed more pronounced in the high metacognitive efficiency 

group, the group comparison with mixed-effect ANOVA showed no significant 

differences between the groups (F1,15=0.397, p=0.54) or interaction between the 

factors (F5,75= 1.487, p=0.20; Fig. 9B). The group-specific pairwise comparison of 

wagers 1 and 3, however, revealed a significant RT2 difference only in the high 

metacognitive efficiency group (meta-d‟>d‟ group: t10=-4.495, p<0.01; meta-d‟<d‟ 

group: t5=-1.000, p>0.05) while the difference between RT2 for wagers 6 and 4 was 

significant in both groups (meta-d‟>d‟ group: t10=7.625, p<0.001; meta-d‟<d‟ group: 

t5=2.685, p<0.05). This result supports our interpretation of a link between bi-

directional certainty and metacognitive reaction times.  
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Figure 9. (A) Means and standard errors of wager-specific perceptual reaction times (RT1) across all 

subjects (black curve), for the high metacognitive efficiency group (meta-d'>d', green curve) and for 

the low metacognitive efficiency group (meta-d'<d', blue curve). (B) Means and standard errors of 

wager-specific metacognitive reaction times (RT2) across all subjects (black curve), for the high 

metacognitive efficiency group (green curve) and for the low metacognitive efficiency group (blue 

curve). All measurements represent averages across difficulty levels and across subjects. 

 

3.7 Readouts of certainty of being correct and certainty of being incorrect increased 

with perceptual signal strength 

For the analyses in preceding sections, we combined all five difficulty levels. Here, 

we performed two independent one-way ANOVAs for repeated measures to test for 

differences in certainty readouts across the difficulty levels. The first ANOVA 

showed that readouts of certainty of being correct decreased with difficulty level 

(F4,64=11.715, p<0.0001). The pair-wise post-hoc test revealed that these readouts 

decreased significantly only at the highest difficulty level (p<0.05; Fig. 10). The 

second ANOVA showed that readouts of certainty of being incorrect also decreased 

with increased trial difficulty (F4,64=4.529, p<0.01). The post-hoc test revealed that 

these readouts decreased significantly at the difficulty levels 4 and 5 (p<0.05, Fig. 

10). These results show that subjects read out both certainty directions better when 

trials were easier. Considering that the probability of being incorrect increases in 

harder trials – and, therefore, in the opposite direction of certainty of being incorrect 

readouts – these results also suggest dissociation between the assessment of the 

DMTS difficulty and the trial-specific metacognitive assessment of the performance 

in the DMTS decision. 
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Figure 10. Means and standard errors of PDW slope-correct minus PreDW slope-correct (blue lines 

and shaded bands) and of PDW slope-incorrect minus PreDW slope-incorrect (red lines and shaded 

bands) for each difficulty level (easy to hard, 1 to 5). The text in the top of each panel shows means 

and standard errors of slope-based metacognitive ability („Mcog‟), readout of certainty of being correct 

(„Cor‟) and readout of certainty of being incorrect („Inc‟). See Supplementary Figure S1 for PreDW 

and PDW data plotted separately for each difficulty, used to derive those slopes. 

 

3.8 Subjects with higher metacognitive ability earned more money in PDW, especially 

if they read out certainty of being incorrect 

Finally, we used two linear regressions to understand how subjects‟ PDW earnings 

were determined by their metacognitive abilities. The first linear regression showed 

that subjects‟ earnings can be explained by their general metacognitive ability 

quantified by slope-based measurements (β=0.817, t15=3.686, p<0.005). A second 

multiple linear regression separated the two components of the slope-based 

metacognitive ability and showed that, although the ability to read out certainty of 

being correct partially explained subjects‟ earnings (β=0.622, t14=2.646, p<0.05), their 

readouts of certainty of being incorrect influenced more how much they earned during 

PDW (β=1.060, t14=4.201, p<0.001).  

 

4. Discussion 

4.1 Bi-directional certainty readouts 

In the present study we were able to measure trial-specific readouts of certainty of 

being correct and certainty of being incorrect by asking subjects to bet money (post-

decision wagering, PDW) on their perceptual decisions (delayed match-to-sample 

task, DMTS). We quantified both certainty directions with a help of pre-decision 

wagering (PreDW), a task in which subjects could wager according to the average 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 28, 2018. ; https://doi.org/10.1101/272872doi: bioRxiv preprint 

https://doi.org/10.1101/272872
http://creativecommons.org/licenses/by/4.0/


26 
 

expected difficulty of the upcoming perceptual decision and their internal biases. The 

comparison between PDW and PreDW was utilized to isolate the trial-specific 

influences on the certainty readouts. On average, subjects were able to read out 

certainty of being correct and certainty of being incorrect, and to use this 

metacognitive information to bet money more efficiently.  

These results also provided the first demonstration that the interpretation of implicit 

certainty scales should take into account certainty bi-directionality, since subjects 

utilized PDW to report bi-directional certainty readouts without explicit instructions 

to do so. PDW has been criticized for being highly influenced by individual biases 

associated with gains and losses (e.g. loss aversion and predisposition toward risky 

behaviors; Fleming and Dolan, 2010), but using a PreDW baseline allowed us to 

account for such biases and, consequently, overcome one of the main disadvantages 

of using wagering to access confidence.  

In addition, we established a relationship between two directions of certainty readouts 

and subjects‟ metacognitive efficiency (meta-d'/d'). Subjects with high metacognitive 

efficiency (i.e. those who performed better on metacognitive decisions compared to 

perceptual decisions, meta-d'>d') and low metacognitive efficiency (meta-d'<d') had 

on average the same performance on perceptual decisions, but only the high 

metacognitive efficiency group was able to read out both certainty of being correct 

and certainty of being incorrect, while the group of subjects with low metacognitive 

efficiency was able to read out only certainty of being correct. We argue in the next 

section that this group difference might be associated with additional information 

used during metacognitive decisions, which were not available at the moment subjects 

performed the perceptual decision. Nevertheless, considering that certainty of being 

incorrect influenced most how much subjects earned during PDW, these results 

suggest the adaptive value of readouts of certainty of being incorrect for the planning 

of post-decisional actions in situations in which immediate feedback is not available.  

The certainty bi-directionality was further supported by the inverted U-shape function 

of the reaction times during metacognitive Type 2 decisions (RT2). In previous 

studies that used multiple-grade scales, Type 2 reaction times might not have been 

directly associated to certainty because the starting position of a cursor used for 

confidence reports was intentionally varied across trials to discourage advance motor 

preparation (e.g. Fleming et al., 2012b; Lebreton et al., 2015). Consequently, reaction 
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times might have also depended on the starting position that could be closer or farther 

from the intended option, causing varying motor urgency not related to certainty. 

Conversely, in our task design, RT2s were based on initial binary decisions between 

two options randomly placed on each side of the screen („wager high or low‟), and 

associated with specific wagers only at a second response step. This novel feature 

with two-step metacognitive decision reports allowed measuring RT2 association to 

certainty. Since faster reaction times are associated with increased certainty (Kiani et 

al., 2014), the inverted U-shape function of wager-specific RT2 suggests increased 

certainty in both directions of the wager scale.  

  

4.2 Sources of additional information for readouts of certainty of being incorrect 

The results of the slope-based approach demonstrated that subjects with high 

metacognitive efficiency were able to read out certainty of being incorrect (PDW 

slope-incorrect smaller than PreDW slope-incorrect). More than that, we interpret the 

fact that these subjects assigned the lowest wager more frequently to incorrect 

perceptual decisions than to the correct ones (cf. Figure 7) as a clear demonstration of 

their ability to recognize that they chose the wrong option in the DMTS task and use 

this information to avoid high losses. We speculate that such identification of 

incorrect choices might be associated with additional sources of information, resulting 

in improvement of the metacognitive performance in comparison to the preceding 

perceptual performance (meta-d'>d').  

When Maniscalco and Lau (2012) developed the calculation of meta-d' at the same 

scale as d', they initially assumed that the Type 2 sensitivity (meta-d') should not 

exceed the Type 1 sensitivity (d') because subjects use the same evidence in both 

types of decision. This assumption has been contested by more recent studies that 

show continuing post-decisional evidence accumulation when Type 2 decisions 

follow Type 1 decisions in time (Murphy et al., 2015; Yu et al., 2015, see also 

Fleming and Daw, 2017, for review). Along these lines, it can be argued that trial-

specific readouts of certainty of being incorrect rely on additional information that 

was not available at the moment subjects committed to Type 1 decision, and that led 

to a reversal of the evidence accumulation direction towards the non-selected option 

(Yeung and Summerfield, 2012). Hence, metacognitive efficiency can be viewed not 
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only as a measure of deleterious evidence leakage when meta-d'<d', but also as a 

measure of extra evidence accumulation after Type 1 decisions, when meta-d'>d'. 

Another non-mutually exclusive possibility is that certainty of being incorrect is a 

result of parallel metacognitive processing that runs concurrently with the formation 

of Type 1 decisions and thus, not necessarily predicated upon the post-decisional 

evidence accumulation. In this case, the dissociation between Type 1 performance and 

metacognitive readouts would be due to at least partially non-overlapping access to 

information available for the Type 1 and Type 2 decisions (Fleming and Daw, 2017). 

This view is supported by the presence of EEG “error-related negativity” before Type 

1 responses (Gehring et al., 1993), and the simultaneous presence of decodable 

information about the required response and the actual (incorrect) response that 

subjects are preparing (Charles et al., 2014). Nevertheless, also in this account, 

certainty of being incorrect should be tightly linked to metacognitive sensitivity that 

exceeds Type 1 perceptual sensitivity (Fleming & Daw, 2017), which is in line with 

our results. 

 

4.3 Evidence accumulation, trial difficulty and certainty scales 

Here we bring together our results about certainty bi-directionality and trial difficulty, 

and the knowledge provided by previous work on confidence rating and published 

models of evidence accumulation (e.g. Pleskac and Busemeyer, 2010; Yeung and 

Summerfield, 2012; Yu et al., 2015). Note that while we only argue here within the 

post-decisional accumulation framework, some of the reasoning is also applicable to a 

parallel metacognitive processing that is dissociated from the perceptual evidence 

accumulation.  

Figure 11 illustrates one hard (A) and two easy (B, C) incorrect trials of the DMTS 

task followed by six-grade certainty scale rating. The “evidence axis” exemplifies a 

theoretical range of evidence available for the task. On hard trials, the evidence is 

distributed narrowly around the Type 1 criterion. The easier the trial, the higher the 

probability that the evidence is accumulated further from the Type 1 criterion, and 

closer to the limits of the evidence axis. In a specific trial, if the post-decisional 

evidence remains in the same side of the Type 1 criterion as during the Type 1 

decision, it is read out as certainty of being correct (blue curve). If the evidence 
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crosses the Type 1 criterion, it leads to different levels of certainty of being incorrect 

(red curve). Hence, certainty increases towards the two directions of the evidence 

axis, resulting in a bi-directional certainty scale as the exemplified U-shape function 

of certainty at the bottom of the figure. 

On hard trials (Fig. 11A), the difference between the perceptual evidence supporting 

each option is small, and consequently is d'. In our results, the Type 1 performance at 

the hardest difficulty level was at the chance level. Moreover, subjects did not show 

any metacognitive ability during Type 2 decisions in most difficult trials (Fig. 10). 

We therefore suggest that the post-decisional evidence accumulation rate remained as 

low as before the Type 1 decisions, and did not allow subjects to improve their 

metacognitive efficiency. On easy trials (Fig. 11B,C), the large difference between the 

perceptual evidence supporting each option of the Type 1 decision allowed subjects to 

better distinguish the match, yielding a high d'. Nevertheless, there were still some 

trials in which subjects selected the wrong option, as illustrated here. Our group 

comparisons indicate that subjects with low metacognitive efficiency did not 

accumulate post-decisional evidence or failed in reading it out efficiently, since their 

meta-d' was smaller than d' (Fig. 11B). We suggest that subjects with high 

metacognitive efficiency accumulated more evidence after the Type 1 decisions (Fig. 

11C). The post-decisional evidence accumulation allowed subjects with high 

metacognitive efficiency to improve the detection of correct choices (not shown in 

this figure), but influenced even more the detection of the incorrect choices.  
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Figure 11. Certainty readouts in a post-decisional evidence accumulation framework. Trial time goes 

down from t0 to t4. Right (incorrect) option was selected during Type 1 decision. (A) On hard trials, d' 

is small and the drift rate of evidence accumulation before and after the Type 1 decision is low, 

resulting in Type 1 performance at the chance level and low metacognitive ability. The Type 2 criteria 

distribution is closer to the Type 1 criterion, signifying low certainty. (B, C) On easy trials, the 

accumulation of evidence before the Type 1 decision is high and, consequently, d' is large. One 

possibility is that the inter-subject variability in metacognitive efficiency arises from their ability to 

accumulate and read out post-decisional evidence. (B) Although subjects with low metacognitive 

efficiency have the same d' as subjects with high metacognitive efficiency, they did not accumulate 

post-decisional evidence fast enough or failed in reading it out efficiently since their meta-d' is smaller 

than d'. (C) Conversely, the post-decisional evidence accumulation is high for subjects with high 

metacognitive efficiency, allowing them to better distinguish correct from incorrect Type 1 decisions 

and increase their meta-d'. Compared to the low metacognitive efficiency group, the post-decisional 

accumulation of evidence is especially high when it drifts toward the non-selected match option, more 

strongly influencing the detection of the incorrect choices. Importantly, in this case, low ratings signify 

a high certainty (of being incorrect), rather than low certainty. Moreover, it is important to emphasize 

that in this illustration, Type 2 criteria distributions and the certainty directions would be flipped 

horizontally over the evidence axis in the case of Type 1 selection of the left option. 

It is important to emphasize that the level of certainty each rating (or wager) might 

represent critically depend on the difficulty level and on individual ability to 

accumulate and/or read out evidence. On harder trials, subjects predominantly use low 

wagers and, due to low average certainty (i.e. high difficulty level), these wagers 
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represent low levels of trial certainty. On easier trials, subjects more often use high 

wagers because of high average certainty (i.e. low difficulty level) but, in this case, 

low wagers represented high or low levels of trial certainty depending on subjects‟ 

metacognitive efficiency. Subjects with high metacognitive efficiency are able to 

accumulate inconsistent post-decisional evidence at high rates. This evidence not only 

could cross the Type 1 criterion, but also reach over far to the other side. The readouts 

of this evidence generate high certainty of being incorrect, which is mainly reported 

through the lowest wager. Subjects who do not accumulate inconsistent post-

decisional evidence at high rates, on the other hand, use low wagers to report certainty 

readouts about the evidence that was close to the Type 1 criterion (i.e. low certainty 

level). This reasoning emphasizes that the same response scale can be used to 

represent different metacognitive readouts. Furthermore, the dependence of certainty 

representations on the difficulty and individual biases highlights the importance of the 

baseline measures for distinguishing between trial-specific and average certainty 

readouts. 

Previous studies often interpreted low confidence reports as low certainty of being 

correct (Fleming and Lau, 2014; Heereman et al., 2015; Maniscalco and Lau, 2012; 

Sandberg et al., 2010). In such cases, low certainty readouts are expected to increase 

on harder trials together with the use of low ratings. However in the present study, 

certainty of being incorrect increased on easier trials (Fig. 10), further indicating that 

on these trials, subjects were using low wagers when they were more certain about 

their (incorrect) decisions, and not when they were more uncertain.  

It is likely however that the readouts of certainty of being incorrect, or error 

monitoring, arise naturally in different experimental contexts, even when not 

specifically prompted by metacognitive report scale formulations (Yeung & 

Summerfield, 2012). In case of a unidirectional scale, e.g. confidence low to high, 

some subjects might use the middle of the scale to signal low certainty of being either 

correct or incorrect, and allocate low ratings for the certainty of being incorrect. Yet 

others might use the low ratings to designate low certainty, thus conflating these two 

different readouts. This issue underscores the importance of scale interpretation in 

addition to the formulation. 
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5. Conclusions 

Comparing post-decisional judgments to a pre-decision wagering baseline allowed us 

to isolate individual psychological biases and expectations about task difficulty from 

trial-specific readouts, and to separately quantify contributions of certainty of being 

correct and certainty of being incorrect to metacognitive ability. Our findings 

demonstrate that when afforded an opportunity, humans are able to monitor and report 

their implicit post-decisional confidence by reading out certainty about correct and 

incorrect decisions. Together, readouts of a confidence in having done a correct 

decision, and of a certainty in the opposite direction (about having committed an 

error), shape metacognitive evaluations in a bi-directional manner. The error 

monitoring in particular drives high metacognitive efficiency. These results contribute 

to the ongoing discourse on complex relationship between post-decisional processing, 

confidence, and error monitoring. Additionally, our experimental design provides a 

future perspective for studying bi-directional certainty readouts not only in humans 

but also in other animals, as well as in patients with moderate impairments of 

language comprehension.  
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Supplementary material 

Archived data 

The data for this article are available at the Open Science Framework, 

https://osf.io/ys8cj 

S.1 Supplementary Results 

S.1.1 Wager-specific proportions of trials and slopes for the five difficulty levels 

The Supplementary Figure S1A and Supplementary Figure S1B illustrate – for 

PreDW and PDW, respectively – the wager-specific proportions of correct and 

incorrect trials separately for the five difficulty levels. These proportions resulted in 

the slope-based measures illustrated in the third row of the Supplementary Fig. S1C 

and in the Figure 10. To test, within each difficulty level, if slope-correct was 

different from slope-incorrect depending on the trial type (PreDW or PDW), we 

performed two-way ANOVAs for repeated measures. In none of the difficulty levels 

PreDW slope-correct was significantly different from PreDW slope-incorrect (p>0.05; 

Supplementary Fig. S1A), indicating reliable baselines for the five difficulty levels 

separately. 

Next, we performed paired t-tests within each difficulty level to test for significant 

differences between PDW and PreDW slopes. The t-tests revealed that subjects‟ PDW 

slopes-correct were different from their PreDW slopes-correct at all difficulty levels 

(p<0.01), except for the highest difficulty level 5 (p>0.05). Additionally, PDW slope-

incorrect was not different from PreDW slope-incorrect for the difficulty levels 4 and 

5 (p>0.05), while subjects were able to read out certainty of being incorrect at the 

difficulty levels 1, 2 and 3 (p<0.01). 

The Supplementary Figure S1 reveals two important points that are considered in our 

analyses. Firstly, the baseline condition (PreDW trials) showed the general (non-trial-

specific) effect of expected perceptual difficulty assessments. For instance, the 

realization of increased family difficulty made subjects to use low wagers 

increasingly but independently of the correctness of the trials. Without considering 

this baseline measurement, we would not be able to distinguish this adaptive strategy 

(wagering low for hard trials) from the use of trial-specific certainty during PDW 

trials. Even if the task would contain only one difficulty level, or maybe especially in 
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those cases, the baseline measurement is essential to quantify certainty readouts 

taking into account individual biases. Secondly, during PreDW trials (especially 

during expected easier trials, partially predictable by the family difficulty) subjects 

chose more often middle wagers (wagers 3 and 4). Since linear fits captured wagering 

trends regardless of the effect of such behavior, our choice for using the slopes of 

linear fits (instead of the best-fitted curves) proved to be valuable for establishing 

useful baselines for the slope-based measurements. 

 

 

Supplementary Figure S1. (A) Means and standard errors of linear fits for correct trials (blue lines and 

shaded bands) and incorrect trials (red lines and shaded bands) for (A) PreDW (baseline) and (B) 

PDW, fitted to the data: means and standard errors of wager-specific proportion of correct (blue 

curves) and incorrect (red curves) trials, for each difficulty level. (C) Means and standard errors of 

PDW slope-correct minus PreDW slope-correct (blue line and band) and of PDW slope-incorrect 

minus PreDW slope-incorrect (red line and band) for each difficulty level (same data as in Figure 10). 

Measurements represent averages across subjects. 
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The frequency of the use of each wager (means and standard errors from the lowest to 

the highest wager) in PDW trials (wagers 1 to 6: 19±2% 11±1% 16±1% 16±2% 

13±1% 25±3%) and in PreDW trials (wagers 1 to 6: 15±2% 19±3% 23±3% 19±2% 

11±2% 13±3%) showed that subjects used the entire wager scale. 

 

S.1.2 The increase in Type 1 performance after wagering high in PreDW   

Supplementary Figure S1A also revealed that there was an increase in Type 1 

performance after wagering high in PreDW trials. For the low difficulties 1 and 2, this 

effect was significant for the highest wager 6, in isolation, and also reached 

significance after correcting for multiple comparisons across all 6 wagers for the 

difficulty 2 (difficulty 1: t16=2.45, p=0.026; difficulty 2: t16=3.10, p=0.0068; p=0.041, 

Bonferroni-corrected). We interpret this effect as a form of attentional mobilization, 

leading to an increase in performance after wagering high. This finding resembles a 

similar influence of subjective beliefs about own competency that were induced by 

manipulated social-comparative performance feedback and fictional research findings 

(Zacharopoulos et al., 2014).  

 

S.1.3 Perceptual decision criteria for the five difficulty levels 

We calculated the perceptual decision criterion separately for the five different 

difficulty levels using Signal Detection Theory approach. This information is relevant 

because subjects might develop different spatial biases for different difficulties (e.g. 

select more often the image on the right side in harder trials), making it impossible to 

compare different difficulty levels. The two-way ANOVA for repeated measures 

revealed that perceptual decision criterion did not differ from zero (F1,16=0.009, 

p=0.93) or among the difficulty levels (F4,64=0.248, p=0.91), suggesting that subjects 

identified the match on the right or left side of the screen with the same probability at 

all difficulty levels.  
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S.2 Supplementary Discussion 

Different aspects of the task design might prompt or limit post-decisional evidence 

accumulation and, consequently, bi-directional certainty readouts. We discuss these 

aspects below together with our results. 

Time pressure: Yeung and Summerfield (2012) and others have proposed that late 

drifts towards the correct option, not considered by the time subjects commit to the 

wrong option, generate extra evidence used for error detection. In the study of Charles 

et al. (2013), for example, subjects who needed to report Type 1 decisions within 1 s 

showed higher metacognitive efficiency (meta-d'/d', probably because the time 

pressure lowered d' but not meta-d'),  than those who had twice the time to report their 

perceptual decisions. These results indicate that time pressure over Type 1 decisions 

increased the use of extra information during Type 2 decisions. In our experiment, the 

average readout of certainty of being incorrect and the predominance of subjects with 

meta-d'>d' suggest that the applied time pressure (1.5 s) was enough to restrict 

evidence accumulation before Type 1 decisions and favor the use of extra evidence 

from post-decisional accumulation or a parallel metacognitive processing.  

Memory: memory-based tasks such as DMTS might promote the use of short-term 

memory as another source of extra information for the Type 2 decisions. Since the 

basic information required for Type 1 decisions, the previously presented sample, can 

only be accessed through top-down memory retrieval, such mechanism – which does 

not depend exclusively on continuous input of sensory evidence – might continue to 

provide information also after Type 1 decisions (Magnussen and Greenlee, 1999; Yu 

et al., 2015). 

Propriosensory evidence: the propriosensory evidence related to the manual report of 

the Type 1 decision itself can serve as another source of post-decisional information. 

It is known that Type 1 reaction times correlate with certainty (Fetsch et al., 2014; 

Kiani and Shadlen, 2009). Therefore, subjects could, in principle, read out those 

reaction times – instead of or in addition to the perceptual evidence – in order to judge 

their Type 1 performance during the Type 2 decisions. In accordance with this 

reasoning, Fleming et al. (2015) modified subjects‟ Type 2 decisions by manipulating 

the activity of motor areas prior to metacognitive reports. In our experiment, however, 

the distribution of wager-specific Type 1 reaction times (RT1) was unidirectional 
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(decreasing towards the highest wager, Figure 9A). Even if RT1s were bi-

directionally distributed, e.g. similar to metacognitive Type 2 RT2 inverted U-shape, 

this would only allow reading out certainty level, but not certainty direction (i.e. 

correct or incorrect). Additional possibility could be that distributions and ranges of 

correct and incorrect RT1s differed enough to provide a probabilistic readout of both 

certainty level and direction. This does not seem to be the case in our data (see 

Supplementary Figure S2). While the slopes fitted to incorrect wager-specific RT1s 

were shallower than for correct RT1s (RT1 slope-incorrect = -0.0136; RT1 slope-

correct = -0.0301; t16=-2.148, p<0.05), their distributions overlapped substantially, 

especially in the low wagers. For example, in the high metacognitive efficiency 

group, both correct and incorrect RT1 distributions were unidirectional, with negative 

slopes originating from the same range in the lowest wager. These patterns render it 

unlikely to enable inferring the direction of certainty from a single trial RT1 „sample‟.  

In summary, the readouts of RT1 in our experiment could not provide the bi-

directional certainty readouts apparent in slope-based measurements and wager-

specific Type 2 reaction times. 

 

Supplementary Figure S2. Means and standard errors of wager-specific perceptual reaction times 

(RT1) across all subjects (black curve), for the high metacognitive efficiency group (meta-d'>d', green 

curve) and for the low metacognitive efficiency group (meta-d'<d', blue curve), separated to correct 

trials (A) and incorrect trials (B). The linear regression slopes (thick lines) are means of the slopes that 

were fitted to the individual subject averages. Note that several subjects did not select high wagers in 

incorrect (error) trials; therefore data for those wagers represent only a subset of subjects while slopes 

include all subjects (in subjects with missing wagers, the slopes were fitted to available wagers). This 

led to a partial mismatch between the data and fitted slopes in B. (C) Direct comparison of correct trial 

(solid lines) and error trial (dashed lines) slopes. 

 

Rewards and punishments: lastly, the use of PDW might favor evidence accumulation 

because it motivates subjects to fully explore their sources of information through 
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gains and losses (i.e. profit more when correct and avoid losses when incorrect). We 

suggest that the monetary motivational aspect of PDW also contributed to the 

predominance of subjects who showed high metacognitive efficiency (11 out of 17 

subjects).  
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