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Abstract 26 

The Earth’s biota is changing over time in complex ways. A critical challenge is to test whether 27 

specific biomes, taxa or types of species benefit or suffer in a time of accelerating global change. 28 

We analysed nearly 10 000 abundance time series from over 2000 vertebrate species part of the 29 

Living Planet Database. We integrated abundance data with information on geographic range, 30 

habitat preference, taxonomic and phylogenetic relationships, and IUCN Red List Categories and 31 

threats. We found that 15% of populations declined, 18% increased, and 67% showed no net 32 

changes over time. Against a backdrop of no biogeographic and phylogenetic patterning in 33 

population change, we uncovered a distinct taxonomic signal. Amphibians were the only taxa that 34 

experienced net declines in the analysed data, while birds, mammals and reptiles experienced 35 

net increases. Population trends were poorly captured by species’ rarity and global-scale threats. 36 

Incorporation of the full spectrum of population change will improve conservation efforts to protect 37 

global biodiversity.  38 
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Main text 39 

Ecosystem-level change is currently unfolding all around the globe and modifying the abundances 40 

of the different species forming Earth’s biota. As global change continues to accelerate1,2, there 41 

is a growing need for comprehensive assessments of the factors explaining the variation in 42 

ecological changes observed across taxa and biomes3. However, existing empirical studies of the 43 

predictors of the abundance of individuals of different species (hereafter, population change) 44 

mostly focus on either specific taxa4 or on population declines alone2,5. A critical research 45 

challenge is to disentangle the sources of heterogeneity across the full spectrum of population 46 

change for available population data. Recent compilations of long-term population time series, 47 

extensive occurrence, phylogenetic, habitat preference and IUCN Red List Category data6–8 48 

provide a unique opportunity to test which species- and population-level attributes explain 49 

variation in population trends and fluctuations among the world’s well-monitored vertebrate 50 

species. Population change is the underlying process leading to community reassembly9 and the 51 

resulting changes to biodiversity are vitally important for ecosystem functions and services10.  52 

 53 

The distributions of global change drivers such as land-use change, habitat change, pollution, 54 

invasion by non-native species and climate change show distinct clustering across space11–13. 55 

Spatial clustering has also been documented for biodiversity trends derived from assemblage 56 

time series, with the marine realm emerging as a hotspot for rapid changes in community 57 

composition14. Since assemblages are made up of populations, the biogeographic patterns at the 58 

assemblage level suggest similar clustering might occur at the population level as well15. In 59 

addition to geographic patterns in exposure to anthropogenic activities, species’ vulnerability can 60 

also influence population abundance over time16. Species traits can moderate population 61 

responses to natural and anthropogenic environmental change16, and across evolutionary time, 62 
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certain clades have been more vulnerable to declines and extinctions6–8. Building on known 63 

variability in species’ vulnerability16–18, we expected taxonomic and phylogenetic signals in 64 

population trends and fluctuations (e.g. greater declines, increases or fluctuations in abundance 65 

for specific taxa and among specific clades). Understanding which biomes, taxa and types of 66 

species are experiencing the most acute changes in abundance over time could provide key 67 

insights for conservation prioritization. 68 

 69 

Conservation efforts often focus on protecting rare species - those with restricted geographic 70 

extents, small population sizes or high habitat specificity - as they are assumed to be more likely 71 

to decline and ultimately go extinct19–21. Species with a smaller geographic range might have more 72 

concentrated exposure to environmental change, with less opportunities to find refugia or 73 

disperse, thus increasing the likelihood of declines1,9. As per population dynamics theory22,23 and 74 

Taylor’s power law24, species with small populations are more likely to undergo stochastic 75 

fluctuations that could lead to pronounced declines, local extinction and eventually global species 76 

extinction5. Small populations are also more likely to decline due to inbreeding, but note that there 77 

are also instances of naturally small and stable populations25,26. Allee effects, the relationship 78 

between individual fitness and population density, further increase the likelihood of declines due 79 

to lack of potential mates and low reproductive output once populations reach a critically low 80 

density27,28. Furthermore, environmental change might have disproportionately large effects on 81 

the populations of species with high habitat specificity, as for these species persistence and 82 

colonization of new areas are limited by strict habitat preferences1,29. The fossil record indicates 83 

that on millennial time scales, rare species are more likely to decline and ultimately go extinct30, 84 

but human actions have pushed Earth away from traditional geological trajectories31, and the 85 

relationships between rarity and population change across the planet have yet to be tested across 86 

the Anthropocene. 87 
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 88 

On a global scale, species are exposed to a variety of threats, among which habitat change, 89 

resource exploitation and hunting dominate as key predictors of extinction risk32. Species’ IUCN 90 

Red List Categories are often used in conservation prioritisation and more threatened species 91 

tend to be the focus of conservation initiatives33. At more local scales, there might be variation in 92 

how populations are changing over time in different locations, in isolation from their overall 93 

conservation status4,34. Testing population change across species’ IUCN Red List Category 94 

allows us to link contemporary changes in abundance with long-term probability of extinction35. 95 

Determining how local-scale population trends vary across species’ IUCN Red List Categories 96 

has practical applications for assessing species’ recovery which is useful for the proposed IUCN 97 

Green List of Species36. 98 

 99 

Here, we asked how the trends and fluctuations of vertebrate populations vary with biogeography, 100 

taxa, phylogenetic relationships and across species’ rarity metrics and IUCN Red List Categories 101 

and threat types from the species' IUCN Red List profiles. We tested the following predictions: 1) 102 

There will be biogeographic patterns in population trends and fluctuations across the planet’s 103 

realms and biomes, in line with particular regions of the world experiencing high rates of 104 

environmental change (e.g., tropical forests37). 2) Populations of rare species will be more likely 105 

to decline and fluctuate than the populations of common species. 3) Populations of species with 106 

a higher number of threats are more likely to decline and fluctuate than the populations of least 107 

concern species and those exposed to a lower number of threats. We quantified differences in 108 

population trends and fluctuations across latitudes and biomes within the freshwater, marine and 109 

terrestrial realms to test the presence of distinct hotspots of declines and increases. Additionally, 110 

we used data from the VertLife and BirdLife Databases6–8 to assess taxonomic and phylogenetic 111 

signals, in the patterns of population change to determine if specific groups experience 112 
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pronounced changes over time. We investigated whether the heterogeneity in population change 113 

globally is explained by differences in species’ rarity and IUCN Red List Categories. We measured 114 

rarity using three separate metrics – geographic range derived from GBIF records, mean 115 

population size (number of individuals that were recorded during monitoring for each population 116 

in the Living Planet Database) and habitat specificity derived from the species' IUCN Red List 117 

profiles. In a post-hoc analysis, we compiled threat types and number of threats derived from the 118 

species' IUCN Red List profiles to determine how threats influence local-scale population change. 119 

Using the largest currently available compilation of population records over time, we conducted a 120 

global synthesis of population trends and fluctuations to provide key empirical evidence for the 121 

management, conservation and prediction of ecological changes across the Anthropocene. 122 

 123 

We analysed 9286 vertebrate population time series from 2084 species part of the Living Planet 124 

Database (133 092 records) over the period between 1970 and 2014. These time series represent 125 

repeated monitoring surveys of the number of individuals in a given area (species’ abundance 126 

over time), hereafter called “populations”. We focus on two aspects of population change – overall 127 

changes in abundance over time (population trend, μ) and abundance variability over time 128 

(population fluctuations, σ2). In the first stage of our analyses, we quantified trends and 129 

fluctuations for each population using state-space models that account for observation error and 130 

random fluctuations38 (Figure S1). In the second stage, we modelled the population trend and 131 

fluctuation estimates from the first stage across latitude, realm, biome, taxa, rarity metrics, 132 

phylogenetic relatedness, species’ IUCN Red List Category and threat type using a Bayesian 133 

modelling framework (Figure S2). We included a species random intercept effect to account for 134 

the possible correlation between the trends of populations from the same species (see table Table 135 

S1 for sample sizes). As sensitivity analyses, we additionally used variance weighting of the 136 

population trend estimates (μ) by the observation/measurement error around them (τ2) and 137 
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population trend estimates from linear model fits (slopes instead of μ) as the input variables in the 138 

second stage models, as well as several different fluctuations estimates. We also repeated our 139 

analyses on a single-country scale, using only populations within the United Kingdom, where 140 

monitoring efforts are particularly rigorous and extensive. All different analytical approaches 141 

yielded very similar results and are described in further detail in the methods.  142 

  143 

Results  144 

We found a broad spectrum of population trends across vertebrate populations within the Living 145 

Planet Database. Across the time series we analysed, 15% (1381 time series) of populations 146 

were declining, 18% (1656 time series) were increasing, and 67% (6249 time series) showed no 147 

net changes in abundance over time, in contrast to a null distribution derived from randomised 148 

data (Figure S6b). Trends were considered statistically different from no net change when the 149 

confidence intervals around the population trend estimates did not overlap zero. Our results were 150 

similar when we weighted population trends by the state-space model derived observation error 151 

(Figures 1-4 and Tables S2-3). 152 

 153 

Biogeographic patterns of population trends and fluctuations 154 

We found that globally, population increases, declines and fluctuations over time occurred across 155 

all latitudes and biomes within the freshwater, marine and terrestrial realms, with no strong 156 

biogeographic patterning and no specific hotspots of population declines (Figure 1, Table S2). 157 

Across realms, monitored vertebrate populations experienced net population increases 158 

(freshwater slope = 0.005, CI = 0.002 to 0.01; marine slope = 0.004, CI = 0.002 to 0.01; terrestrial 159 

slope = 0.003, CI = 0.001 to 0.005, Figure 1d-e). In the freshwater and terrestrial realms, there 160 

was a bimodal distribution of population trends, driven largely by terrestrial bird species showing 161 

small increases and decreases over time (Hartigans’ dip test, D = 0.04, p < 0.01). Across biomes, 162 
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populations in Mediterranean forests, montane grasslands, polar freshwaters, temperate 163 

wetlands, tropical forests and tropical coral biomes were more likely to increase, whereas 164 

populations from the remaining studied biomes experienced no net changes (Figure 1h, Table 165 

S2). Population fluctuations were less pronounced in the terrestrial realm (slope = 0.02, CI = 0.018 166 

to 0.021, Figure 1f-g), but those populations were also monitored for the longest duration across 167 

systems (average duration – 28 years for terrestrial, 18 years for marine and 21 years for 168 

freshwater populations, Figure S1, Table S2). 169 
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 170 

Figure 1. Population declines, increases and fluctuations over time occur across all 171 

latitudes and biomes within the freshwater, marine and terrestrial realms. Results include 172 

9286 populations from 2084 species. The lack of biogeographic patterning in vertebrate 173 

population trends was also apparent on a UK scale (Figure S6 and Table S2). The numbers in 174 
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the legend for plots d-g and on the x axis in plot c show the sample sizes for realms and biomes, 175 

respectively. The μ values of population trend (plots a-b, d-e, h) and the σ2 values of population 176 

fluctuation (plots c, f-g) were derived from state-space model fits of changes in abundance over 177 

the monitoring duration for each population. Plots d and f show the density distribution of 178 

population trends across realms, the raw values (points) and boxplots with the mean, first and 179 

third quartiles and boxplot whiskers that indicate the distance that covers 1.5 times the 180 

interquartile range. Plots e, g and h show the effect sizes and the 95% credible intervals of 181 

population trends (e, h) across realms and biomes, and fluctuations across realms (g). For 182 

variation in fluctuations across biomes, see SI Figure S9. The three estimates for each 183 

realm/system in plots e and h refer to different analytical approaches: population trends calculated 184 

using linear models (circles), state-space models (μ, triangles), and population trends (μ) 185 

weighted by τ2, the observation error estimate from the state-space models (squares). The five 186 

estimates in plot g refer to different analytical approaches, where the response variables in the 187 

models were: 1) the standard error around the slope estimates of the linear model fits of 188 

abundance versus year (circles), 2) half of the 95% confidence interval around the μ value of 189 

population change (triangles), 3) half of the 95% confidence interval around μ weighted by τ2, (full 190 

squares), 4) the process noise (σ2) from the state-space models, and 5) the standard deviation of 191 

the raw data for each population time series (empty squares). Effect sizes were standardized by 192 

dividing the effect size by the standard deviation of the corresponding input data. The process 193 

noise is the total variance around the population trend minus the variance attributed to observation 194 

error. Error bars in plots e, g and h show 95% credible intervals. See Table S2 for model outputs. 195 

 196 

Taxonomic and phylogenetic patterns of population trends and fluctuations 197 

We found taxonomic, but not phylogenetic patterns, in population trends and fluctuations over 198 

time among nearly 10 000 populations from over 2000 vertebrate species, with amphibians 199 
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emerging as the taxa experiencing pronounced declines (Figure 2, Table S2). Amphibians 200 

experienced net declines over time (slope = -0.01, CI = -0.02 to -0.005), whereas birds, mammals 201 

and reptiles experienced net increases (slope = 0.004, CI = 0.003 to 0.01; slope = 0.01, CI = 0.01 202 

to 0.01; slope = 0.02, CI = 0.01 to 0.02), with birds having a bimodal trend distribution indicating 203 

greater numbers of increasing and decreasing trends (Hartigans’ dip test, D = 0.04, p < 0.01, 204 

Figure 1a, see Figures S6, S7 and S13). Bony fish population trends were centred on zero (slope 205 

= -0.001, CI = -0.004 to 0.002, Figure 1a-b) and sharks and rays showed net declines, but the 206 

credible intervals overlapped zero (slope = -0.01, CI = -0.02 to 0.01). Fluctuations were most 207 

common for amphibian populations (slope = 0.04, CI = 0.036 to 0.049, Figure 2d), which were 208 

monitored for the shortest time period on average (11 years, Figure S1, Table S2). We did not 209 

detect finer scale species-level phylogenetic clustering of population change (both trends and 210 

fluctuations) within amphibian, bird and reptile classes (Figures 2 and S16, Table S4). Similarly, 211 

species identity within amphibian, bird and reptile classes did not explain variation in population 212 

trends or fluctuations (Figures 2 and S16, Table S4). There were no distinct clusters of specific 213 

clades that were more likely undergo increases, decreases or fluctuations in population 214 

abundance (Figure 2). 215 

 216 
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 217 

Figure 2. Population trends and fluctuations varied more among, rather than within, taxa, 218 

with amphibians being the only group showing pronounced declines over time. There were 219 

no distinct phylogenetic patterns in population trends and fluctuations (plots e-j). For details on 220 

phylogenetic models, see methods. Grey colour in the heatmap in plot h shows species for which 221 

no population trend data were available. The numbers in the legend for plots a-d show sample 222 

size for each taxon. The μ values of population trend (plots a-b, e-g) and the σ2 values of 223 
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population fluctuation (plots c-d, h-j) were derived from state-space model fits of changes in 224 

abundance over the monitoring duration for each population. Plots a and c show the density 225 

distribution of population trends across taxa, the raw values (points) and boxplots with the mean, 226 

first and third quartiles and boxplot whiskers that indicate the distance that covers 1.5 times the 227 

interquartile range. Plots b and d show the effect sizes and the 95% credible intervals of 228 

population trends (b) and fluctuations (d) across the five studied taxa. Effect sizes (plots b and d) 229 

were standardized by dividing the effect size by the standard deviation of the corresponding input 230 

data. Error bars in plots b and d show 95% credible intervals. See Figure 1 caption for further 231 

details on effect sizes and Tables S2 and S4 for model outputs.  232 

 233 

Population trends and fluctuations across rarity metrics, IUCN Red List Categories and 234 

threats 235 

Species-level metrics, such as rarity and global IUCN Red List Category, did not explain the 236 

heterogeneity in trends of monitored populations in the Living Planet Database. Both rare and 237 

common species experienced declines, increases and fluctuations in population abundance over 238 

time (Figures 3 and 4). Across these time series, species with smaller ranges, smaller population 239 

sizes, or narrower habitat specificity (i.e., rare species) were not more prone to population 240 

declines than common species (Figure 3, Table S2). Populations that experienced more 241 

fluctuations had smaller mean population sizes on average (slope = -0.001, CI = -0.001 to -0.001, 242 

Figure 3f). We found increasing, decreasing and stable populations across all IUCN Red List 243 

Categories (Figure 4a). For example, a population of the Least concern species red deer (Cervus 244 

elaphus) in Canada declined by 68% over seven years going from 606 to 194 individuals and a 245 

population of the critically endangered Hawksbill sea turtle (Eretmochelys imbricate) from 246 

Barbados increased by 269% over seven years going from 89 to 328 individuals. We found more 247 

fluctuations (Least concern: slope = 0.022, CI = 0.021 to 0.023; Critically endangered: slope = 248 
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0.035, CI = 0.028 to 0.041), but not more population declines, with increasing IUCN Red List 249 

Category (Figure 4, Table S2). Populations from species with a higher number of threats from the 250 

species' IUCN Red List profiles did not experience greater declines when compared to those 251 

categorised with a smaller number of threats (Figure 4f). There were no distinct signatures of 252 

threats from the species' IUCN Red List profiles that were associated with predominantly declining 253 

local trends of monitored populations (Figure 4e) and there were increasing, decreasing and 254 

stable trends across all threat types. 255 

 256 

 257 

Figure 3. Rarity metrics do not explain heterogeneity in local population trends, and both 258 

rare and common species experienced declines and increases over time, whereas smaller 259 

populations fluctuated more over time. Numbers on plots show sample size for each metric. 260 

Rarity metrics were calculated for all species for which information was available and cover all 261 

taxa represented in the Living Planet Database, with the exception of geographic range, which 262 

refers to the global range of only bird and mammal species in the global Living Planet Database 263 

(plots a-e). The μ values of population trend (plots a-d) and the σ2 values of population fluctuation 264 
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(plots e-h) were derived from state-space model fits of changes in abundance over the monitoring 265 

duration for each population. Plots d and h show the effect sizes and the 95% credible intervals 266 

of three rarity metrics on population trends (d) and fluctuations (h). Effect sizes (plots d and h) 267 

were standardized by dividing the effect size by the standard deviation of the corresponding input 268 

data. Error bars in plots d and h show 95% credible intervals. Lines on a-c and e-g show model 269 

fits and 95% credible intervals. See Figure 1 caption for further details on effect sizes and Table 270 

S2 for model outputs.  271 

 272 

 273 

Figure 4. On local scales, there are increasing, decreasing and stable populations across 274 

the full spectrum of the globally-determined species’ IUCN Red List Category and 275 

anthropogenic threat type from the species' IUCN Red List profiles. Numbers in the legend 276 

for plots a-d and in plots e-f show sample size for each metric. Plots a and c show the density 277 

distribution of population trends across Red List status, the raw values (points) and boxplots with 278 

the mean, first and third quartiles and boxplot whiskers that indicate the distance that covers 1.5 279 
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times the interquartile range. Plots b and d show the effect sizes and the 95% credible intervals 280 

of population trends (b) and fluctuations (d) across Red List status categories. The μ values of 281 

population trend (plots a, e-f) and the σ2 values of population fluctuation (plots c) were derived 282 

from state-space model fits of changes in abundance over the monitoring duration for each 283 

population. For the relationships between type and number of threats and population fluctuations, 284 

see Figure S19. Plots b and d show the effect sizes and the 95% credible intervals for population 285 

trends (b) and fluctuations (d) across IUCN Red List Categories. Effect sizes (plots b and d) were 286 

standardized by dividing the effect size by the standard deviation of the corresponding input data. 287 

Error bars in plots b and d show 95% credible intervals. Plot e shows the distributions of 288 

population trends across different threats that the species face globally, with the central 289 

tendencies of all distributions overlapping with zero. Lines in plot f show model fit and 95% 290 

credible intervals, where “number of threats” refers to the number of different threats that each 291 

species, whose populations are locally monitored, are exposed to on a global scale. See Figure 292 

1 caption for further details on effect sizes, Methods for details on deriving the number and types 293 

of threats and Table S2 for model outputs. 294 

 295 

Discussion 296 

Taken together, our analysis of nearly 10 000 vertebrate population time series using a state-297 

space modelling approach demonstrated ubiquitous alterations in vertebrate abundance over 298 

time across all biomes on Earth. We revealed that population change includes both increasing 299 

and decreasing populations and spans a wide spectrum of magnitudes, and while anthropogenic 300 

impacts have accelerated in recent decades, our results highlight that vertebrate species span a 301 

wide spectrum of population change across variation in the number and types of threats to which 302 

species might be exposed. Against a backdrop of no biogeographic patterning of population 303 

trends and fluctuations (Figure 1), we uncovered distinct taxonomic signals, with amphibians 304 
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representing the only taxa that exhibited pronounced net declines, while birds, mammals and 305 

reptiles on average became more abundant over time (Figure 2). Within amphibian, bird and 306 

reptile taxa, there was no distinct phylogenetic clustering of closely-related species experiencing 307 

similar population trends or fluctuations (Figure 2). We found that both rare and common species 308 

experienced the full spectrum of population change, from declines to no net changes and 309 

increases. Species’ geographic range, mean population size and habitat specificity did not explain 310 

variation in population trends, but species with smaller population sizes were nevertheless more 311 

likely to fluctuate, potentially increasing their extinction risk (Figure 3). There was no consistent 312 

pattern of greater population declines with increasing IUCN Red List Category (Figure 4). On a 313 

global scale, the vertebrate species in the Living Planet Database are exposed to a variety of 314 

threats according to the species' IUCN Red List profiles, but on more local scales, none of the 315 

threats were characterized by predominantly declining populations (Figure 4), testifying to the 316 

diverse ways in which populations are likely responding to threats across the Anthropocene. 317 

 318 

Contrary to our initial predictions, we did not find a distinct geographic patterning of population 319 

change around the world, nor a consistent trend of increasing declines in population abundance 320 

with increasing IUCN Red List Category (Figures 1 and 4). Similar lack of biogeographic signal 321 

has been documented in regional studies of population change from the Netherlands34 and in 322 

temperate North America and Europe39. Coarsely represented biogeographic regions and global-323 

scale species’ IUCN Red List Categories and threat types might not capture the drivers acting in 324 

the locations of the specific populations we studied32,40–42. Furthermore, the same driver can have 325 

opposing effects on population abundance at different sites43. A lack of biome-specific directional 326 

trends in population change, despite a spatial clustering of human pressure around the world12, 327 

can also arise due to differences in species traits and vulnerability to environmental change within 328 

biomes16–18. Accounting for divergent responses of species to global change is key when 329 
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translating global policy, such as the upcoming post-2020 planetary biodiversity strategy44, into 330 

conservation actions implemented on scales much finer than biogeographic realms.  331 

 332 

Our results highlight variation in population change among taxa, with amphibians emerging as 333 

the taxa experiencing the most pronounced declines in the Living Planet Database. The remaining 334 

taxa showed either stable or increasing net changes in abundance over time (Figure 2). Such 335 

taxonomic patterns could be driven by different taxon-specific factors including reproductive 336 

strategy, trophic level, generation time and life history traits45,46. For amphibians, population 337 

declines have been linked to the spread of a fungal disease (chytrid fungus, Batrachochytrium 338 

dendrobatidis), facilitated by global warming47, as well as habitat loss and Allee effects in small 339 

populations48. Within bird, amphibian and reptile taxa, phylogenetic relatedness and species-level 340 

taxonomic classification did not explain variation in population trends and fluctuations. A similar 341 

lack of phylogenetic dependencies has been detected for the population growth rates of migratory 342 

birds49. While phylogenetic clustering might be lacking in contemporary trends, there is evidence 343 

that phylogenetic relatedness predicts extinction, a process occurring over much longer time 344 

scales6,7. Over shorter time periods, species’ traits and ability to persist, reproduce and disperse 345 

in ever changing landscapes might be influencing local abundance16, which has created a mix of 346 

winners and losers across all taxa15. We demonstrate ongoing alterations in the abundances of 347 

six vertebrate taxa which over time, may lead to shifts in community composition and ultimately 348 

alter ecosystem function as some species become locally extinct whilst others become more 349 

abundant9,10. 350 

 351 

Surprisingly, our results indicate that despite decades of conservation focus on rare species19–21, 352 

both rare and common species in the Living Planet Database experienced declines and increases 353 

in population abundance over the period of monitoring. The lack of rarity effects on population 354 
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trends can be explained by theory and empirical evidence demonstrating that small populations 355 

do not necessarily have a higher likelihood of experiencing declines and some species are able 356 

to persist in small, but stable populations50. The power of rarity metrics to predict population trends 357 

could also be mediated by whether species are naturally rare, or have become rare due to external 358 

drivers in recent years51,52. Naturally rare species might be more likely to persist over time, 359 

whereas species that have more recently become rare might be more likely to decline in response 360 

to environmental disturbance. Furthermore, the timing and magnitude of past and current 361 

disturbance events influence population trends43,53 and there could be temporal lags in both 362 

positive and negative abundance changes over time43,54. However, disentangling the processes 363 

leading to rarity over time remains challenging, and across the 2084 species we studied, there 364 

are likely cases of both natural and human-driven vertebrate population change. We found that 365 

species with small populations were, nevertheless, more likely to fluctuate (Figure 3f), which may 366 

increase their probability of extinction, a process that could play out over longer time-scales than 367 

found for most population monitoring time series to date22,23,55. Our results highlight that rarity 368 

metrics alone do not capture the heterogeneity in local population change over time, and common 369 

species should not be overlooked in conservation prioritization decisions as they could be as likely 370 

to decrease in abundance over time as rare species. 371 

 372 

Our finding that declines are not universal, or even predominant, for vertebrate populations 373 

monitored for longer than five years in the Living Planet Database contrasts with reports of an 374 

overall decline in the Living Planet Index56, a weighted summary of population change across all 375 

abundance time series in the Living Planet Database. Consistent with our results, the Living 376 

Planet Reports56–58 also document that the numbers of declining and increasing species are 377 

similar across this database, but the Living Planet Reports document a larger magnitude of 378 

population declines relative to increases. The calculation of the Living Planet Index involves 379 
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differential weighting of population trends derived using logged abundance data, geometric 380 

means and generalized additive models, which could explain the discrepancies between our study 381 

findings and those of the Living Planet Reports59. The Living Planet Index is hierarchically 382 

averaged from populations to species, taxa and realm and is also weighted by the estimated and 383 

relative number of species within biomes, which influences the direction and magnitude of the 384 

Living Planet Index59,60. In contrast, our analysis explores the heterogeneity in local trends and 385 

fluctuations of monitored species from the raw population abundance data, and thus, we did not 386 

use an index with weightings and we did not aggregate population trends to a species-level. 387 

Rather than summarising trends with an index, our goal was to explain variability in abundance 388 

over time across better monitored vertebrates around the world. We detected net population 389 

declines at local scales over time only in the amphibian taxa, in contrast with the overall negative 390 

trend of the aggregate weightings of the Living Planet Index56. We caution that distilling the 391 

heterogeneity of local population change at sites around the world into a simple metric may hide 392 

diverging trends at local scales, where we found both increases and declines among species.  393 

 394 

The magnitude and strength of population trends could be influenced by how long populations 395 

are monitored61, as well as whether monitoring began during a population peak or a population 396 

trough62. While overall, we did not find a strong effect of duration on the detected population trends 397 

in the Living Planet Database (Figures S7-8, Table S2), our findings demonstrated that for 398 

reptiles, time series with longer durations are more likely to capture declines (Table S2). We also 399 

found a bimodal pattern of weak population increases and decreases in time series with longer 400 

durations particularly for terrestrial bird species with the monitoring unit being an index (Figure 401 

S13). Seven key challenges have been identified when drawing robust inference about population 402 

trends over time: establishment of the historical baseline, representativeness of site selection, 403 

robustness of time series trend estimation, mitigation of detection bias effects, and ability to 404 
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account for potential artefacts of density dependence, phenological shifts and scale‐dependence 405 

in extrapolation from sample abundance to population‐level inference63. New methods to 406 

rigorously account for different sources of uncertainty in time series monitoring will allow the 407 

analyses of available population data to better inform global estimates of net trends across taxa. 408 

 409 

The strength of documented relationships between population dynamics and global change could 410 

be influenced by how well-monitored populations capture the full range of variation in driver 411 

intensity. To attribute population trends and fluctuations to site-specific anthropogenic drivers, we 412 

need to go beyond previous studies that have focused exclusively on declines and extinctions5,64. 413 

We require attribution analyses that statistically test the links between observed changes in 414 

ecosystems and the experienced extrinsic pressure3. Through attribution studies that encompass 415 

the full spectrum of population change, including positive, negative and stable trends43,65, we can 416 

better understand the variety of ways in which climate change, land-use change and other drivers 417 

are altering global biodiversity. For a subset of the bird populations in the Living Planet Database, 418 

greater warming of temperatures corresponded with a higher likelihood of population declines 419 

over time65, which could be caused by worldwide and cross-biome phenological mismatches 420 

between breeding and resource availability66. Across terrestrial species represented in the Living 421 

Planet Database, peak forest loss was associated with accelerations in both population increases 422 

and decreases in the period following habitat alteration43. There is evidence from the marine realm 423 

that when species are simultaneously exposed to multiple drivers, the resulting biodiversity effects 424 

are antagonistic and could produce patterns of no net biodiversity changes67. The next critical 425 

step is to test how multiple global change drivers together12 influence populations across both 426 

terrestrial and marine realms and determine how these relationships are mediated by species’ 427 

traits and vulnerability to extrinsic threats68.  428 

 429 
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In summary, our global analysis reveals the ubiquitous nature of population change over time 430 

across monitored vertebrate species. We show that in a time of accelerating global change, there 431 

were as many increases as there are decreases in population abundance over time. Among this 432 

heterogeneity, we uncovered pronounced declines in amphibian abundance as well as net 433 

abundance increases for birds, mammals and reptiles in the Living Planet Database. The 434 

taxonomic patterning of population change highlights amphibians as a conservation priority, 435 

especially as their declines can have further cascading effects across trophic levels within 436 

ecosystems. Rarity metrics, specifically geographic range, mean population size and habitat 437 

specificity, as well as IUCN Red List Categories, threat types and numbers, and evolutionary 438 

history, did not explain the heterogeneity in population change across the data analysed in this 439 

study. Our findings caution the use of rarity metrics as a proxy for future global population trends, 440 

but suggest that such metrics, in particular mean population size, are nevertheless indicators of 441 

population fluctuations, which might ultimately be related to increased species extinction risk. On 442 

a global scale, both rare and common vertebrate species face numerous threats due to resource 443 

exploitation and habitat change. As human activities continue to accelerate, the next key step is 444 

to determine how intrinsic factors, such as rarity attributes and threats, interact with extrinsic 445 

global change drivers and together influence the persistence of Earth’s biota. Capturing the 446 

complexity of species’ population dynamics will improve our estimates of shifts in community 447 

composition and ultimately the impact of altered ecosystem functions and services around the 448 

world. 449 

 450 

Methods 451 

All data syntheses, visualization and statistical analyses were conducted using R version 3.5.169. 452 

For conceptual diagrams of our workflow, see Figures S1 and S2. 453 

 454 
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Data sources 455 

Population data 456 

To quantify vertebrate population change (trends and fluctuations), we extracted the abundance 457 

data for 9286 population time series from 2084 species from the publicly available Living Planet 458 

Database70 (http://www.livingplanetindex.org/data_portal) that covered the period between 1970 459 

and 2014 (Table S1). These time series represent repeated monitoring surveys of the number of 460 

individuals in a given area, hereafter called “populations”. Monitoring duration differed among 461 

populations, with a mean duration of 23.9 years and a mean sampling frequency of 23.3 time 462 

points (Figure S1, see SI Figures S7 and S8 for effects of monitoring duration on detected trends). 463 

In the Living Planet database, 17.9% of populations were sampled annually or in rare cases 464 

multiple times per year. The time series we analysed include vertebrate species that span a large 465 

variation in age, generation times and other demographic-rate processes. For example, from 466 

other work that we have conducted, we have found that when generation time data were available 467 

(approximately 50.0% or 484 out of 968 bird species, and 15.6% or 48 out of 306 mammal 468 

species), the mean bird generation time is 5.0 years (min = 3.4 years, max = 14.3 years) and the 469 

mean mammal generation time is 8.3 years (min = 0.3 years, max = 25 years)43. Thus, we believe 470 

that most vertebrate time series within the LPD capture multiple generations. 471 

 472 

In our analysis, we omitted populations which had less than five time points of monitoring data, 473 

as previous studies of similar population time series to the ones we have analysed have found 474 

that shorter time series might not capture directional trends in abundance61. Populations were 475 

monitored using different metrics of abundance (e.g., population indices vs. number of 476 

individuals). Before analysis, we scaled the abundance of each population to a common 477 
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magnitude between zero and one to analyse within-population relationships to prevent conflating 478 

within-population relationships and between-population relationships71. Scaling the abundance 479 

data allowed us to explore trends among populations relative to the variation experienced across 480 

each time series.  481 

 482 

Phylogenetic data 483 

We obtained phylogenies for amphibian species from https://vertlife.org4, for bird species from 484 

https://birdtree.org8, and for reptile species from https://vertlife.org6. For each of the three classes 485 

(Amphibia, Aves and Reptilia), we downloaded 100 trees and randomly chose 10 for analysis (30 486 

trees in total). Species-level phylogenies for the classes Actinopterygii and Mammalia have not 487 

yet been resolved with high confidence72,73. 488 

 489 

Rarity metrics, IUCN Red List Categories and threat types 490 

We defined rarity following a simplified version of the ‘seven forms of rarity’ model74, and thus 491 

consider rarity to be the state in which species exist when they have a small geographic range, 492 

low population size, or narrow habitat specificity. We combined publicly available data from three 493 

sources: 1) population records for vertebrate species from the Living Planet Database to calculate 494 

mean population size, 2) occurrence data from the Global Biodiversity Information Facility75 495 

(https://www.gbif.org) and range data from BirdLife76 (http://datazone.birdlife.org) to estimate 496 

geographic range size, and 3) habitat specificity and Red List Category data for each species 497 

from the International Union for Conservation77 (https://www.iucnredlist.org). The populations in 498 

the Living Planet Database70 do not include species that have gone extinct on a global scale. We 499 

extracted the number and types of threats that each species is exposed to globally from their 500 

respective species' IUCN Red List profiles77. 501 

 502 
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Quantifying population trends and fluctuations over time 503 

In the first stage of our analysis, we used state-space models that model abundance (scaled to a 504 

common magnitude between zero and one) over time to calculate the amount of overall 505 

abundance change experienced by each population (μ, 38,78). State-space models account for 506 

process noise (σ2) and observation error (τ2) and thus deliver robust estimates of population 507 

change when working with large datasets where records were collected using different 508 

approaches, such as the Living Planet Database39,79,80. Previous studies have found that not 509 

accounting for process noise and measurement error could lead to over-estimation of population 510 

declines81, but in our analyses, we found that population trends derived from state-space models 511 

were similar to those derived from linear models. Positive μ values indicate population increase 512 

and negative μ values indicate population decline. State-space models partition the variance in 513 

abundance estimates into estimated process noise (σ2) and observation or measurement error 514 

(τ2) and population trends (μ):  515 

𝑋𝑡 = 𝑋𝑡 − 1 + 	𝜇 + 	𝜀𝑡, (1) 516 

where Xt and Xt-1 are the scaled (observed) abundance estimates (between 0 and 1) in the present 517 

and past year, with process noise represented by εt ~ gaussian(0, σ2). We included measurement 518 

error following: 519 

𝑌𝑡 = 𝑋𝑡 + 𝐹𝑡, 520 

where Yt is the estimate of the true (unobserved) population abundance with measurement error: 521 

Ft ~ gaussian(0, τ2). 522 

We substituted the estimate of population abundance (Yt) into equation 1: 523 

𝑌𝑡 = 𝑋𝑡 − 1 + 	𝜇 + 	𝜀𝑡 + 𝐹𝑡. 524 

Given 𝑋𝑡 − 1 = 𝑌𝑡 − 1 − 𝐹𝑡 − 1, then: 525 

𝑌𝑡	 = 𝑌𝑡 − 1	 + 𝜇 + 𝜀𝑡	 + 𝐹𝑡	 − 𝐹𝑡 − 1. 526 
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For comparisons of different approaches to modelling population change, see Comparison of 527 

modelling approaches section. 528 

 529 

Quantifying rarity metrics 530 

We tested how population change varied across rarity metrics – geographic range, mean 531 

population size and habitat specificity – on two different but complementary scales. In the main 532 

text, we presented the results of our global scale analyses, whereas in the SI, we included the 533 

results when using only populations from the UK – a country with high monitoring intensity, Thus, 534 

we quantified rarity metrics for species monitoring globally and in the UK.  535 

 536 

Geographic range 537 

To estimate geographic range for bird species monitored globally, we extracted the area of 538 

occurrence in km2 for all bird species in the Living Planet Database that had records in the BirdLife 539 

Data Zone76. For mammal species’ geographic range, we used the PanTHERIA database82 540 

(http://esapubs.org/archive/ecol/E090/184/). To estimate geographic range for bony fish, birds, 541 

amphibians, mammals and reptiles monitored in the UK (see Table S5 for species list), we 542 

calculated a km2 occurrence area based on species occurrence data from GBIF75. Extracting and 543 

filtering GBIF data and calculating range was computationally-intensive and occurrence data 544 

availability was lower for certain species. Thus, we did not estimate geographic range from GBIF 545 

data for all species part of the Living Planet Database. Instead, we focused on analysing range 546 

effects for birds and mammals globally, as they are a very well-studied taxon and for species 547 

monitored in the UK, a country with intensive and detailed biodiversity monitoring of vertebrate 548 

species. We did not use IUCN range maps, as they were not available for all of our study species, 549 

and previous studies using GBIF occurrences to estimate range have found a positive correlation 550 

between GBIF-derived and IUCN-derived geographic ranges83.  551 
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 552 

For the geographic ranges of species monitored in the UK, we calculated range extent using a 553 

minimal convex hull approach based on GBIF75 occurrence data. We filtered the GBIF data to 554 

remove invalid records and outliers using the CoordinateCleaner package84. We excluded records 555 

with no decimal places in the decimal latitude or longitude values, with equal latitude or longitude, 556 

within a one-degree radius of the GBIF headquarters in Copenhagen, within 0.0001 degrees of 557 

various biodiversity institutions and within 0.1 degrees of capital cities. For each species, we 558 

excluded the lower 0.02 and upper 0.98 quantile intervals of the latitude and longitude records to 559 

account for outlier points that are records from zoos or other non-wild populations. We drew a 560 

convex hull to most parsimoniously encompass all remaining occurrence records using the chull 561 

function, and we calculated the area of the resulting polygon using areaPolygon from the 562 

geosphere package . 563 

 564 

Mean size of monitored populations 565 

We calculated mean size of the monitored population, referred to as population size, across the 566 

monitoring duration using the raw abundance data, and we excluded populations which were not 567 

monitored using population counts (i.e., we excluded indexes).  568 

 569 

Habitat specificity 570 

To create an index of habitat specificity, we extracted the number of distinct habitats a species 571 

occupies based on the IUCN habitat category for each species’ profile, accessed through the 572 

package rredlist86. We also quantified habitat specificity by surveying the number of breeding and 573 

non-breeding habitats for each species from its online IUCN species profile (the ‘habitat and 574 

ecology’ section). The two approaches yielded similar results (Figure S3, Table S2, key for the 575 
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profiling method is presented in Table S4). We obtained global IUCN Red List Categories and 576 

threat types for all study species through the IUCN Red List profiles77. 577 

 578 

Testing the sources of variation in population trends and fluctuations 579 

In the second stage of our analyses, we modelled the trend and fluctuation estimates from the 580 

first stage across latitude, realm, biome, taxa, rarity metrics, phylogenetic relatedness, species’ 581 

IUCN Red List Category and threat type using a Bayesian modelling framework through the 582 

package MCMCglmm87. We included a species random intercept effect in the Bayesian models 583 

to account for the possible correlation between the trends of populations from the same species 584 

(see Table S1 for sample sizes). The models ran for 120 000 iterations with a thinning factor of 585 

ten and a burn-in period of 20 000 iterations. We assessed model convergence by visually 586 

examining trace plots. We used weakly informative priors for all coefficients (an inverse Wishart 587 

prior for the variances and a normal prior for the fixed effects): 588 

Pr(μ) ∼ N(0, 108) 589 

Pr(σ2) ∼ Inverse Wishart (V = 0, nu = 0) 590 

 591 

Population trends and fluctuations across latitude, biomes, realms and taxa  592 

To investigate the geographic and taxonomic patterns of population trends and fluctuations, we 593 

modelled population trends (μ) and population fluctuations (σ2), derived from the first stage of our 594 

analyses (state-space models), as a function of 1) latitude, 2) realm (freshwater, marine, 595 

terrestrial), 3) biome (as defined by the ‘biome’ category in the Living Planet Database, e.g., 596 

‘temperate broadleaf forest’88 and 4) taxa (Actinopterygii, bony fish; Elasmobranchii, sharks and 597 

rays; Amphibia, amphibians; Aves, birds; Mammalia, mammals; Reptilia, reptiles). We used 598 
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separate models for each variable, resulting in four models testing the sources of variation in 599 

trends and four additional models focusing on fluctuations. Each categorical model from this 600 

second stage of our analyses was fitted with a zero intercept to allow us to determine if net 601 

population trends differed from zero for each of the categories under investigation. The model 602 

structures for all models with a categorical fixed effect were identical with the exception of the 603 

identity of the fixed effect, and below we describe the taxa model: 604 

𝜇𝑖, 𝑗, 𝑘 = 𝛽0 + 𝛽0𝑗 + 	𝛽1 ∗ 𝑡𝑎𝑥𝑎𝑖, 𝑗, 𝑘, 605 

𝑦𝑖, 𝑗, 𝑘	 ∼ 	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑖, 𝑗, 𝑘, σ2), 606 

where taxai,j,k is the taxa of the ith time series from the jth species; β0 and β1 are the global 607 

intercept (in categorical models, β0 = 1) and the slope estimate for the categorical taxa effect (fixed 608 

effect), β0j is the species-level departure from β0 (species-level random effect); yi,j,k is the 609 

estimate for change in population abundance for the ith population time series from the jth species 610 

from the kth taxa. 611 

 612 

Population trends and fluctuations across amphibian, bird and reptile phylogenies 613 

To determine if there is a phylogenetic signal in the patterning of population change within 614 

amphibian, bird and reptile taxa, we modelled population trends (μ) and fluctuations (σ2) across 615 

phylogenetic and species-level taxonomic relatedness. We conducted one model per taxa per 616 

population change variable – trends or fluctuations using Bayesian linear mixed effects models 617 

using the package MCMCglmm87. We included phylogeny and taxa as random effects. The 618 

models did not include fixed effects. We assessed the magnitude of the random effects 619 

(phylogeny and species) by inspecting their posterior distributions, with a distribution pushed up 620 

against zero indicating lack of effect, since these distributions are always bounded by zero and 621 

have only positive values. We used parameter-expanded priors, with a variance-covariance 622 
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structure that allows the slopes of population trend (the mu values from the first stage analysis 623 

using state-space models) to covary for each random effect. The prior and model structure were 624 

as follows: 625 

Pr(μ) ∼ N(0, 108), 626 

Pr(σ2) ∼ Inverse Wishart (V = 1, nu = 1), 627 

𝜇𝑖, 𝑘,𝑚 = 𝛽0 + 𝛽0𝑘 + 	𝛽0𝑚, 628 

𝑦𝑖, 𝑘,𝑚	 ∼ 	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑖, 𝑘,𝑚, σ2), 629 

where β0 is the global intercept (β0 = 1), β0l is the phylogeny-level departure from β0 (phylogeny 630 

random effect); yi,k,m is the estimate for change in population abundance for the ith population 631 

time series for the kth species with the mth phylogenetic distance. 632 

 633 

To account for phylogenetic uncertainty, for each class, we ran ten models with identical 634 

structures but based on different randomly selected phylogenetic trees. We report the mean 635 

estimates and their range for each class.  636 

 637 

Population trends and fluctuations across rarity metrics  638 

To test the influence of rarity metrics (geographic range, mean population size and habitat 639 

specificity) on variation in population trends and fluctuations, we modelled population trends (μ) 640 

and fluctuations (σ2) across all rarity metrics. We conducted one Bayesian linear models per rarity 641 

metric per model per scale (for both global and UK analyses) per population change variable – 642 

trends or fluctuations. The response variable was population trend (μ values from state-space 643 

models) or population fluctuation (σ2 values from state-space models), and the fixed effects were 644 
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geographic range (log transformed), mean population size (log transformed) and habitat 645 

specificity (number of distinct habitats occupied). The model structures were identical across the 646 

different rarity metrics and below we outline the equations for population trends and geographic 647 

range: 648 

𝜇𝑖, 𝑘, 𝑛 = 𝛽0 + 𝛽0𝑘 + 𝛽1 ∗ 𝑔𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐	𝑟𝑎𝑛𝑔𝑒𝑖, 𝑘, 𝑛,	649 

𝑦𝑖, 𝑘, 𝑛	 ∼ 	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑖, 𝑘, 𝑛, σ2), 650 

where geographic rangei,k,n is the logged geographic range of the kth species in the ith time 651 

series; β0 and β1 are the global intercept and slope estimate for the geographic range effect (fixed 652 

effect), β0j is the species-level departure from β0 (species-level random effect); yi,k,n is the 653 

estimate for change in population abundance for the ith population time series from the jth species 654 

with the nth geographic range. 655 

 656 

Population trends across species’ IUCN Red List Categories  657 

To investigate the relationship between population change and species’ Red List Categories, we 658 

modelled population trends (μ) and fluctuations (σ2) as a function of Red List Category 659 

(categorical variable). We conducted one Bayesian linear model per population change metric 660 

per scale (for both global and UK analyses). To test variation in population trends and fluctuations 661 

across the types and number of threats to which species are exposed, we conducted a post-hoc 662 

analysis of trends and fluctuations across threat type (categorical effect) and number of threats 663 

that each species is exposed to across its range (in separate models). The model structures were 664 

identical to those presented above, except for the fixed effect which was a categorical IUCN Red 665 

List Category variable.  666 

 667 
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The analytical workflow of our analyses is summarized in conceptual diagrams (Figures S1 and 668 

S2) and all code is available on GitHub ((https://github.com/gndaskalova/PopChangeRarity, DOI 669 

10.5281/zenodo.3817207). 670 

Data limitations 671 

Taxonomic and geographic gaps 672 

Our analysis is based on 9286 monitored populations from 2084 species from the largest currently 673 

available public database of population time series, the Living Planet Database70. Nevertheless, 674 

the data are characterized by both taxonomic and geographic gaps that can influence our findings. 675 

For example, there are very few population records from the Amazon and Siberia (Figure 1b) – 676 

two regions currently undergoing rapid environmental changes due to land-use change and 677 

climate change respectively. Additionally, birds represent 63% of all population time series in the 678 

Living Planet Database, whilst taxa such as amphibians and sharks where we find declines are 679 

included with fewer records (Figures 2 and S5). On a larger scale, the Living Planet Database 680 

under-represents populations outside of Europe and North America and over-represents common 681 

and well-studied species60. We found that for the populations and species represented by current 682 

monitoring, rarity does not explain variation in population trends, but we note that the relationship 683 

between population change and rarity metrics could differ for highly endemic specialist species 684 

or species different to the ones included in the Living Planet Database89. As ongoing and future 685 

monitoring begins to fill in the taxonomic and geographic gaps in existing datasets, we will be able 686 

to re-assess and test the generality of the patterns of population change across biomes, taxa, 687 

phylogenies, species traits and threats. 688 

 689 

Monitoring extent and survey techniques 690 
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The Living Planet Database combines population time series where survey methods were 691 

consistent within time series but varied among time series. Thus, among populations, abundance 692 

was measured using different units and over varying spatial extents. There are no estimates of 693 

error around the raw population abundance values available and detection probability likely varies 694 

among species. Thus, it is challenging to make informed decisions about baseline uncertainty in 695 

abundance estimates without prior information. We used state-space models to estimate trends 696 

and fluctuations to account for these limitations as this modelling framework is particularly 697 

appropriate for analyses of data collected using disparate methods39,79,80. Another approach to 698 

partially account for observer error that has been applied to the analysis of population trends is 699 

the use of occupancy models34. Because the precise coordinates of the polygons where the 700 

individual populations were monitored are not available, we were not able to test for the potential 701 

confounding effect of monitoring extent, but our sensitivity analysis indicated that survey units do 702 

not explain variation in the detected trends (Figure S13).  703 

 704 

Temporal gaps 705 

The population time series we studied cover the period between 1970 and 2014, with both 706 

duration of monitoring and the frequency of surveys varying across time series. We omitted 707 

populations which had less than five time points of monitoring data, as previous studies of similar 708 

population time series data have found that shorter time series are less likely to capture directional 709 

trends in abundance61. In a separate analysis, we found significant lags in population change 710 

following disturbances (forest loss) and that population monitoring often begins decades to 711 

centuries after peak forest loss has occurred at a given site43. The findings of this related 712 

Daskalova et al. (in press) study suggest that the temporal span of the population monitoring does 713 

not always capture the period of intense environmental change and lags suggest that there might 714 

be abundance changes that have not yet manifested themselves. Thus, the detected trends and 715 
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the baseline across which trends are compared might be influenced by when monitoring takes 716 

place and at what temporal frequency. Challenges of analysing time series data are present 717 

across not just the Living Planet Database that we analysed, but more broadly across population 718 

data in general, including invertebrate datasets63. Nevertheless, the Living Planet Database 719 

represents the most comprehensive compilation of vertebrate temporal population records to 720 

date, allowing for the most comprehensive analyses possible into the patterns of vertebrate trends 721 

and fluctuations around the world. 722 

 723 

Time series with low variation 724 

Eighty populations (<1% of the 9286 time series) had very little variance (see Table S7 for full 725 

references for those studies). The majority of those studies are for bird species and come from 726 

the North American breeding bird survey with a measurement unit of an index90.  We have also 727 

observed some time series that appear to show logistic relationships with little natural variance 728 

(e.g., time series 468, 10193, 17803, see Table S8 for full references). Inspecting the raw data 729 

showed that some populations have abundances which follow an almost perfect linear or 730 

logarithmic increase over time, as could be the case for modelled, versus raw field data. We 731 

provide the references for these studies and cannot definitely attribute the low variance to a 732 

particular cause across all studies. Some of these studies are reported in units that are an index 733 

which may not capture variation in the same way as other raw units of population data. Some of 734 

these time series may represent modelled population data based on demographic information 735 

rather than only direct observations of populations (e.g., time series 135591). We chose to not 736 

remove studies that may not be raw observation time series based on visual inspection of trends 737 

to avoid introducing bias against populations with naturally low variation into our analysis.  738 
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 739 

Clustering in the values of population trends and fluctuations 740 

We found a clustering of population trend and fluctuations values in some parts of the population 741 

change spectrum. For example, we found two peaks – in small increases and in small decreases 742 

over time – which were most prevalent in terrestrial bird studies and species which were monitored 743 

using an index (Figure 2, Figure S13). Overall 11.4% of time series had trend values between 744 

0.02 and 0.03 and 11.6% of time series had trend values between -0.03 and -0.02. There was 745 

also a similar, but smaller, clustering around trends of 0.25 and -0.25. All reported population 746 

trends are from models that converged successfully, and visual inspection indicated to us that the 747 

μ values are appropriate estimates for the individual time series (Figure S7e). We investigated 748 

the population time series where the value of the population trends over time were estimated to 749 

be the same value and found that they came from a variety of taxa, locations and survey methods 750 

(Figure S7e). We hypothesise that there might be a publication bias against publishing no net 751 

change studies, which could explain the trough in μ values of around zero in long-term studies. 752 

The clustering of values for some time series may sometimes be associated with the same time 753 

series that also have low variance (Figure S7e, see discussion above). With the information 754 

available in the Living Planet Database metadata, we cannot fully explain the clustering in 755 

population trends. We advocate for more detailed metadata in future versions of the Living planet 756 

database to allow researchers to filter the database appropriately for individual analyses. 757 

 758 

Challenges in estimating geographic range 759 

Estimating geographic range across taxa, and specifically for species that are not birds or 760 

mammals, remains challenging due to data limitations. We used a static measure of geographic 761 



Page 36 of 49 
 

range, which does not account for changes in species distributions over time. Furthermore, 762 

species could naturally have a small range or the small range size could be due to historic habitat 763 

loss92. The UK populations included in the Living Planet Database are predominantly from species 764 

with wide geographic ranges (Table S3), and our global scale analysis of the relationship between 765 

population change and geographic range is based on mammal and bird data. As data availability 766 

improves, future research will allow us to test the effect of geographic range on the trends of other 767 

taxa, such as amphibians and sharks. 768 

 769 

Sensitivity analyses 770 

Trends relative to null expectation 771 

We tested whether the number of increasing and decreasing populations trends differed from a 772 

null expectation using a data randomisation approach (Figure S6b). We used linear models to 773 

estimate trends in the data and randomized data with identical structure to the Living Planet 774 

Database. We found that there were over 10 times more population declines and increases in the 775 

real data relative to the randomised data (2.29% of trends were declining and 2.30% were 776 

increasing in the randomised data, versus 28.9% and 32.5% of time series which had significant 777 

negative and positive slopes in the real data, respectively). 778 

 779 

Monitoring duration, sampling methods and site-selection bias 780 

To assess the influence of monitoring duration on population trends, we used a Bayesian linear 781 

model. We modelled population trend (mu) as a function of monitoring duration (years) for each 782 

population, fitted with a zero intercept, as when duration is zero, no population change has 783 

occurred. Monitoring duration was weakly positively related to vertebrate population trends, with 784 

slightly greater population increases found for longer duration studies (Figure S7, Table S2). 785 

There was a similar weakly positive effect of number of time points within time series (Table S2). 786 
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Additionally, we tested if monitoring duration influenced the relationships between population 787 

trends across systems, and population trends across taxa. We found that duration did not 788 

influence those relationships, with the exception of reptiles, where declines were more frequent 789 

as monitoring duration increased (Table S2). Variation in population trends was not explained by 790 

sampling method across the five most commonly used abundance metrics (population index, 791 

number of individuals, number of pairs, number of nests and population estimate, Figure S13). 792 

Following Fournier et al. 201962, we tested the time series that we analysed for site-selection bias. 793 

Removing the first five survey points reduces the bias stemming from starting population surveys 794 

at points when individual density is high, whereas removing the last five years reduces the bias 795 

of starting surveys when species are very rare. The distribution of population trend values across 796 

time series was not sensitive to the omission of the first five (left-truncation) or the last five years 797 

(right-truncation) of population records (Figure S6a). Additionally, we used a data randomisation 798 

approach to compare the distribution of trends from the real data to a null distribution and found 799 

different patterns (Figure S6b). Overall, our sensitivity analyses suggest that our findings are 800 

robust to the potential confounding effects of differences in monitoring duration, sampling method 801 

and site-selection. 802 

 803 

Comparison of modelling approaches 804 

We conducted the following supplementary analyses: in the second-stage Bayesian models 805 

estimating population trends across systems, biomes, taxa and rarity metrics, 1) we weighed mu 806 

values by the square of tau, the observation error estimate derived from the state-space models38, 807 

2) we used slopes of linear model fits of abundance (scaled at the population level, centered on 808 

zero and with a standard deviation of one)71 instead of the mu estimates from state-space models, 809 

3) we modelled the standard error around the slope values of the linear models, the error around 810 

mu (half of the 95% confidence interval) and the standard deviation of the raw population data for 811 
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each time series as additional metrics of population variability. To allow comparison, we scaled 812 

the different metrics of population variability to be centred on zero and with a standard deviation 813 

of one before they were used as response variables in models. All different analytical approaches 814 

yielded very similar results (see main text and Figures S6, S7 and S10, Table S2). 815 

 816 

Data availability 817 

Code for all data processing and analyses and summary datasets are publicly available on 818 

GitHub93. Raw data are available from the following websites: for population time series70 - 819 

http://www.livingplanetindex.org/data_portal, GBIF occurrences75 - https://www.gbif.org, bird 820 

geographic ranges76 - http://datazone.birdlife.org, mammal geographic ranges82 - 821 

http://esapubs.org/archive/ecol/E090/184/, species’ habitat preferences, threat types and IUCN 822 

Red List Categories77 - https://www.iucnredlist.org, and phylogenies6–8 - https://vertlife.org and 823 

https://birdtree.org. 824 
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