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Abstract 24 

Background. fMRI provides spatial resolution that is unmatched by any non-invasive 25 

neuroimaging technique. Its temporal dynamics however are typically neglected due to the 26 

sluggishness of the hemodynamic based fMRI signal.  27 

New Methods. We present temporal multivariate pattern analysis (tMVPA), a method for 28 

investigating the temporal evolution of neural representations in fMRI data, computed using 29 

pairs of single-trial BOLD time-courses, leveraging both spatial and temporal components of the 30 

fMRI signal. We implemented an expanding sliding window approach that allows identifying the 31 

time-window of an effect.  32 

Results. We demonstrate that tMVPA can successfully detect condition-specific multivariate 33 

modulations over time, in the absence of univariate differences. Using Monte Carlo simulations 34 

and synthetic data, we quantified family-wise error rate (FWER) and statistical power. Both at 35 

the group and at the single subject level, FWER was either at or significantly below 5%. For the 36 

group level, we reached the desired power with 18 subjects and 12 trials; for the single subject 37 

scenario, 14 trials were required to achieve comparable power.  38 

Comparison with existing methods. tMVPA adds a temporal multivariate dimension to the tools 39 

available for fMRI analysis, enabling investigations of the evolution of neural representations 40 

over time. Moreover, tMVPA permits performing single subject inferential statistics by 41 

considering single-trial distribution.  42 

Conclusion. The growing interest in fMRI temporal dynamics, motivated by recent evidence 43 

suggesting that the BOLD signal carries temporal information at a finer scale than previously 44 

thought, advocates the need for analytical tools, such as the tMVPA approach proposed here, 45 

tailored to investigating BOLD temporal information.  46 

 47 
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Introduction 49 

Over the past quarter century, functional Magnetic Resonance Imaging (fMRI) has 50 

become one of the most powerful non-invasive tools for investigating human neural processing. 51 

By exploiting the coupling between oxygenated blood flow and neuronal firing (Goense & 52 

Logothetis, 2008; Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, 2001; S 53 

Ogawa et al., 1993), fMRI infers cortical activity by measuring changes in the Blood Oxygen 54 

Level Dependent (BOLD) signal (Goense & Logothetis, 2008; Logothetis, N. K., Pauls, J., 55 

Augath, M., Trinath, T., & Oeltermann, 2001; S Ogawa et al., 1993). The sluggish nature of the 56 

hemodynamic based BOLD signal (requiring several seconds to peak following stimulus 57 

presentation(Boynton et al., 1996; S Ogawa et al., 1993)), paired with the high spatial precision 58 

of fMRI recordings, has resulted in a focus on BOLD spatial information in most applications, 59 

neglecting any temporal dynamics. More recently, developments in fMRI pulse sequences, 60 

allowing significant increases in temporal resolution (Feinberg, D. A., Moeller, S., Smith, S. M., 61 

Auerbach, E., Ramanna, S., Glasser, M. F., ... & Yacoub, 2010; Moeller et al., 2010) that have 62 

been thus far primarily exploited to improve statistical power in fMRI analysis, offer the 63 

possibility of resolving temporal dynamics that were previously elusive.  64 

 While focus has been primarily on the spatial domain of the BOLD signal, this is not to 65 

say that the fMRI temporal domain has been entirely ignored. For example, several attempts 66 

have been made to target local stimulus-distinct characteristics of the BOLD time series. 67 

Specifically, these investigations have sought to understand stimulus-specific temporal effects in 68 

the context of decision making (Mcguire & Kable, 2015), auditory (Baumann et al., 2010), and 69 

semantic and visual processing (Avossa et al., 2003; Bailey et al., 2013; Formisano et al., 2002; 70 

Gentile et al., 2017; Siero, J.C., Petridou, N., Hoogduin, H., Luijten, P.R., Ramsey, 2011; Vu, 71 

A.T., Phillips, J.S., Kay, K., Phillips, M.E., Johnson, M.R., Shinkareva, S.V., Tubridy, S., Millin, 72 

R., Grossman, M., Gureckis, T., Bhattacharyya, R., Yacoub, 2016). In conjunction, animal 73 
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studies have sought to understand the precise relationship between the BOLD temporal 74 

dynamics and the neural activity elicited from such domains (Silva & Koretsky, 2002; Yen et al., 75 

2018). Additionally, it is worth noting that a variety of both high complexity and real world stimuli 76 

operate at the temporal resolution available to fMRI. For example, in the visual domain, a 77 

number of visual illusions are characterized by their slowly transforming, bi-stable nature (Ernst 78 

& Bu, 2004; Schrater et al., 2004). Furthermore, biological motion (Johansson, 1973; Maier et 79 

al., 2008; Troje, 2002) and other motion-based complex stimuli (Ball & Sekuler, 1982; Shadlen 80 

& Newsome, 1998) are typically presented over large temporal windows. BOLD latency 81 

measurements have likewise been shown to be relevant in the auditory and multisensory 82 

domain, where, for example, phonemic boundaries shift across temporal gradients when 83 

presented in isolation (Lee et al., 2012) or within specific visual contexts (Gribble, 1996). 84 

Moreover, analyses of neural responses to any long duration stimuli, such as film or real-world 85 

dynamic scenes, necessitate a technique that directly measures the temporal evolution of the 86 

BOLD signal.  87 

 Importantly, a number of studies have more recently suggested that fMRI may carry 88 

neuronal information at a much faster temporal scale than previously (Lewis et al., 2016; Siero, 89 

J.C., Petridou, N., Hoogduin, H., Luijten, P.R., Ramsey, 2011; Vu, A.T., Phillips, J.S., Kay, K., 90 

Phillips, M.E., Johnson, M.R., Shinkareva, S.V., Tubridy, S., Millin, R., Grossman, M., Gureckis, 91 

T., Bhattacharyya, R., Yacoub, 2016). Siero and colleagues (Siero, J.C., Petridou, N., 92 

Hoogduin, H., Luijten, P.R., Ramsey, 2011), for example, indicated that neurovascular coupling 93 

takes place on a shorter timescale than had been previously reported in the human brain. 94 

Moreover, Lewis and colleagues (Lewis et al., 2016) have suggested that, due to recent 95 

advances in MR hardware and software as well as analytical strategies, fMRI can measure 96 

neural oscillations up to 1 Hz. Additionally, Vu and colleagues (Vu, A.T., Phillips, J.S., Kay, K., 97 

Phillips, M.E., Johnson, M.R., Shinkareva, S.V., Tubridy, S., Millin, R., Grossman, M., Gureckis, 98 

T., Bhattacharyya, R., Yacoub, 2016) successfully demonstrated that with the use of multivoxel 99 
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pattern analysis (MVPA), it is possible to extract word timing information with fast TRs (i.e. 500 100 

ms). Along the same lines, in an visual illusion experiment, Edwards and colleagues (Edwards 101 

et al., 2017) showed that as little as 32 ms difference in stimulus presentation is reliably 102 

detected in the BOLD time-course. 103 

 These observations highlight the growing interest in the temporal dynamics of the BOLD 104 

signal. However, to fully exploit the potential neuro-temporal information carried by the BOLD 105 

time-course, MR hardware and software (e.g. pulse sequences) developments have to be 106 

paired with suitable analytical tools that maximize the sensitivity to BOLD temporal information. 107 

Thus far, the majority of temporal analyses have only examined univariate temporal differences 108 

between stimuli or stimulus conditions (i.e., latency differences on average amplitude). While 109 

such data is useful for understanding the propagation of neural activation throughout the brain 110 

as a function of time, it fails to capture the representational content as conveyed by multivariate 111 

patterns as well as how these representations transform over time. Multivariate approaches to 112 

analyzing fMRI data offer a different, albeit complementary outlook on the neural information 113 

carried by the BOLD signal (Kriegeskorte & Bandettini, 2007). It has been suggested that 114 

multivoxel pattern analysis, or MVPA (Haxby et al., 2001; Kamitani & Tong, 2005), has the 115 

ability to optimally probe neuronal information existing in voxel populations with conventional 116 

fMRI methods (Carlson et al., 1999; Cox & Savoy, 2003; Haxby et al., 2005; Kriegeskorte & 117 

Bandettini, 2007; Strother et al., 2002). Even at 3T, where voxels traditionally measure 2-3 mm 118 

isotropic resolutions, MVPA can successfully extract neural information – such as orientation 119 

preference (Kamitani & Tong, 2005) – which exists at a much finer spatial scale than the 120 

resolution of single voxels. These approaches are believed to increase the sensitivity to such 121 

fine-grained information present in lower resolution images by exploiting the micro-feature-122 

selective biases of single voxels that stem from the variability of the distribution of cortical 123 

columns or their vascular architecture (Beeck, 2010; Freeman et al., 2011; Kamitani & Tong, 124 

2005; D J Mannion et al., 2009; Damien J Mannion et al., 2015; Sasaki et al., 2006).  125 
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 Inspired by the demonstrated fine sensitivity of MVPA to finer scale spatial information, 126 

here we apply multivariate analysis to BOLD time-courses in order to maximize sensitivity to 127 

neuro-temporal information. Capitalizing on the growing interest surrounding the temporal 128 

domain of fMRI, we propose a method that captures the temporal characteristics of the BOLD 129 

signal at the multi-voxel pattern level. The method, first introduced in Ramon et al. (Ramon et 130 

al., 2015), consists of probing single trial events to investigate how the associated 131 

representational pattern of activity (Kriegeskorte et al., 2008; Kriegeskorte & Kievit, 2013) for a 132 

given stimulus evolves over time. This enables the creation of Single Trial Representational 133 

Dissimilarity Matrices (stRDMs), which allows assessing the temporal evolution of the 134 

(dis)similarity of these activity patterns.  135 

As previously shown on real data (Ramon et al., 2015), here we demonstrate on 136 

synthetically generated data that our approach can detect multivariate differences over time in 137 

the absence of univariate amplitude modulations across conditions. As such, our temporal 138 

multivoxel pattern analysis (tMVPA) offers a different albeit potentially complementary approach 139 

to examining BOLD temporal dynamics. We further present a sliding window statistical analysis 140 

of these stRDMs that allows quantifying the precise temporal window displaying the effect of 141 

interest. We estimate the power and sensitivity of the technique using Monte Carlo simulations. 142 

  143 
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Methods 144 

Procedure and MRI acquisition  145 

Note that the acquired data were used as a starting point to generate synthetic data with 146 

realistic signal properties. Thus, within the context of this paper, the original purpose and the 147 

hypothesis of the experiment are irrelevant.  148 

 149 

Participants. 20 healthy right-handed subjects (age range: 18-31) participated in the study. Of 150 

these, 10 were WC (5 females; mean age, 24) and 10 were EA (4 females; mean age, 22). 151 

Three participants (1 WC 2 EA) were excluded from the analysis due to excessive motion during 152 

scanning (details below). All subjects had normal, or corrected vision and provided written 153 

informed consent. The ethical committee of College of Medical, Veterinary and Life Sciences at 154 

the University of Glasgow approved the experiments. 155 

 156 

Stimuli and procedure. The experimental procedure consisted of a standard block design face 157 

localizer and a simple slow event-related face paradigm. All visual stimuli used for the face 158 

localizer consisted of front-view gray scale photographs depicting 20 different faces (5 identities 159 

× 2 genders × 2 races, taken from the JACFEE database (Matsumoto, D., & Ekman, 1988)), 160 

houses (Husk et al., 2007) and textures of noise, respectively. Noise texture stimuli were created 161 

by combining the mean amplitude spectrum across faces and houses with random phase 162 

spectra sampled from a Gaussian distribution, thereby lending them to contain the same 163 

amplitude spectrum as the face and house stimuli. For the main slow event-related experiment, 164 

a different set of images used in previous studies (Michel et al., 2006) was utilized which also 165 

consisted of 20 front-view gray scale photographs of WC and EA (again 5 identities × 2 genders 166 
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× 2 races). All images subtended approximately 3.75 × 4.25° of visual angle. Face stimuli were 167 

cropped to remove external features; none had particularly distinctive features and male faces 168 

were clean-shaven. The stimuli were centered in a 52 x 52 cm background of average 169 

luminance (25.4 cd/m2, 23.5-30.1). All images were equated in terms of luminance, contrast and 170 

spatial frequency content by taking the average of the amplitude spectra of all stimuli and 171 

combining that average spectrum with the original phase spectra to reconstruct each individual 172 

stimulus. The root mean square contrast (i.e. the standard deviation of the pixel intensities) was 173 

also kept constant across stimuli. Stimuli were projected from the back of the scanner on a 174 

round screen situated in the scanner tunnel and occupying the whole width of the tunnel (i.e. 60 175 

cm of diameter). Participants viewed the images through a mirror placed on the head coil. 176 

All participants completed two runs of the block design face localizer fMRI experiment to 177 

define the areas responding preferentially to faces (~12 min/run), and three runs of the main 178 

event-related design experiment aimed at measuring the neural activity elicited by individual SR 179 

and OR identities (~16 min/run).  180 

 181 

Face localizer. Face localizer runs involved presentation of blocks of WC or EA faces, houses 182 

and noise textures. Each run began with presentation of black fixation cross displayed on grey 183 

background for 20 sec and consisted of 24 randomly presented blocks of images. Each block (6 184 

blocks/category; separated by a 12 sec fixation) involved presentation of 10 different stimuli 185 

randomly presented for 800 ms, separated by a 400 ms ISI. To minimize attentional confounds 186 

on the BOLD signal related to the race of the stimuli, we implemented an orthogonal task. 187 

Participants were instructed to respond to red or green stimuli which (10% of the images, i.e. 188 

one red or green stimulus per block), by pressing a button on a response pad held in their right 189 

hand. 190 

 191 
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Event-related experiment. Each run of the event-related face experiment began and ended with 192 

20 seconds fixation and consisted of 80 events (10 identities per race x 2 races x 4 repetitions 193 

per identity). Face stimuli were displayed for 850 ms followed by a 11.15 sec fixation cross; 194 

participants were instructed to maintain fixation on a central fixation cross throughout each 12 195 

sec event. As for the face localizer scans, an orthogonal task was employed with participants 196 

responding to a change in the color of the fixation cross (red or green, for 200-1200 ms at a 197 

random time within an event, before reverting to its original color) by pressing a button. 198 

 199 

MRI acquisition protocol. All MRI data were collected with a 3-T Siemens Tim Trio System with a 200 

32-channel head coil and integrated parallel imaging techniques (IPAT factor: 2). Functional MRI 201 

volumes were collected using an echo-planar acquisition sequence [localizer runs: repetition 202 

time (TR), 2000 ms; echo time (TE), 30 ms; field of view (FOV), 210 x 210 mm; flip angle (FA), 203 

77°; 36 axial slices; spatial resolution, 3mm isotropic voxels; event-related runs: TR, 1000 ms; 204 

TE, 30 ms; FOV, 210 x 210 mm; FA, 62°; 16–18 axial slices; spatial resolution, 3 × 3 × 4 mm 205 

voxels]. Slices were positioned to maximize coverage of occipito-temporal regions. T1-weighted 206 

anatomical images were obtained using an MPRAGE sequence (192 slices; TR, 1900 ms; FOV, 207 

256 x 256 mm; flip angle, 9°; TE, 2.52 ms; spatial resolution, 1 mm isotropic voxels). For 208 

participants who were re-scanned due to movement artifacts, separate anatomical scans were 209 

recorded for each scanning session to facilitate realignment of the functional data. 210 

 211 

MRI data preprocessing. fMRI data were preprocessed in native space using BrainVoyager QX 212 

version 2.1 (Brain Innovation). Functional images were slice-scan time corrected, three-213 

dimensional motion corrected with reference to the functional volume taken just before the 214 

anatomical scan, high-pass filtered using a Fourier basis set of three cycles per run (including 215 

linear trend). Images were co-registered with the anatomical set and spatially normalized into 216 
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Talairach space (Talairach, J., & Tournoux, 1988); images from localizer runs were spatially 217 

smoothed with a full-width at half-maximum of 4 mm.  218 

 219 

Functional ROI definition. Five functional ROIs were identified from the localizer runs. Individual 220 

participants bilateral FFA, bilateral OFA, and right AIT were identified by performing F-tests on 221 

all the voxels in the brain and determining the peak voxel of the activation clusters identified by 222 

the contrast (WC + AC) faces > (Houses +Noise) located in the bilateral fusiform and inferior 223 

occipital gyrus, respectively. To control for type I errors, False positive Discovery Rate (FDR) 224 

was implemented as a multiple comparison correction. The significance threshold was set to 225 

q<.05 for all ROIs and participants. The corresponding masks for these ROIs were exported into 226 

MATLAB (MathWorks) for subsequent analyses. Across all participants from both groups (WC 227 

and EA), we identified 86 ROIs in total. While bilateral FFA and right OFA were identified in all 228 

participants, a few subjects did not have a clear definition of left OFA and right AIT. The average 229 

number of voxel across all ROIs was 47.9 (std: 16.7).   230 

 231 

BOLD percent signal change and epochs definition. For each voxel, we computed BOLD 232 

percent signal change by dividing the raw BOLD time course by its mean. We then defined the 233 

epochs of interest as those portions of the whole BOLD time series ranging from 1 TR prior to 234 

14 TRs after stimulus onset. For each single trial we extracted these 15-TR long time-courses 235 

from all the voxels within each ROI of every subject. These BOLD percent signal change 236 

epochs were saved as a matrix that we used to generate synthetic data using Monte Carlo 237 

simulations (details below).  238 

 239 
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Temporal multivariate pattern analysis (tMVPA) 240 

In this paper, we developed a novel multivariate temporal analysis for the BOLD time-241 

course, inspired by representational similarity analysis (Kriegeskorte & Kievit, 2013). This 242 

approach assesses the temporal evolution of the degree of dissimilarity of neural 243 

representations - defined as the pattern of BOLD response across all voxels - elicited by 244 

different time points (Ramon et al., 2015). It involves computing Single Trial Representational 245 

Dissimilarity matrices (stRDMs) within a selected ROI between two conditions (e.g., baseline 246 

and treatment condition). We compute stRDMs on the BOLD percent signal change 247 

independently per subject and condition as follows: for each condition, we iteratively correlated 248 

(Pearson r) the values of all the voxels at one time point with all the remaining ones amongst 249 

the epochs of two different trials (e.g. the time course elicited by trial 1 and that elicited by trial 250 

2) and calculated the correlation distance (i.e. 1-r; see Figure 1). This procedure was repeated 251 

across all possible trial pair combinations. The resulting matrices were fisher-z transformed to 252 

render the skewed Pearson-r distribution approximately normal. We then averaged (10% 253 

trimmed mean) the single trial correlational distance matrices to obtain the single subject 254 

stRDM.  255 

 256 

 257 
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Figure 1. The temporal multivariate pattern analysis (tMVPA) procedure. Cool colors indicate 258 

higher similarity between neural representations elicited by any 2 given time points. Warm 259 

colors indicate higher dissimilarity or distinctiveness amongst neural representations. Each row 260 

and column represents a single TR.  261 

  262 

While all subsequent statistical analyses were performed on the fisher-z transformed 263 

values, for visualization purposes (figure 1) and to render the values within the stRDMs 264 

interpretable, we performed the inverse of the fisher-z normalization on the final averaged 265 

stRDM.  266 

To test for statistically significant differences between the stRDMs from different 267 

conditions (i.e., baseline and treatment condition), we implemented an expanding sliding 268 

window approach. We started by computing a simple subtraction between the stRDMs of the 2 269 

conditions of interest. We then centered a 2x2 pixel window (figure 2) on the first point of the 270 

diagonal of the matrix. We then computed the 10% trimmed mean across the values within the 271 

window. We divided this mean by the standard error of the values within the window. Given that 272 

the standard error is a function of the variance weighted by the number of data points, this 273 

procedure was implemented to partially account for the relative difference in terms of data 274 

points and variance across windows of different sizes. We then performed (1-alpha) bootstrap 275 

confidence interval (CIs) analyses by sampling subjects with replacement 500 times. 276 

Importantly, we adjusted the threshold (alpha above) for determining high and low CIs as a 277 

function of the total number of windows to account for multiple comparison problems (i.e. 278 

Bonferroni correction). The analysis was repeated on increasingly larger windows that 279 

expanded by 1 pixel in each direction (when applicable), centered on each point of the diagonal 280 

(figure 2). Differences between conditions were inferred when the btCIs did not include zero. 281 

This expanding sliding window approach allows investigating whether potential differences 282 
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across stRDMs encompass a few time points or whether these are sustained over a larger time 283 

window. 284 

285 
Figure 2: Expanding Sliding Window approach. The panel on the right depicts the starting 286 

window size and location, while the panel on the right represents this same window “expanding” 287 

(as indicated by the thin pairs of white arrows) and sliding (as indicated by the larger arrow). 288 

 289 

Synthetic Data Generation and Validation  290 

The following sections describe the procedure we implemented for the synthetic data 291 

generation process and the approach we adopted to estimate the power and Family-wise error 292 

rate (FWER) of our proposed multivariate temporal analysis. In brief, we employed Monte Carlo 293 

(MC) simulation on synthetic data to estimate the FWER and the statistical power of our 294 

proposed method, explicitly manipulating a number of parameters (see the Manipulated 295 

parameters paragraph). In order to reproduce realistic fMRI noise and signal properties, we 296 

generated synthetic data starting from the BOLD signal recorded during the event-related 297 

experiment. We created a complete dataset comprised of 2 conditions (i.e. Baseline and 298 

Treatment). Importantly, we generated Baseline and Treatment conditions under 2 distinct 299 
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scenarios: 1) under H0 (i.e. no multivariate differences between conditions), thus being in the 300 

ideal context to measure our approach’s FWER, as any statistical difference detected by our 301 

approach would be a false positive; and 2) under H1 (i.e. artificially introducing multivariate 302 

pattern differences between conditions - see synthetic multivariate effect) to test our approach's 303 

power (see below for more details).  304 

 305 

Synthetic data generation. Starting from the single trial BOLD time course matrix (see the BOLD 306 

percent signal change and epochs definition paragraph), we extracted single trial epochs from 307 

one of the 20 conditions for one participant across one run and using just a single ROI. We 308 

saved the extracted BOLD values in a 3D Raw_singletrials_BOLD matrix with dimensions 309 

[number of trials * number of voxels * number of time points]. From the Raw_singletrials_BOLD 310 

matrix we calculated the mean and the variance across voxels, and then saved these 2 metrics 311 

in 1D vectors of size [number of time points]. We refer to these vectors, representing 312 

respectively the average HRF for a given ROI and the voxel-wise variance within that same 313 

ROI, as mu_BOLD(time point) and var_BOLD(time point). We then calculated the residual 314 

between the single trials epochs and their mean (across trials) for each voxel and time point, 315 

and then saved these values in a [number of trials * number of voxels * number of time points], 316 

a 3D matrix that we refer to as sigma_BOLD(trial, voxel, time point)).  317 

 318 

We repeated the procedure described above for all conditions, runs, ROIs, and subjects. 319 

The resulting mu_BOLD, var_BOLD, and sigma_BOLD were flattened and saved in 2 320 

dimensional matrices: E, V, and S. Note that the matrices E, V, and S have an equal numbers of 321 

columns, corresponding to the number of time points per epoch of interest (i.e. 15), but a 322 

different number of rows. For the matrices E and V, containing, respectively, the mean time 323 

courses across voxels and the variance across voxels, the number of rows was equal to 324 

[number of subjects * number of runs * number of conditions * number of ROIs]; while the 325 
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number of rows for matrix S, containing the single-trial residual for each voxel, was equal to 326 

[number of subjects * number of runs * number of conditions * number of ROIs * number of trials 327 

* number of voxels per ROI]. 328 

  329 

The raw BOLD signal was thus fully represented in matrices E, V, and S. To generate synthetic 330 

data for one subject we randomly sampled one row vector from E and V and generated a 2D 331 

[number of voxel * number of time points] matrix, representing the mean (across trials) time 332 

course for all voxels within a given ROI. We then injected the trials’ variation from their mean by 333 

randomly sampling from S (see below for details).  334 

 335 

In order to generate the Baseline and Treatment conditions, we implemented very 336 

similar, albeit slightly different procedures. The first step of the data generation process (step 0) 337 

was the same regardless of the generation goal. For each MC simulation, we began by 338 

randomly selecting a row vector e from matrix E, representing the group average time course for 339 

a hypothetical ROI.  340 

 341 

For the Baseline condition, independently per subject we generated a number of voxels (nv) 342 

* number of time points (ntp) * number of trials (ntrial) matrix MB, following the 9 step algorithm 343 

below: 344 

 345 

● Step 1, we randomly selected a row vector v from matrix V, and nv*ntrial rows vectors 346 

from matrix S to get sv. 347 

To have full control of the simulation study, we kept the variance across time points 348 

within a single voxel and a single trial constant by setting v_1 = v_2 = … = v_ntp = 349 

mean(v) and sv_1,i = sv_2,i = … = sv_ntp,i = mean(sv) for i ~ [1, nv].  350 

 351 
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● Step 2, we repeated nv copies of array e and transformed them into a nv*ntp matrix ev. 352 

 353 

● Step 3, we repeated nv copies of array v and transformed them into a nv*ntp matrix vv. 354 

 355 

● Step 4, we generated a nv*ntp matrix dv1 to represent the variance across voxel. Each 356 

element in dv1 was generated following one of 3 distributions: either Normal(mu=0, 357 

sd=1), Uniform(lower=-√3, upper=√3), or Exponential(lambda=1) - 1. These three 358 

distributions all have mean equal to 0 and variance equal to 1. 359 

 360 

● Step 5, the mean BOLD time course for each voxel Mp was generated following the 361 

equation: 362 

Mp = ev + dv1.*√vv 363 

 364 

Where ".*" indicates the element-wise multiplication. By doing this, Mp satisfies  365 

mean(Mp) = e and var(Mp) = v . Mp is an nv*ntp matrix representing the single voxel 366 

BOLD time course. 367 

 368 

● Step 6, we repeated ntrial copies of matrix Mp and transformed them into a nv*ntp*ntrial 369 

matrix MP. 370 

 371 

● Step 7, we reshaped the residual matrix sv into an nv*ntp*ntrial matrix and computed the 372 

variance across trials. The resulting nv*ntp matrix was then repeated and reshaped into 373 

an nv*ntp*ntrial matrix svt representing the single trials residuals for each voxel and 374 

timepoint. 375 

 376 
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● Step 8, we generated an nv*ntp*ntrial matrix dv2. Similar to dv1, each element in dv2 377 

followed one of 3 distributions: either Normal(mu=0, sd=1), Uniform(lower=-√3, 378 

upper=√3), or Exponential(lambda=1) - 1. dv2 represents the noise at the single trial 379 

level for each voxel. 380 

 381 

● Step 9, finally, we computed the single trials BOLD time course matrix MB following the 382 

equation: 383 

 MB = MP + dv2.*√svt 384 

 385 

Notice that the mean and variance across trials for MB satisfies mean(MB) = Mp and 386 

var(MB) = svt. 387 

  388 

These 9 steps were repeated for all subjects. 389 

 390 

Similar to the baseline conditions, we generated an nv*ntp*ntrial MT Treatment condition matrix 391 

for each subject following the same 9 steps.  392 

 393 

When no effect was introduced in the Treatment condition (i.e. FWER estimation, see 394 

below), the MT matrix creation began directly at step 7 (through to 9), starting from the same 395 

MP and sv generated for the Baseline condition using steps 1 to 6. Thus, the MT mean and 396 

variance across trials satisfies mean(MT) = Mp and var(MT) = svt.  397 

  398 

Synthetic multivariate effect. Our procedure to introduce multivariate differences between the 399 

baseline and treatment conditions consisted of rendering the voxel response for some selected 400 

time points in the treatment condition highly correlated across trials. To achieve this, we first 401 
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repeated steps 1 to 9 to generate matrix Mp’, containing the treatment condition mean BOLD 402 

time course across all trials for all voxels within a given ROI; MP’, containing the single trials 403 

BOLD time-course for all voxels within any given ROI; svt’, containing the residuals between 404 

the single trials and average across trials for each voxel, time-point, and trial; and MT’, 405 

containing the single trials’ BOLD time courses for all voxels within a given ROI. We therefore 406 

modulated k consecutive time points in matrix MT’ to introduce correlation in the synthetic signal 407 

by rotating the data matrix MT to reduce the multivariate distance across trials1. Independently 408 

for each of the k time points, we first repeated step 8 to generate a new independent and 409 

identically distributed (i.i.d.) noise matrix dv2'. We then computed the BOLD time course for the 410 

treatment condition MT following the equation:  411 

 412 

MT’[:, k, :] = MP’[:, k, :] +diag(√svt’[:, k, 1]) * L* dv2'[:, k, :],  413 

 414 

where L is the Cholesky factor of a correlation matrix randomly sampled from a LKJ correlation 415 

distribution (Lewandowski et al., 2009). Therefore, the variance across voxels for k-th time 416 

points of some selected voxels was identical:  417 

 418 

var(Mp’_t:t+k) = var(Mp_t:t+k) = v.  419 

 420 

Notice that the univariate pattern in Mp’ was kept constant: mean(Mp’) = e. Moreover, the mean 421 

and variance across trials for MT’ also satisfies mean(MT’) = Mp’ and var(MT’) = svt’. 422 

 423 

                                                
1 Note that correlational distance 1-r can be conceptualized as distance between 2 points in a 
multidimensional space. In the same vein, we can think of increase in correlation (and therefore decrease 
in correlational distance) between these 2 points as a rotation of axis of the the multidimensional space 
for point 1  
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The resulting data matrix MB and MT’ represented the full synthetic dataset for one 424 

subject. We repeated the above 9 steps to generate k (number of subject) MB and MT’ 425 

matrices. We therefore implemented our TMPVA analysis to test for multivariate differences 426 

between the treatment and baseline conditions. We repeated this MC simulation 1000 times for 427 

each combination of parameters (details below).  428 

 429 

 430 

Figure 3: Panel a) portrays an example of real BOLD percentage signal change (psc) time 431 

course for all voxels in a given ROI for a single subject. The grey line plots show the BOLD time 432 

course for each voxel, while red dashed line shows the average BOLD time course. Panels b) 433 

and c) depict the generated synthetic BOLD time course created using the same mean and 434 

variance of the real BOLD time course. Panel b) shows an example of the synthetic baseline 435 

condition - i.e. no multivariate (mv) effect; and Panel c) shows an example of a synthetic 436 

treatment condition where we introduced a mv effect (see the Synthetic multivariate effect 437 

paragraph) over time points 5-7. Grey line plots show single voxels, the red dashed line shows 438 

Real BOLD psc Synthetic data
(no mv effect)

Synthetic data
(with mv effect)

a) b) c)
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the average time course of the real signal, the blue line shows the average time course of the 439 

synthetic data. 440 

 441 

Manipulated parameters. In an attempt to maximally parameterize our validation procedure 442 

while keeping within the boundaries of reasonable computational demands, we manipulated the 443 

following 4 parameters: 1) number of trials per condition, 2) number of subjects per group, 3) 444 

number of time points at which the effect was introduced, and 4) the percentage of subjects (or 445 

trials for the single subject validation procedure) in which the effect was introduced (i.e. the 446 

target power).  447 

1. the number of trials varied across 4 different levels: 4, 8, 12, and 16. 448 

2. for the number of subjects, we tested 4 sample sizes: 6, 10, 14, 18 participants. 449 

3. while the multivariate effect always began at TR 5, the number of time points at which 450 

the effect was introduced varied across 4 different levels: 2, 3, 4, 5.  451 

4. the percentage of sample showing effect (i.e. power), varied across three different 452 

levels: 50%, 65%, and 80%. 453 

 454 

Additionally, the number of voxels (range [30, 60]) per simulated subject was 455 

randomized across all MC simulations. We thus ran independent MC simulations for all possible 456 

combinations of the different parameter levels. This parameterization of the MC simulation was 457 

implemented to evaluate the reliability and sensitivity of our method in different experimental 458 

contexts. Note that we introduced a multivariate effect for our power analysis at time point 7 (up 459 

to time point 11, depending on the number of manipulated time points). For the estimation of 460 

FWER, only number of trials and number of subjects were relevant parameters. For each 461 

unique parameter combination, we computed 95% bootstrap CI based on 500 bootstraps, and 462 

repeated this procedure 1000 times.  463 

 464 
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Importantly, we validated our tMVPA approach within two different settings: group 465 

analysis and single subject analysis. In the group analysis setting, to manipulate the target 466 

power we varied the percentage of subjects in which we introduced correlation across voxels 467 

(i.e. the synthetic multivariate effect). In the single subject validation setting, the target power 468 

was instead manipulated by varying the percentage of trials in which the multivariate pattern 469 

was introduced (i.e. 50%, 65% or 80% of the trials).  470 

 471 

FWER estimation. To estimate the FWER, we performed tMVPA analysis to test for multivariate 472 

differences between the time courses of the baseline and treatment conditions, prior to 473 

introducing correlation across voxels at selected time points. We thus counted the number of 474 

significant events detected by our approach. We repeated this procedure 1000 times. Since 475 

baseline and treatment conditions were created under H0 (i.e. no differences between them), 476 

significant differences detected by our approach were considered to be false positives (i.e. type 477 

II error). The FWER was thus computed as the total number of significant time windows divided 478 

by 1000 (i.e. the total number of MC simulation).  479 

  480 

Statistical power estimation. For statistical power estimation we, instead, generated 1000 481 

treatment conditions following a procedure similar to the generation of the baseline condition 482 

(i.e. steps 1 to 9 as described earlier). We additionally introduced multivariate differences 483 

between conditions (see Synthetic multivariate effect)  in a number of subjects by manipulating 484 

the pattern of voxels within a given ROI over some selected time points (see Manipulated 485 

parameters for more details). Importantly, no univariate differences (i.e. no differences between 486 

the time courses averaged across voxels - see figure 3 and 4) between the two conditions 487 

existed over these time points. The target power of the tMVPA approach was represented by 488 

the percentage of subjects for whom we introduced multivariate differences between conditions. 489 

For example, if we introduced correlation across voxels in 80% of the subjects, we expected the 490 
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tMVPA to report significant differences 80% of the time across all simulations where the effect 491 

was introduced. The statistical power of tMVPA was thus computed as the total number of 492 

significant time windows detected divided by the total number of MC simulations.   493 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2018. ; https://doi.org/10.1101/273110doi: bioRxiv preprint 

https://doi.org/10.1101/273110
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 494 

95% bootstrap confidence intervals (btCIs) computed across our MC simulations 495 

showed that manipulating the number of time points at which we introduced the synthetic 496 

multivariate effect did not significantly (p>.05) impact FWER and power estimations (see 497 

supplementary section). Additionally, we observed that the distribution from which we sampled 498 

the synthetic noise did not significantly (p>.05) modulate FWER and power estimations (see 499 

supplementary section). We therefore only report the results for synthetic data with a 500 

multivariate effect over 3 time-points, generated by sampling noise from a normal distribution. 501 

Figures and results for the remaining levels of these 2 parameters as well as detailed tables 502 

reporting mean and bootstrap CIs can be found in the supplementary section.   503 

In the following paragraph we report the mean across all MC simulations and standard 504 

deviation (std) of the peak amplitude of the BOLD % signal change time course. We further 505 

report the mean std across voxels, trials, and time course. In the MC simulations for the group 506 

study, the mean peak amplitude (across subjects and MCs) of the generated synthetic BOLD % 507 

signal change was 1.222  (std = .531), while a mean std across time 0.353 (std = .137). 508 

Moreover, the average std across voxels was 2.815 (std = 2.643) and the average std across 509 

trials 1.343 (std = .348). As for the MC simulation for the single subject study, the generated 510 

synthetic data set had a mean (across MCs) peak amplitude of 1.247 (std  = .533) , with a mean 511 

std across time 0.357 (std = .106). The mean std across voxels was 2.996 (std = 2.409), and the 512 

mean std across trials was 1.364 (std = .362). 513 

        514 

Figure 4: (panels a through e) shows the BOLD time course of our synthetic data for the 515 

18 subjects and 16 trials scenario. Error bars represent the 95% bootstrap confidence intervals 516 

(btCIs). We infer robust statistical significance (p<.05) when the error bars do not overlap. Our 517 

analyses revealed no significant univariate amplitude differences across the whole time course 518 
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between the baseline (red line) and the treatment (blue line) conditions for all the parameter 519 

manipulations (see manipulated parameters). Importantly, this absence of univariate amplitude 520 

differences persisted even after we synthetically introduced multivariate effects at selected time-521 

points. Our tMVPA approach, thus, crucially revealed robust genuine multivariate differences 522 

across conditions that are not evident in univariate amplitude differences. Note that the 523 

introduced multivariate effect is visible by computing the stRDM, as shown in Figure 4f for the 524 

baseline condition and Figure 4h-4j for the effect condition.  525 

 526 

527 
Figure 4: Synthetic data for the 18 subjects and 14 trials group a)-e) Average time course 528 

across voxel participant within a ROI. Red line shows baseline condition (a) and blue line shows 529 

Treatment condition. Error-bars shows 95% bootstrapped confidence interval across subjects 530 

for each time point. f) stRDM of the baseline condition. g) stRDM of the treatment condition 531 

when no effect is introduced (to estimate FWER). h)-j) stRDM of the treatment condition when 532 

different strengths of the multivariate effect is introduced over time-points 5-7 . 533 

No effect introduced Effect in 50% of the
subjects

Effect in 65% of the
subjects

Effect in 80% of the
subjects

Baseline Condition

Mi
nu
s

Resulting
contrast
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Family-wised error rate (FWER) under H0 534 

For both the group and single subject scenarios, to estimate the FWER we computed 535 

the frequency of significant outputs detected by our approach across MC settings, before 536 

introducing the multivariate effect. As explained earlier, prior to introducing correlation across 537 

voxels over a number of selected time points, we generated the synthetic baseline and 538 

treatment data under H0 (i.e. no differences between conditions). We were, therefore, in the 539 

ideal context to estimate FWER, as statistically significant differences between conditions were 540 

mere type I errors.          541 

Group-level analysis 542 

95% bootstrap confidence intervals (btCIs) show that FWERs were significantly below 543 

.05 in all MC simulation with sample size > 6 (Figure 5). For N=6 the mean of the estimated 544 

FWER was, instead, consistently above .05 (mean FWER: .058), regardless of the number of 545 

trials. The 95% btCIs (mean btCIs [.044 .073], however, indicated that even for N=6, FWER are 546 

not significantly larger than .05 (see figure 5). While according to Westfall and Young (1993) this 547 

still suggests the group analysis is valid, we would recommend caution using our tMVPA with 548 

only 6 subjects. This is because the FWER for N=6 were significantly larger than those 549 

estimated for all other sample size (6 subjects simulation lowest mean FWER and btCIs: .056; 550 

[.042 .07]; highest FWER and btCIs across the remaining MC simulations: .03; [.02 .042]. For a 551 

complete table of all FWER and btCIs see supplementary section). Overall, our approach 552 

achieved the desired FWER at 5% under the group analysis setting.  553 

Single-subject analysis 554 

Similarly, FWERs were not significant above .05 in all MC simulations, regardless of the 555 

number of trials, as shown in Figure 5 above. The highest FWER is 0.056 [0.043, 0.071] in the 556 
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simulation with 4 trials, and the lowest FWER is 0.006 [0.003, 0.013] in the simulation with 16 557 

trials (For a complete table of all FWER and btCIs see supplementary section). The 4 trials 558 

scenario produced significantly higher FWER than all other trials groups. While still not 559 

significantly larger than .05, we would still recommend caution if implementing our TVMPA 560 

approach with less than 8 trials, due to the risk of incurring Type I errors.  Overall, the 561 

simulation result clearly showed that in a single-subject analysis setting, our approach 562 

achieved the desired FWER at 5% even with as little as 8 trials.  563 

 564 

565 
Figure 5: FWER for all trials numbers, subjects groups and for the single subject scenario. Here 566 

we show the family-wise error rate for the Monte Carlo simulated synthetic data with noise 567 

sampled from a Normal distribution. Error-bars represent the 95% bootstrap confidence interval 568 

of the Monte-Carlo simulation.  569 

 570 

8
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Power analysis 571 

Group-level analysis 572 

btCIs analysis generally revealed that for the group scenario, regardless of the number 573 

of trials, tMVPA was relatively underpowered when differences across conditions were present 574 

in 50% and (to a lesser extent) 65% of the subjects. As shown in Figure 6, the power of our 575 

approach increases as the number of subjects and the number of trials increases. With the 576 

effect introduced in 50% of the subjects, we estimated a power of 0.15 [0.132, 0.176] at the 577 

lowest number of subjects and trials (6 subjects with 4 trials each), to 0.27 [0.247, 0.297] at the 578 

highest tested number of subjects and trials (18 subjects with 16 trials each). Importantly, when 579 

we introduced the effect in 80 % of the subjects, the 16 trials simulations led to significantly 580 

(p<.05) higher power than the 8 and 4 trials scenarios for all sample sizes. Moreover, while 581 

generally displaying higher mean power, the 16 trials simulation never significantly (p>.05) 582 

differed from the 12 trials one. It is also worth noting that when N = 18, both the 16 and 12 trials 583 

simulations led to significantly higher power (p<.05) compared to the 4 and 8 trials simulations, 584 

regardless of the number of subjects in which we introduced an effect. Furthermore, for the 14 585 

subjects simulations only, the power estimated for the 4 trials scenario was significantly lower 586 

than all other group sizes, regardless of the number of subjects displaying the effect.    587 

Not surprisingly, the highest statistical power was reached in the 18 subjects simulations with a 588 

minimum of 12 trials. Within this context, the tMVPA approaches 0.8 when we introduced the 589 

multivariate effect in 80% of the subjects (0.76 [0.731, 0.784], see also Figure 6). A detailed 590 

report of mean power and btCIs for all MC simulations can be found in the supplementary 591 

section. 592 

 593 
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594 
Figure 6: Statistical power of the group-level analysis. Error-bars represent the 95% 595 

bootstrapped confidence intervals across Monte-Carlo simulations. 596 

6 Subjects 10 Subjects

18 Subjects14 Subjects
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Single-subject analysis 597 

As shown in Figure 7, the power of our approach increases as the number of trials 598 

increase. With the effect introduced in 50% of the trials, we estimated the power of our 599 

proposed approach at 0.10 [0.087, 0.126] with 4 trials, and at 0.28 [0.260, 0.317] with 16 trials. 600 

With the total number of 16 trials, the statistical power of the proposed approach reached 0.8 601 

when the effect was introduced in 80% of the trials (0.80 [0.776, 0.827]). Importantly, regardless 602 

of the percentage of trials in which we introduced the effect, the 16 trials simulations led to 603 

significantly (p<.05) higher power compared to all other simulations. Moreover, while 604 

significantly (p<.05) lower than its 16 trials counterpart, the 12 trials simulations also led to 605 

significantly (p<.05) higher power than the 2 remaining trials scenarios (see figure 7), peaking 606 

when 80% of the trials showed a multivariate effect (mean power: 0.719; btCIs: [0.691, 0.747]). 607 

A detailed report of mean power and btCIs for all MC simulations can be found in the 608 

supplementary section. 609 

 610 
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  611 

Figure 7: Statistical power of the single-subject analysis. Error bars represent the 95% 612 

bootstrapped confidence intervals across Monte-Carlo simulations   613 
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Discussion  614 

 In this paper, we present temporal Multivariate Pattern analysis (tMVPA), a method that 615 

we developed to quantify the temporal evolution of single trial dissimilarity across multivoxel 616 

patterns evoked by a given stimulus within a defined ROI. tMVPA builds upon the generation of 617 

single trial Representation Dissimilarity Matrices (stRDM) independently per ROI and condition: 618 

for all trials pairs, we iteratively cross-correlate the multivoxel pattern of BOLD % change across 619 

all possible time points combinations and we calculate its correlation distance (1-r). We then 620 

implemented a robust expanding sliding window approach to identify the temporal loci where 621 

statistically significant differences between conditions can be inferred (see methods). We 622 

validated this method for group and single subject analyses on data that were synthetically 623 

generated using noise (e.g. std across voxels, trials and time points) and signal (e.g. the BOLD 624 

time course) parameters derived from real fMRI data. Our validation analysis revealed 2 main 625 

findings: 1) our tMVPA approach reached the desired FWER (<=.05) for both the group and 626 

single subject approach; and 2) Our power analysis showed that: a) for the group scenario, the 627 

tMVPA approach reached the desired power with a sample size of 18 subjects, each with 12 628 

trials or more, when 80% of the participants displayed the desired multivariate effect. In all other 629 

contexts (i.e. < 18 subjects, < 12 trials and < 80% of subjects showing the effect), our method 630 

tends to be relatively underpowered and b) similarly, for the single subject scenario, our 631 

approach reached the desired power with at least 12 trials, when the multivariate effect of 632 

interest was present in 80% of them. All other simulation scenarios failed to reach the target 633 

power. These findings are discussed in detail below. 634 

 635 

Group analysis. Simulation results indicate that when the sample size is less than 8 subjects, 636 

regardless of the number of trials per condition or percentage of effect introduced, our technique 637 

is significantly (p<.05) below the lower margin of the desired FWER (.05) (Figure 7). Thus, a 638 
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minimum of 8 subjects is needed to maintain Type I error rate. Moreover, it is worth noting that 639 

for N=6, FWER is not significantly larger than .05, a finding which advocates the validity of the 640 

group analysis (Westfall, P. H., & Young, 1993; Westfall et al., 1993) (at least in terms of false 641 

positive rate). Nonetheless, we observe that when N=6, the estimated FWERs are significantly 642 

larger than all other samples and MC simulations (see figure 5), which may significantly inflate 643 

the occurrence of Type I errors for this specific sample size.  644 

Furthermore, the results of our power analysis suggest that a minimum of 18 subjects 645 

with at least 12 trials per condition is required to achieve adequate statistical power. While a 646 

sample size of 18 subjects could be regarded as sufficient for the majority of current fMRI 647 

studies, low N is considered one of the main culprits for the so called “replication crisis” (Button 648 

et al., 2013; Maxwell et al., 2015; Schooler, 2014). Consequently, the field of science as a 649 

whole, and specifically disciplines such as psychology and cognitive neuroscience, is 650 

undergoing a targeted endeavor aimed at augmenting the experimental sample size, in an effort 651 

to increase statistical power and produce replicable results (Button et al., 2013; Maxwell et al., 652 

2015; Schooler, 2014). Within this context, a sample size of 18 participants does not therefore 653 

seem prohibitive. Taken together, power analysis and FWER estimation indicate that a 654 

minimum of 18 subjects and 12 trials are required to implement tMVPA at the group level.  655 

 656 

Single subject analysis. One of the main advantages of the tMVPA analysis is the exploitation of 657 

single trials in computing temporal RDMs. Generating RDMs by correlating all possible single 658 

trial pairs leads to a distribution of single trial RDMs (stRDMs), which allows one to carry out 659 

second order inferential statistics at the single subject level. This procedure permits full 660 

exploitation of the trial-by-trial variability, which is lost in the group-level approach due to 661 

averaging. It is worth noting that, while still not significantly larger than the desired FWER of .05, 662 

the single subject validation procedure indicates that the 4 trial scenario produces significantly 663 

more FWER than all other trials groups. Not surprisingly, the peak statistical power is achieved 664 
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for the 16 trials simulations (figure 7). The 12 trials simulations, however, led to significantly 665 

higher statistical power than its 4 and 8 trials counterparts. Crucially, when the multivariate 666 

effect of interest is present in at least 80% of the trials, our approach achieves the desired 667 

power with 12 trials or more. With a minimum of 12 trials across runs, our approach reaches the 668 

desired power and FWER. This finding makes our tMVPA appealing and powerful, not only to 669 

carry out single subject statistics, but to investigate issues that have thus far been elusive to the 670 

world of cognitive neuroscience, such as individual differences in the BOLD response. 671 

Moreover, the ability to conduct single subject statistics is additionally advantageous for both 672 

piloting experimental designs and for analyzing experiments which are limited by low subject 673 

numbers due to, amongst other things, the time required in preprocessing and by-hand analysis 674 

(e.g., 7T laminar/columnar studies). Importantly, we show that we can carry out single subject 675 

analysis with a relatively parsimonious experimental design, which does not require a large 676 

number of trials.   677 

 678 

General considerations on FWER and power analysis. Though tMVPA was underpowered in 679 

simulations where 65% or fewer data points contained the effect of interest for both the group 680 

and single subject analyses, we argue that this is a potential strength rather than a weakness of 681 

our approach. While more likely to incur Type II errors (i.e. failing to reject H0), we would 682 

question the sensitivity, validity, and especially the generalizability of a method reporting 683 

statistical significance when only 65% or fewer data points display the effect being claimed. This 684 

argument becomes even more relevant in light of the recent emphasis of the scientific 685 

community on producing highly replicable studies, following the so called “replication crisis” 686 

(Schooler, 2014). We advocate the use of relatively more conservative statistical approaches, 687 

as we believe that overpowered statistical approaches can be regarded as one of the causes of 688 

the aforementioned replication crisis (Anderson & Maxwell, 2017). Furthermore, it is worth 689 

noting that the values estimated here (and the considerations that follow) are specific to our 690 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2018. ; https://doi.org/10.1101/273110doi: bioRxiv preprint 

https://doi.org/10.1101/273110
http://creativecommons.org/licenses/by-nc-nd/4.0/


experimental settings and image acquisition parameters. We chose a stimulation paradigm (i.e. 691 

850 ms visual stimulation; 4 trials per run) that is likely to lead to low evoked BOLD amplitude 692 

and, consequently, low experimental SNR (i.e. BOLD amplitude over trials measurement error). 693 

Under different stimulation regimes, such as longer stimulus presentation or block design 694 

experiments, we would expect higher statistical power or lower N to achieve the desired power. 695 

Moreover, at higher fields (i.e. 7T or above) the increase in both temporal and image SNR 696 

(Ugurbil, 2014) will be paired with a boost in statistical power. As such, the statistical power 697 

computed here in a relatively low SNR regime, represents a conservative estimate for the 698 

proposed approach.  699 

 700 
Temporal multivariate approach to fMRI. Traditionally, due to the sluggish nature of the 701 

hemodynamic based BOLD signal (Boynton et al., 1996; S Ogawa et al., 1993), fMRI’s temporal 702 

resolution has traditionally been overlooked, deemed to be too inaccurate to measure the 703 

temporal dynamics of neural processing. More recently, however, a number of animal studies 704 

have begun exploring the temporal dimension of the BOLD signal. Functional images have been 705 

recorded in marmosets with a temporal resolution of 200 ms (Yen et al., 2018) and in rats with 706 

40 ms (Silva & Koretsky, 2002). Furthermore, human recordings have suggested that increasing 707 

fMRI temporal resolution may reveal insights into the temporal dynamics of neural processing. 708 

For example, recent evidence put forward by Lewis et al (Lewis et al., 2016) suggest that fMRI 709 

can measure neural oscillatory activity at a much higher rate than previously suggested, 710 

specifically up to 1Hz. Accordingly, Siero et al. (Siero, J.C., Petridou, N., Hoogduin, H., Luijten, 711 

P.R., Ramsey, 2011) showed that, away from large draining, vessels the hemodynamic 712 

response function peaks ~2 seconds earlier and is approximately 1 second narrower than 713 

previously reported, thus indicating that the neurovascular coupling occurs at a much shorted 714 

time-scale. Additionally, Vu et al.’s (Vu, A.T., Phillips, J.S., Kay, K., Phillips, M.E., Johnson, 715 

M.R., Shinkareva, S.V., Tubridy, S., Millin, R., Grossman, M., Gureckis, T., Bhattacharyya, R., 716 
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Yacoub, 2016) work also advocates the importance of the BOLD temporal dimension. These 717 

authors showed that that, using MVPA, it is possible to extract timing information at fast TRs 718 

(i.e. 500 ms) that would otherwise be inaccessible (Vu, A.T., Phillips, J.S., Kay, K., Phillips, 719 

M.E., Johnson, M.R., Shinkareva, S.V., Tubridy, S., Millin, R., Grossman, M., Gureckis, T., 720 

Bhattacharyya, R., Yacoub, 2016).  721 

These observations highlight the growing interest in the temporal dynamics of the BOLD 722 

signal, motivating the need for novel analytical tools specifically tailored to extract BOLD 723 

temporal information. Within this context, the method we developed is highly advantageous in 724 

that it incorporates the multivariate dimension in the temporal analysis of the BOLD signal, 725 

rendering potentially unexplored temporal features accessible. This mulitvariate dimension 726 

comes from considering the spatial pattern of BOLD activity across the voxels population within 727 

a given ROI at every time-point. As such, tMVPA extends the power of fMRI, which has 728 

historically been in the spatial domain, to the much less studied temporal dimension. 729 

tMVPA thus allows investigating the temporal evolution of neural representation, which is 730 

incredibly valuable for exploring a wide range of phenomena, from visual illusions (Ernst & Bu, 731 

2004; Schrater et al., 2004), real world scenes, and a variety of auditory paradigms (Baumann 732 

et al., 2010; Lee et al., 2012). As such, our method can be broadly applied to a large domain of 733 

stimulus paradigms.  734 

Another interesting feature of tMVPA is the fact that paradigms utilizing active behavioral 735 

judgments of stimuli (as in Ramon et al. (Ramon et al., 2015)) may choose to align the analysis 736 

with either the stimulus onset or the behavioral response. This allows investigating response- as 737 

well as stimulus-locked modulations of neural representations over time.  738 

 739 

It is also worth considering the nature of the effect being observed with tMVPA. Our 740 

technique measures multivariate activity at the population level accessible with fMRI [~640,000 741 

neurons (Lent et al., 2012)], and is as such constrained by the temporal lag of the BOLD signal 742 
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(S Ogawa et al., 1993). While these constraints limit its temporal precision, especially relatively 743 

to the resolution available using invasive electrophysiological techniques (Meyers et al., 2015), 744 

tMVPA does provide valuable insights into the relative temporal dynamics of the neural 745 

processes captured with fMRI. In essence, while tMVPA won't provide direct insights into the 746 

actual temporal window of neural processing, the careful investigation of temporal aspects of 747 

the BOLD signal could provide important information regarding the neural substrates of 748 

cognition (Seiji Ogawa et al., 2000; Smith et al., 2012). For example, the relative BOLD latency 749 

differences between experimental conditions can be related to diverse cognitive processes 750 

(Gentile et al., 2017; Henson et al., 2002).  751 

tMVPA analysis already proved useful by revealing crucial differences in the temporal 752 

processing of familiar and unfamiliar faces in the left fusiform face area and in the bilateral 753 

amygdala (Ramon et al., 2015). Importantly, in Ramon et al. (Ramon et al., 2015) these 754 

differences would have remained undetected using traditional temporal univariate analysis 755 

techniques, as we did not observe significant differences between the average (across voxels 756 

and trials) BOLD time courses of familiar and unfamiliar faces. Accordingly, our simulations 757 

were carried out on synthetic data that were carefully generated with the absence of univariate 758 

amplitude differences across conditions (figure 3). We thus replicated what we originally showed 759 

in Ramon et al. (Ramon et al., 2015), namely, the ability of the tMVPA approach to detect 760 

genuine temporal multivariate effects or ones not driven by mere univariate amplitude 761 

differences.  762 

It must be noted that the differences between this work and Ramon et al. (Ramon et al., 763 

2015) are substantial both in terms of stimulation paradigm and MR acquisition parameters. 764 

Their functional scans were acquired using a repeated, single-shot echo planar imaging 765 

sequence with 3.5-mm isotropic voxel, a 64 × 64 matrix, a TE of 50 ms, TR of 1250 ms, FA of 766 

90° and FOV of 224 mm. Moreover, Ramon et al. (Ramon et al., 2015) used a novel visual 767 

paradigm where a face stimulus was kept on screen for a duration of approximately 19 to 21 768 
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TRs, followed by a fixation period lasting 6 to 8 TRs. Yet, in spite of these differences, in both 769 

datasets our technique uncovered effects that were not detected when using traditional 770 

univariate methods focusing on amplitude differences between average time courses. 771 

  772 

Validation on synthetic versus real data. It is important to consider that the multivariate data 773 

used to assess this technique were generated synthetically (see methods). Our technique was 774 

initially conceived for use with experimentally derived data (Ramon et al., 2015). As the goal of 775 

the present study is to assess the experimental parameters and conditions under which our 776 

technique is most useful, the ability to manipulate these variables is crucial and thus synthetic 777 

data is ultimately necessary. As previously mentioned, in an effort to generate a synthetic data 778 

set with realistic signal and noise properties, we used noise and signal estimates from real fMRI 779 

data. We approximated the fMRI signal by averaging BOLD time courses across voxels, trials, 780 

and conditions, and the amount of noise by measuring the variability (i.e. standard deviation) 781 

across voxels, trials and time-points. Hybrid approaches to synthetic data generations, such as 782 

the one implemented here, are highly beneficial (Welvaert & Rosseel, 2013). They provide full 783 

control over the data set, while preserving realistic signal to noise estimates and, according to 784 

(Welvaert & Rosseel, 2013), may represent the ideal data generation procedure for statistical 785 

validation. Our data generation approach, however, builds upon random sampling of variance 786 

and signal properties across voxels, ROIs, conditions, and subjects (see methods). This 787 

procedure effectively impairs the original temporal and spatial autocorrelation present in fMRI 788 

data. In the present study, we did not attempt to reinject temporal and spatial autocorrelation in 789 

the synthetic data. The reason behind this choice is twofold. Firstly, fMRI has multiple sources 790 

of noise (e.g. thermal, physiological, motion, task), each of which is characterized by different 791 

distributions and parameters, making it difficult to accurately and comprehensively model all 792 

noise sources. As such, an exhaustive model that allows generation of realistic fMRI noise has 793 

yet to be formulated. In order to introduce synthetic but realistic spatio-temporal auto-correlated 794 
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noise in simulated fMRI data, there is first a need to formulate a comprehensive and realistic 795 

noise model. However, the quest for an exhaustive model for fMRI data (including noise) 796 

generation is challenging enough to require a study in and of itself tailored to tackle this specific 797 

endeavor (Davis et al., 2014) and, as such, is well beyond the scope of this article. Additionally, 798 

given the lack of a “ground-truth” noise model, noise estimates may be inaccurate or 799 

misrepresent the contribution of difference noise sources and, as such, noise injection may 800 

have a negative impact on the validation procedure as a whole. Secondly, we argue that the 801 

impact of spatio-temporal auto-correlated noise is minimal within these specific settings. The 802 

structure of the stRDMs when considering real, as opposed to synthetic, data can be seen in 803 

figure 1. Patches of similarity (cool colors) and dissimilarity (warm colors) exist in clusters of 804 

approximately 3-4 TRs. Such structure is due to the inherent spatiotemporal autocorrelation 805 

present in the BOLD signal, which is not dependent on experimental manipulations. Rather, it is 806 

a direct outcome of the HRF response properties. Specifically, BOLD activation for all voxels will 807 

synchronously rise for approximately the first 6 seconds after stimulus onset (varying depending 808 

on stimulus presentation time), and then decrease for the following 6 seconds, thus generating 809 

the structure visible in the matrices in figure 1. This structure will therefore be shared across 810 

conditions and subtracted out when performing the linear contrast between the stRDMs across 811 

conditions (see methods). As such, the inherent presence of autocorrelation in fMRI data, which 812 

is shared across conditions, becomes irrelevant in evaluating the validity of our validation 813 

procedure.   814 

  815 
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Conclusion  816 

         In summary, we have developed a method for examining the representational content of 817 

fMRI data as a function of time, whereby enabling the investigation of the temporal evolution of 818 

neural representation. The method, that builds upon fMRI most recognized strength – namely its 819 

spatial resolution – to analyze BOLD temporal dynamics, consists of creating Single Trial 820 

Representational Dissimilarity Matrices (stRDMs) to measure the dissimilarity between the 821 

neural representations elicited by each acquired time point of a BOLD time course. We also 822 

introduced an expanding, sliding window method for inferring statistical significance. We 823 

validated our temporal multivariate pattern analysis (tMVPA) in both group and single subject 824 

settings using synthetically generated data. Our results show that we achieve adequate power 825 

FWER in both contexts. Along with the addition of a multivariate dimension to BOLD temporal 826 

analyses, tMVPA permits performing single subject’s inferential statistics by considering single 827 

trial distributions. Importantly, single subject analysis can be reliably implemented with a 828 

parsimonious experimental design that requires as little as 12 trials per condition across all runs. 829 

Furthermore, we show that, both in simulated as well as real settings (see Ramon et al. (Ramon 830 

et al., 2015)), our tMVPA is capable of detecting multivariate effects between experimental 831 

conditions in the absence of univariate amplitude differences. The technique presented here 832 

expands on traditional multivariate fMRI analyses, facilitating investigations of the evolution of 833 

neural representations over time. 834 

  835 
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