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1

Abstract2

The ability to identify interpretable, low-dimensional features that capture the dynamics3

of large-scale neural recordings is a major challenge in neuroscience. Dynamics that4

include repeated temporal patterns (which we call sequences), are not succinctly5

captured by traditional dimensionality reduction techniques such as principal6

components analysis (PCA) and non-negative matrix factorization (NMF). The presence of7

neural sequences is commonly demonstrated using visual display of trial-averaged firing8

rates [15, 32, 19]. However, the field suffers from a lack of task-independent,9

unsupervised tools for consistently identifying sequences directly from neural data, and10

cross-validating these sequences on held-out data. We propose a tool that extends a11

convolutional NMF technique to prevent its common failure modes. Our method, which12

we call seqNMF, provides a framework for extracting sequences from a dataset, and is13

easily cross-validated to assess the significance of each extracted factor. We apply14

seqNMF to recover sequences in both a previously published dataset from rat15

hippocampus, as well as a new dataset from the songbird pre-motor area, HVC. In the16

hippocampal data, our algorithm automatically identifies neural sequences that match17

those calculated manually by reference to behavioral events [15, 32]. The second data set18

was recorded in birds that never heard a tutor, and therefore sang pathologically variable19

songs. Despite this variable behavior, seqNMF is able to discover stereotyped neural20

sequences. These sequences are deployed in an overlapping and disorganized manner,21

strikingly different from what is seen in tutored birds. Thus, by identifying temporal22

structure directly from neural data, seqNMF can enable dissection of complex neural23

circuits with noisy or changing behavioral readouts.24

25
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Introduction26

The ability to detect and analyze temporal sequences embedded in a complex sensory27

stream is an essential cognitive function, and as such is a necessary capability of neuronal28

circuits in the brain [10, 23, 3, 21], as well as artificial intelligence systems [11, 42]. The29

detection and characterization of temporal structure in signals is also useful for the30

analysis of many forms of physical and biological data. In neuroscience, recent advances31

in technology for electrophysiological and optical measurements of neural activity have32

enabled the recording of hundreds or thousands of neurons [6, 26, 38, 24], in which33

neuronal dynamics are often structured in sparse sequences [18, 19, 31, 32].34

While sequential patterns are simple to conceptualize, identifying these patterns in35

high-dimensional datasets is surprisingly challenging. Traditional techniques for identi-36

fying low dimensional structure in high dimensional datasets such as PCA and NMF do37

not work for sequences, because those methods only model zero-time-lag correlations in38

data. It is sometimes possible to identify neural sequences by heuristically aggregating39

pairwise cross-correlations across neurons or across timebins [37, 17], but these correla-40

tions are easily confounded [4], leading to mathematically complex and computationally41

expensive procedures. In some cases, sequences can be identified by simply averaging42

across multiple behavioral trials, but this approach requires stereotyped behavior.43

Of increasing interest is the study of internal dynamics in the brain, without reference44

to behavior, for example, neural dynamics during learning, sleep, or diseased states. A45

promising approach for the unsupervised detection of temporal patterns is convolutive46

matrix factorization (CNMF) [41, 40] (Figure 1), which has primarily been applied to audio47

signals such as speech [30, 40, 45]. CNMF identifies exemplar patterns in conjunction48

with the times at which each pattern occurs. This strategy eliminates the need to average49

activity aligned to any external behavioral variables, and CNMF has recently been used to50

extract repeated patterns in spontaneous neural activity [34]. While CNMF factorizations51

produce an excellent reconstruction of the data, this algorithm will find a much larger52

number of factors than minimally required. Because of this redundancy, there are many53

different possible factorizations that explain the data equally well, and the algorithm54

arbitrarily chooses among them each time it is run, producing inconsistent results [34].55

When describing and interpreting data, the principle of ‘Occam’s razor’, a key scientific56

doctrine, tells us to prefer minimal models. In this paper, we describe amodification of the57

CNMF algorithm that penalizes redundant factors, biasing the results toward factorizations58

with the smallest number of factors and providing a simple explanation of the data. We59

do this by incorporating a regularization term into the CNMF cost function. Unlike other60

common approaches [20] such as sparsity regularization [47, 30, 36] that constrain the61

make-up of each factor, our regularization penalizes the correlations between factors that62

result from redundant factorizations. We build on earlier applications of soft-orthogonality63

constraints to NMF [7] to capture the types of temporally offset correlations that may64

occur in the convolutional case.65

Our algorithm, which we call seqNMF, produces minimal and consistent factorizations66

in synthetic data under a variety of noise conditions, with high similarity to ground-truth67

sequences. We further tested seqNMF on hippocampal spiking data in which neural68

sequences have previously been described. Finally, we use seqNMF to extract sequences69

in a functional calcium imaging dataset recorded in vocal/motor cortex of untutored70

songbirds that sing pathologically variable songs. We found that repeatable neural71
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sequences are activated in an atypical and overlapping fashion, suggesting potential72

neural mechanisms for this pathological song variability.73

Results74

Matrix factorization framework for unsupervised discovery of fea-75

tures in neural data76

Matrix factorization underlies many well known unsupervised learning algorithms [44]77

with applications to neuroscience [12], including principal component analysis (PCA) [33],78

non-negative matrix factorization (NMF) [27], dictionary learning, and k-means clustering.79

We start with a data matrix, X, containing the activity of N neurons at T times. If the80

neurons exhibit a single repeated pattern of synchronous activity, the entire data matrix81

can be reconstructed using a column vector w representing the neural pattern, and a row82

vector h representing the times at which that pattern occurs (temporal loadings). In this83

case, the data matrix X is mathematically reconstructed as the outer product of these two84

vectors (X̃nt = wnℎt). If multiple patterns are present in the data, then each pattern can be85

reconstructed by a separate outer product, where the reconstructions are summed to86

approximate the entire data matrix (Figure 1A) as follows:87

Xnt ≈ X̃nt =
K
∑

k=1
wnkℎkt = (WH)nt (1)

Here, in order to store K different patterns, W is a N × K matrix containing the K88

exemplar patterns, and H is a K × T matrix containing the K timecourses:89

W =

⎡

⎢

⎢

⎢

⎣

| |

w1 w2 ⋯
| |

⎤

⎥

⎥
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⎦
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⋮
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⎥

⎥

⎦

(2)

Given a data matrix with unknown patterns, the goal of these unsupervised learning90

algorithms is to discover a small set of patterns (W) and a corresponding vector of91

temporal loadings (H) that approximate the data. This corresponds to a dimensionality92

reduction, whereby the data is expressed in more compact form (K < N, T ). NMF93

additionally requires thatW and Hmust contain only positive numbers. The discovery94

of unknown factors is often accomplished by minimizing the following cost function,95

which measures (using the Frobenius norm) the sum of all squared errors between the96

reconstruction X̃ =WH and the original data matrix X:97

(W̃, H̃) = argmin
W,H

||X̃ − X||2F (3)

While this general strategy works well for extracting synchronous activity, it is un-98

suitable for discovering temporally extended patterns—first, because each element in99

a sequence must be represented by a different factor, and second, because NMF as-100

sumes that the columns of the data matrix are independent ‘samples’ of the data, so101

permutations in time have no effect on the factorization of a given dataset. It is therefore102

necessary to adopt a different strategy for temporally extended features.103
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Convolutional non-negative matrix factorization (CNMF)104

Convolutional NMF (CNMF) [41, 40] extends NMF to provide a framework for extracting105

temporal patterns and sequences from data. While classical NMF represents each pattern106

as a single vector (Figure 1A), CNMF explicitly represents an exemplar pattern of neural107

activity over a brief period of time; the pattern is stored as an N × Lmatrix, where each108

column (indexed by l = 1 to L) indicates the activity of neurons at different timelags109

within the pattern (Figure 1B, where we call this matrix pattern w1 for analogy with NMF).110

The times at which this pattern/sequence occurs are stored using timeseries vector h1,111

as for NMF. The reconstruction is produced by convolving the N × L pattern with the112

timeseries h1 (Figure 1B).113

If the dataset contains multiple patterns, each pattern is captured by a differentN × L114

matrix and a different associated timeseries vector h. A collection of K different patterns115

can be compiled together into anN×K×L tensorW and a correspondingK×T timeseries116

matrix H. Analogously to NMF, CNMF reconstructs the data as a sum of K convolutions117

between each neural activity pattern (W), and its corresponding temporal loadings (H):118

Xnt ≈ X̃nt =
∑

k

∑

l

wnklℎk(t−l) = (W⊛H)nt (4)

where the tensor/matrix convolution operator ⊛ (notation summary, Table 1) reduces to119

matrix multiplication in the L = 1 case, which is equivalent to standard NMF. The quality120

of this reconstruction can be measured using the same cost function shown in Equation121

3, andW and Hmay be found iteratively using the same multiplicative gradient descent122

updates often used for standard NMF [27, 41, 40].123

While CNMF can perform extremely well at reconstructing sequential structure, it124

suffers from a significant problem—namely, it reconstructs data using many more factors125

than are minimally required. This is because an individual temporal pattern may be126

approximated equally well by a single pattern or by a linear combination of multiple127

sub-patterns. A related problem is that running the CNMF algorithm from different128

random initial conditions produces inconsistent results, finding different combinations of129

sub-patterns on each run [34]. These inconsistency errors fall into three main categories130

(Figure 1C):131

• Type 1: Two or more factors are used to reconstruct the same instances of a se-132

quence.133

• Type 2: Two or more factors are used to reconstruct temporally different parts of134

the same sequence, for instance the first half and the second half.135

• Type 3: Identical factors are used to reconstruct different instances of a sequence.136

Together, these failure modes manifest as strong correlations between different redun-137

dant factors, as seen in the similarity of their temporal loadings (H) and of their exemplar138

activity patterns (W).139

SeqNMF: A regularized convolutional non-negative matrix factorization140

Regularization is a common technique in optimization that allows the incorporation141

of constraints or additional information with the goal of improving generalization or142

simplifying solutions [20]. To reduce the occurrence of redundant factors (and inconsistent143

factorizations) in CNMF, we sought a principled way of penalizing the correlations between144
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factors by introducing a regularization term into the CNMF cost function of the following145

form:146

(W̃, H̃) = argmin
W,H

(

||X̃ − X||2F +R
)

(5)

In the next section, we will motivate a novel cost function that effectively minimizes the147

number of factors by penalizing temporal correlations between different factors. We148

will build up the full cost function by addressing, one at a time, the types of correlations149

generated by each failure mode.150

Regularization has previously been used in NMF to address the problem of duplicated151

factors, which, similar to Type 1 errors above, present as correlations between the H’s152

[7]. Such correlations are measured by computing the correlation matrix HH⊤, which153

contains the correlations between the temporal loadings of every pair of factors. The154

regularization may be implemented using the cost term R = �||HH⊤
||1,i≠j . The norm155

|| ⋅ ||1,i≠j sums the absolute value of every matrix entry except the diagonal (notation156

summary, Table 1) so that correlations between different factors are penalized, while the157

obvious correlation of each factor with itself is not. Thus, during the minimization process,158

similar factors compete, and a larger factor drives down the H of a correlated smaller159

factor. The parameter � is controls the magnitude of the regularization term R.160

In CNMF, a regularization term based on HH⊤ yields an effective method to prevent161

errors of Type 1, because it penalizes the associated zero lag correlations. However, it does162

not prevent errors of the other types, which exhibit different types of correlations. For163

example Type 2 errors result in correlated temporal loadingss that have a small temporal164

offset and thus are not detected byHH⊤. To address this problem, we smoothed theH’s in165

the regularization termwith a square window of length 2L−1 using the smoothingmatrix S166

(sij = 1 when |i− j| < L and otherwise sij = 0). The resulting regularization,R = �||HSH⊤
||,167

allows factors with small temporal offsets to compete, effectively preventing errors of168

Type 1 and 2.169

Unfortunately this regularization does not prevent errors of Type 3, in which redundant170

factors with highly similar patterns inW are used to explain different instances of the171

same sequence. Such factors have temporal loadings that are segregated in time, and172

thus have low correlations, to which the cost term ||HSH⊤
|| is insensitive. One way to173

resolve errors of Type 3 might be to include an additional cost term that penalizes the174

similarity of the factor patterns inW. A challenge with this approach is that, in the CNMF175

framework, there is no constraint on temporal translations of the sequence withinW. For176

example, if two redundant factors containing identical sequences that are simply offset by177

one timebin (in the L dimension), then these patterns would have zero correlation. Such178

offsets might be accounted for by smoothing theWmatrices in time before computing179

the correlation (Table 2), analogous to ||HSH⊤
||. The general approach of adding an180

additional cost term forW correlations has the disadvantage that it requires setting an181

extra parameter, namely the � associated with this cost.182

Thus, we chose an alternative approach to resolve errors of Type 3 that simultaneously183

detects correlations inW andH using a single cost term. We note that redundant factors of184

this type have a high degree of overlap with the data at the same times, even though their185

temporal loadings are segregated at different times. To introduce competition between186

these factors, we compute the pairwise correlation between the temporal loading of each187

factor and the overlap of every other factor with the data, given byW
⊤
⊛ Xi≠j (notation188
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summary, Table 1). The regularization then sums up these correlations across all pairs of189

factors, implemented as follows:190

R = �||W
⊤
⊛ XSH⊤

||1,i≠j (6)

When incorporated into the update rules, this causes any factor that has a high overlap191

with the data to suppress the temporal loading (H) of any other factors active at that time.192

Thus, factors compete to explain each feature of the data, favoring solutions that use a193

minimal set of factors to give a good reconstruction. We refer to this minimal set as an194

efficient factorization. The resulting global cost function is:195

(W̃, H̃) = argmin
W,H

(

||X̃ − X||2F + �||W
⊤
⊛ XSH⊤

||1,i≠j

)

(7)

The update rules forW and H are based on the derivatives of this global cost function,196

leading to a simple modification of the standard multiplicative update rules used for NMF197

and CNMF [27, 41, 40] (Table 2).198

Testing the performance of seqNMF on simulated sequences199

To compare the performance of seqNMF to unregularized CNMF, we simulated neural200

sequences of a sort commonly encountered in neuronal data (Figure 2A). The simulated201

data were used to test several aspects of the seqNMF algorithm: consistency of factoriza-202

tions, the ability of the algorithm to discover the correct number of sequences in the data,203

and robustness to noise.204

Consistency of seqNMF factorization205

We set out to determine if seqNMF exhibits the desirable property of consistency—namely206

whether it returns similar sequences each time it is run on the same dataset using different207

random initializations ofW and H. Consistency was assessed as the extent to which there208

is a good one-to-one match between factors across different runs (Methods 10). Due209

to the inefficiencies outlined in Figure 1, CNMF yielded low consistency scores typically210

ranging from 0.2 to 0.4 on a scale from zero to one. In contrast, seqNMF factorizations211

were nearly identical across different fits of noiseless data, producing consistency scores212

that were always higher than any we measured for CNMF, and typically (>80% of the time)213

higher than 0.99 (Figure 2B). Both CNMF and seqNMF had near perfect reconstruction214

error for all combinations of K and L that exceed the number and duration of sequences215

in the data (not shown). However, CNMF exhibited low consistency scores, a problem216

that was further exacerbated for larger values of K. In contrast, seqNMF exhibited high217

consistency scores across a wide range of values of both K and L.218

We also tested the consistency of seqNMF factorizations for the interesting case in219

which a population of neurons is active in multiple different sequences. In fact neurons220

that are shared across different sequences have been observed in several different neu-221

ronal datasets [31, 32, 19]. For one test, we constructed two sequences in which shared222

neurons were active at a common pattern of latencies in both sequences; in another test,223

shared neurons were active in a different pattern of latencies in each sequence. In both224

tests, seqNMF achieved near-perfect reconstruction error, and consistency was similar to225

the case with no shared neurons (Figure 2).226
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Cross-validating to assess the statistical significance of sequences227

SeqNMF allows a simple procedure for assessing the statistical significance of each228

extracted sequence. Candidate sequences are extracted by applying SeqNMF to a subset229

of the data; the significance of each candidate sequence is then assessed on separate230

held-out data. If an extracted sequence corresponds to a real sequence present in the231

data, then the overlap of that factor with the held-out data (W
⊤
⊛X) will have large values at232

the times at which the sequence occurs (relative to other times). The resulting abundance233

of high overlap values will create a distribution of overlaps with high skewness compared234

to a null distribution. In contrast, a candidate sequence that does not reliably occur in the235

held-out data will have a smaller number of high overlaps, and a distribution of overlaps236

with lower skewness. We compare the skewness of the actual distribution of overlaps237

with that of distributions generated from null factors to determine the significance of238

each candidate sequence (Figure S1, Methods 10). Null factors were created by random239

circular shifts in time lag, along the L dimension, of the pattern matricesW.240

Runs of seqNMF on simulated and real data have revealed that the algorithm produces241

two types of factors that can be immediately ruled out as candidate sequences: 1)242

empty factors with zero amplitude in all neurons at all lags and 2) factors that have243

amplitude in only one neuron. The latter case occurs often in datasets where one neuron244

is substantially more active than other neurons, and thus accounts for a large amount245

of variance in the data. SeqNMF also occasionally generates factors that appear to246

capture one moment in the test data, especially in short datasets, where this can account247

for a substantial fraction of the data variance. Such sequences are easily identified as248

non-significant when tested on held-out data using the skewness test.249

Note that if � is set too small, seqNMF will produce multiple redundant factors to250

explain one sequence in the data. In this case, each redundant candidate sequence will251

pass the significance test outlined here. We will address below a procedure for choosing252

� and methods for determining the number of sequences.253

Estimating the number of sequences in a dataset254

A successful factorization should contain the same number of significant factors as exist255

sequences in the data. To compare the ability of seqNMF and CNMF to recover the true256

number of patterns in a dataset, we generated simulated data containing between 1257

and 10 different sequences. We then ran many independent fits of these data, using258

both seqNMF and CNMF, and measured the number of significant factors. We found that259

CNMF overestimates the number of sequences in the data, returning K significant factors260

on nearly every run. In contrast, seqNMF tends to return a number of significant factors261

(Nsig) that closely matches the actual number of sequences (Nseq). The standard deviation262

of the error (Nseq −Nsig) tended to grow linearly with the actual number of sequences263

(Figure 2C).264

Robustness to noisy and challenging data265

Having established that seqNMF can produce both consistent and efficient factorizations266

of noiseless synthetic data, we next probed the capacity of seqNMF to detect sequences267

in the presence of common types of noise. These included: participation noise, in which268

individual neurons participate probabilistically in instances of a sequence; additive noise,269

in which neuronal events occur randomly outside of normal sequence patterns; temporal270
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jitter, in which the timing of individual neurons is shifted relative to their typical time in a271

sequence; and finally, temporal warping, in which each instance of the sequence occurs272

at a different randomly selected speed.273

To test the robustness of seqNMF to each of these noise conditions, we factorized data274

containing two neural sequences at variety of noise levels. The value of �was chosen using275

methods described in the next section. SeqNMF proved relatively robust to all four noise276

types, as measured by the similarity of the factors to the ground-truth. We defined the277

ground-truth sequences those used to generate the synthetic data prior to the addition278

of noise. We then quantified the correlation between seqNMF factors and ground-truth279

sequences (Methods section 10, Figure 3). For low noise conditions, seqNMF produced280

factors that were highly similar to ground-truth; this similarity gracefully declined as281

noise increased. Visualization of the extracted factors revealed that they tend to match282

ground-truth sequences even in the presence of high noise (Figure 3). Together, these283

findings suggest that seqNMF is suitable for extracting sequence patterns from neural284

data with realistic forms of noise.285

Method for choosing an appropriate value of �286

In general, the seqNMF algorithm performs differently using different values of �, and287

application to the noisy datasets revealed that the optimal choice of this parameter may288

depend on the degree and type of noise contamination. Choosing � involves a trade289

off between reconstruction accuracy and the efficiency and consistency of the resulting290

factorizations (Figure 4). Indeed, perfect reconstruction is no longer a goal in noisy data,291

since it would imply fitting all of the noise as well as the signal. Rather, the goal is to292

reconstruct only the repeating temporal patterns in the data and to do so with an efficient,293

maximally uncorrelated set of factors. For any given factorization, the reconstruction294

error may be estimated as ||X̃ − X||2F , and the efficiency may be estimated using the295

seqNMF regularization term ( ||W
⊤
⊛ XSH⊤

||1,i≠j ) which we refer to as correlation cost.296

We have developed a quantitative strategy to guide the choice of �, by analyzing the297

dependence on � of both reconstruction error and correlation cost in synthetic datasets298

containing two sequences (Figure 4). SeqNMF was run with many random initializations299

over a range of � spanning six orders of magnitude. For small �, the behavior of seqNMF300

approaches that of CNMF, producing a large number of redundant factors with high301

correlation cost. In the regime of small �, correlation cost saturates at a large value and302

reconstruction error saturates at a minimum value (Figure 4A). At the opposite extreme,303

in the limit of large �, seqNMF returns a single significant factor with zero correlation cost304

because all other factors have been suppressed to zero amplitude. In this limit, the single305

factor is unable to reconstruct multi-sequence data, resulting in large reconstruction error.306

Between these extremes, there exists a region in which increasing � produces a rapidly307

increasing reconstruction error and a rapidly decreasing correlation cost. Following the308

intuition that the optimal choice of � for seqNMF would lie in this cross-over region309

where the costs are balanced, we set out to quantitatively identify, for known synthetic310

sequences, the optimal � at which seqNMF has the highest probability of recovering the311

correct number of significant factors, and at which these factors most closely match the312

ground truth sequences.313

The following procedure was implemented: For a given dataset, seqNMF is run several314

times at a range of values of �, and terminal reconstruction cost and correlation cost315
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are recorded. These costs are normalized to vary between 0 and 1, and the value of �316

at which the reconstruction and correlation cost curves intersect is determined (Figure317

4). This intersection point, �0, then serves as a precise reference by which to determine318

the correct choice of �. We then separately calibrated the reference �0 to the �’s that319

performed well in synthetic datasets, with and without noise, for which the ground-truth320

is known. This analysis revealed that values of � between �0 and 5�0 performed well321

across different noise types and levels (Figure 4B,C). For additive noise, performance was322

better when � was chosen to be near �0, while with other noise types, performance was323

better at higher (≈ 5�0). Note that this procedure does not need to be run on every324

dataset analyzed, rather, only when seqNMF is applied to a new type of data for which a325

reasonable range of � is not already known.326

Sometimes there is not a clear correct answer for how many sequences exist in a327

dataset. In fact, different values of � can lead to different sensible factorizations. It can328

be useful to explore the factorization for different values of � between �0 and 10�0. We329

observed a notable example of this in datasets that included sequences with a high330

degree of temporal warping. In this case, high � led seqNMF to extract a single factor for331

each ground truth sequence. In contrast, at low � seqNMF extracted multiple factors for332

each ground truth sequence, corresponding to slow and fast variations of the sequence.333

Thus, seqNMF clusters sequences with different granularity depending on the strength of334

the regularization term �.335

Adding additional sparsity regularization to seqNMF336

Sparsity regularization is a widely used strategy for achieving more interpretable results337

across a variety of algorithms and datasets [47], including CNMF [30, 36]. In some of338

our datasets, we found it useful to add L1 regularization for sparsity, in addition to339

regularizing for factor competition. The multiplicative update rules for these variants are340

included in Table 2, and as part of our code package. Sparsity on the matricesW and341

H may particularly useful in cases when sequences are repeated rhythmically (Figure342

S2). For example, the addition of a sparsity regularizer on theW update will bias theW343

exemplars to include only a single repetition of the repeated sequence, while the addition344

of a sparsity regularizer on H will bias theW exemplars to include multiple repetitions of345

the repeated sequence. This gives one fine control over how much structure in the signal346

to pack intoW versus H. Of course, these are both equally valid interpretations of the347

data, but each may be more useful in different contexts.348

Further considerations of shared neurons349

The existence of neurons that are shared between different sequences raises an inter-350

esting ambiguity in the types of factorizations that seqNMF can produce, an example of351

which is illustrated in Figure S3. In this case, there are two different, but equally valid, fac-352

torizations: in one factorization, there are two types of events, one in which a population353

of neurons generates a sequence by itself, and another in which a second population354

of neurons is also simultaneously active. In another factorization, these same data are355

interpreted by seqNMF as two different populations of neurons that are sometimes active356

separately and sometimes active together. Note that these two factorizations produce357

very different correlations between the factors. In the first, ‘events-based’ factorization,358

the Hs are orthogonal (uncorrelated) while the Ws have high overlap. In the second,359

‘parts-based’ factorization, theWs are orthogonal while the Hs are strongly correlated.360
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We have found that seqNMF will produce both types of factorizations depending on361

initial conditions and the structure of shared neurons in the data. We note that these362

different factorizations may correspond to different intuitions about underlying mech-363

anisms. Therefore, it may be useful to explicitly bias the probability of these different364

factorizations by the addition of further regularization on eitherW or H correlations, as365

demonstrated in Figure S3. Update rules to implement both of these regularizations are366

derived in Appendix 1, and shown in Table 2, and included as options in our code.367

Application of seqNMF to hippocampal sequences368

To test the ability of seqNMF to discover patterns in electrophysiological data, we ana-369

lyzed the activity of a set of simultaneously recorded hippocampal neurons in a publicly370

available dataset in which sequences have previously been reported [32]. In these experi-371

ments, rats were trained to alternate between left and right turns in a T-maze to earn a372

water reward. Between alternations, the rats ran on a running wheel during an imposed373

delay period lasting either 10 or 20 seconds. By averaging spiking activity during the delay374

period, the authors reported long temporal sequences of neural activity spanning the375

delay. In some rats, the same sequence occurred on left and right trials, while in other376

rats, different sequences were active in the delay period during the different trial types.377

Without reference to the behavioral landmarks, seqNMF was able to extract different378

types of sequences in two different rats. The automated method described above was379

used to choose � (Figure 5). In Rat 1, a single significant factor was extracted, corre-380

sponding to a sequence active throughout the running wheel delay period (Figure 5B).381

In Rat 2, three significant factors were identified (Figure 5C). The first two corresponded382

to distinct sequences active for the duration of the delay period on alternating trials.383

The third sequence was active immediately following each of the alternating sequences,384

corresponding to the time at which the animal exits the wheel and runs up the stem385

of the maze. Taken together, these results suggest that seqNMF can detect multiple386

neural sequences without the use of any behavioral landmarks. Having validated this387

functionality in both simulated data and previously published neural sequences, we then388

applied seqNMF to find structure in a novel dataset, in which the ground truth is unknown,389

and difficult to ascertain using previous methods.390

Application of seqNMF to abnormal sequence development in avian391

motor cortex392

We applied seqNMF to analyze new functional imaging data recorded in songbird HVC393

during singing. Normal adult birds sing a highly stereotyped song, making it possible to394

detect sequences by averaging neural activity aligned to the song. Using this approach, it395

has been shown that HVC neurons generate precisely timed sequences that tile each song396

syllable [18, 35, 29]. In contrast to adult birds, young birds sing highly variable babbling397

vocalizations, known as subsong, for which HVC is not necessary [1]. The emergence of398

sequences in HVC occurs gradually over development, as the song matures from subsong399

to adult song [31].400

Songbirds learn their song by imitation and must hear a tutor to develop normal adult401

vocalizations. Birds isolated from a tutor sing highly variable and abnormal songs as402

adults [14]. Such ‘isolate’ birds provide an opportunity to study how the absence of normal403

auditory experience leads to pathological vocal/motor development. However, the high404
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variability of pathological ‘isolate’ song makes it difficult to identify neural sequences405

using the standard approach of aligning neural activity to vocal output.406

Using seqNMF, we were able to identify repeating neural sequences in isolate song-407

birds (Figure 6A). We found that the HVC network generates several distinct premotor408

sequences (Figure 6B-C), including sequences deployed during syllables of abnormally409

long and variable durations (Figure 6D-F).410

In addition, the extracted sequences exhibit properties not observed in normal adult411

birds. We see an example of two distinct sequences that sometimes, but not always,412

co-occur (Figure 6). We observe that a short sequence occurs alone on some syllable413

renditions, while on other syllable renditions, a second longer sequences is generated414

simultaneously. This probabilistic overlap of different sequences is highly atypical in nor-415

mal adult birds [18, 28, 35, 29]. Furthermore, this pattern of neural activity is associated416

with abnormal variations in syllable structure—in this case resulting in a longer variant417

of the syllable when both sequences co-occur. This acoustic variation is a characteristic418

pathology of isolate song [14]. Thus, even though we observe HVC generating some419

sequences in the absence of a tutor, it appears that these sequences are deployed in a420

highly abnormal fashion.421

Application of seqNMF to a behavioral dataset: song spectrograms422

Although we have focused on the application of seqNMF to neural activity data, this423

method naturally extends to other types of high-dimensional datasets, including behav-424

ioral data with applications to neuroscience. The neural mechanisms underlying song425

production and learning in songbirds is an area of active research. However, the identifi-426

cation and labeling of song syllables in acoustic recordings is challenging, particularly in427

young birds where song syllables are highly variable. Because automatic segmentation428

and clustering often fail, song syllables are still routinely labelled by hand [31]. We tested429

whether seqNMF, applied to a spectrographic representation of zebra finch vocalizations,430

is able to extract meaningful features in behavioral data. SeqNMF correctly identified431

repeated acoustic patterns in juvenile songs, placing each distinct syllable type into a432

different factor (Figure 7). The resulting classifications agree with previously published433

hand-labeled syllable types [31]. A similar approach could be applied to other behavioral434

data, for example movement data or human speech, and could facilitate the study of435

neural mechanisms underlying even earlier and more variable stages of learning.436

Discussion437

As neuroscientists strive to record larger datasets, there is a need for rigorous new438

tools to reveal underlying structure in high-dimensional data [16, 39, 8, 5]. In particular,439

sequential structure is increasingly regarded as a fundamental property of neuronal440

circuits [18, 19, 31, 32], but tools for extracting such structure in neuronal data have441

been lacking. While convolutional NMF provides a promising framework for extracting442

sequential structure in high-dimensional datasets, it suffers from a number of weaknesses:443

It is highly unconstrained, producing many redundant factors that provide a large number444

of factorizations with equally low reconstruction error. Others have approached the445

problem of achieving a minimal set of factors by running unregularized CNMF many times446

from different initial conditions and identifying a subset of the resultant factors that are447

most reliably produced [34]. Our approach has been to construct a regularizer that, when448
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incorporated into the multiplicative update rules, drives competition between factors and449

produces highly consistent factorizations.450

While seqNMF regularization is particularly useful when the number of sequences in451

the data is not known a priori, seqNMF does more than simply minimize the number of452

factors. Even in the context of a minimal set of factors, there are often several different453

reasonable factorizations. SeqNMF provides a framework for biasing factorizations in a454

principled way between alternative interpretations of the data. For example, the choice of455

� can control the granularity of the clustering of sequences into different factors. At high �,456

seqNMF tends to combine similar sequences into a single factor, while at lower � it tends457

to place different variants of a sequence into different factors, as shown for the case of458

temporally warped sequences. As another example, addition of a sparseness regularizer459

can be used to control the trade off placing features in the pattern exemplars or in the460

temporal loadings. Similarly, we have found that by including additional orthogonality461

constraints onW and H, one can bias factorizations toward parts-based or events-based462

factorizations, respectively.463

While seqNMF is generally quite robust, proper preprocessing of the data can be464

important to obtaining reasonable factorizations. A key principle is that, in minimizing the465

reconstruction error, seqNMF is most strongly influenced by parts of the data that exhibit466

high variance. This can be problematic if the regions of interest in the data have relatively467

low amplitude. For example, high firing rate neurons may be prioritized over those468

with lower firing rate. Additionally, variations in behavioral state may lead to seqNMF469

factorizations that prioritize regions of the data with high variance and neglect other470

regions. It may be possible to mitigate these effects by normalizing data, or by restricting471

analysis to particular subsets of the data, either by time or by neuron.472

SeqNMF addresses a key challenge in extracting neural sequences in complex animal473

behaviors. Prior analysis methods required aligning neural activity to behavioral events,474

such as animal position for the case of hippocampal and cortical sequences [19, 32], or475

vocal output for the case of songbird vocalizations [31]. But this method is not ideally476

suited for the case highly variable behaviors, such as in early learning and development477

[31], either normal or abnormal. For example, by applying seqNMF, we were able to478

identify neural sequences underlying a pathologically variable vocal behavior in the479

songbird. This technique should enable similar approaches in other cases, expanding480

the repertoire of behaviors available to neuroscience from those that are repeated and481

stereotyped to include those that may be variable and rapidly changing.482
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Methods and Materials500

Table of key resources501

Key resources, and references for how to access them, are listed in Table 3.502

Contact for resource sharing503

Further requests should be directed to Michale Fee (fee@mit.edu).504

Software and data availability505

Our seqNMF MATLAB code is publicly available as a github repository, along with some of506

our data for demonstration:507

https://github.com/FeeLab/seqNMF508

The repository includes the seqNMF function, as well as helper functions for selecting509

� and testing the significance of factors, plotting, and other functions. It also includes a510

demo script that goes through an example of how to select � for a new dataset, test for511

significance of factors, and plot the seqNMF factorization.512

We plan to post more of our data publicly on the CRCNS data-sharing platform.513

Generating simulated data514

We simulated neural sequences containing between 1 and 10 distinct neural sequences in515

the presence of various noise conditions. Each neural sequence was made up of 10 con-516

secutively active neurons. The binary activity matrix was convolved with an exponential517

kernel to resemble neural calcium imaging activity.518

SeqNMF algorithm details519

Our algorithm for seqNMF (CNMF with additional regularization to promote efficient520

factorizations) is a direct extension of the multiplicative update CNMF algorithm [41], and521

draws on previous work regularizing NMF to encourage factor orthogonality [7].522

The uniqueness and consistency of traditional NMF has been better studied than523

CNMF, but in special cases, NMF has a unique solution comprised of sparse, ‘parts-524

based’ features that can be consistently identified by known algorithms [13, 2]. However,525

this ideal scenario does not hold in many practical settings. In these cases, NMF is526

sensitive to initialization, resulting in potentially inconsistent features. This problem can527

be addressed by introducing additional constraints or regularization terms, and instead528

encourage the model to extract sparse or approximately orthogonal features [22, 25].529

Both theoretical work and empirical observations suggest that these modifications result530

in more consistently identified features [43, 25].531
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For seqNMF, we added to the CNMF cost function a term that promotes competition532

between overlapping factors, resulting in the following cost function:533

(W̃, H̃) = argmin
W,H

(

||X̃ − X||2F + �||W
⊤
⊛ XSH⊤

||1,i≠j

)

(8)

We derived the following multiplicative update rules forW and H (Appendix 1):534

W⋅⋅l ← W⋅⋅l ×
X
(l→
H
)⊤

X̃
(l→
H
)⊤

+ �
←l
X SH⊤(1 − I)

(9)

H ← H × W
⊤
⊛ X

W
⊤
⊛ X̃ + �(1 − I)(W

⊤
⊛ XS)

(10)

Where the division and × are element-wise. The operator
l→
(⋅) shifts a matrix in the →535

direction by l timebins, i.e. a delay by l timebins, and
←l
(⋅) shifts a matrix in the← direction536

by l timebins (notation summary, Table 1). Note that multiplication with the K × K537

matrix (1 − I) effectively implements factor competition because it places in the kth row a538

sum across all other factors. These update rules are derived in Section 1 by taking the539

derivative of the cost function in Equation 8.540

In addition to the multiplicative updates outlined in Table 2, we also shift factors to be541

centered in time, renormalize so rows of H have unit norm, and in the final iteration run542

one additional step of unregularized CNMF to prioritize the cost of reconstruction error543

over the regularization (Algorithm 1).544

Algorithm 1: SeqNMF
Input: Data matrix X, factor number K , factor duration L, regularization strength �
Output: Factor exemplarsW, and factor timecourses H

1 InitializeW and H randomly
2 Iter = 1
3 while (Iter < NIter) & (Δ cost > tolerance) do
4 Update H using multiplicative update from Table 2
5 ShiftW and H to centerW’s in time
6 RenormalizeW and H so rows of H have unit norm
7 UpdateW using multiplicative update from Table 2

8 Iter = Iter+1

9 Do one final unregularized CNMF update ofW and H
10 return

545

Calculating consistency546

The consistency between two factorizations measures the extent to which it is possible to547

create a one-to-one match between factors in factorization A and factors in factorization548

B. Specifically, given two factorizations (WA, HA) and (WB , HB) respectively, consistency549

is measured with the following procedure:550

1. For each factor number k, compute the part of the reconstruction explained by this551

factor in each reconstruction, X̃Ak =WA
⋅k⋅ ⊛HA

k⋅ and X̃Bk =WB
⋅k⋅ ⊛HB

k⋅552
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2. Reshape X̃Ak and X̃Bk into vectors containing all the elements of each matrix re-553

spectively, then compute C, a K ×K correlation matrix where Cij is the correlation554

between the vectorized X̃Ai and X̃Bj .555

3. Permute the factors greedily so factor 1 is the best matched pair of factors, factor 2556

is the best match pair of the remaining factors, etc.557

4. Measure consistency as the ratio of the power (sum of squared matrix elements)558

contained on the diagonal of the permuted Cmatrix to the total power in C.559

Thus, two factorizations are perfectly consistent when there exists a permutation of factor560

numbers for which there is a one-to-one match between what parts of the reconstruction561

are explained by each factor.562

Testing the significance of each factor on held-out data563

In order to test whether a factor is significantly present in held-out data, we measure the564

overlap of the factor with the held-out data, and compare this to the null case (Figure S1).565

Overlap with the data is measured asW
⊤
⊛ X, so this quantity will be high at moments566

when the sequence occurs, producing a distribution ofW
⊤
⊛ X with high skew. In contrast,567

a distribution of overlaps exhibiting low skew indicates a sequence is not present in the568

data, since there are few moments of particularly high overlap. We estimate what skew569

levels would appear by chance by constructing null factors where temporal relationships570

between neurons have been eliminated; within the null factors, the timecourse of each571

neuron is circularly shifted by a random amount between 0 and L. We measure the skew572

of the overlap distributions for each null factor, and ask whether the skew we measured573

for the real factor is significant at p-value �, that is, if it exceeds the ((1 − �
K ) × 100)

tℎ
574

percentile of the null skews. Note the required Bonferroni correction for K comparisons575

when testing K factors.576

Choosing appropriate parameters for a new dataset577

Choice of appropriate parameters (�, K and L) will depend on the data type (sequence578

length, number, and density; amount of noise; etc.).579

In practice, we find that results are relatively robust to choice of parameters. When K580

or L is set larger than necessary, seqNMF tends to simply leave the unnecessary factors581

or time bins empty. For �, the goal is to find the ‘sweet spot’ (Figure 4) to explain as582

much data as possible while still producing sensible factorizations, that is, uncorrelated583

factors, with low values of ||W
⊤
⊛ XSH⊤

||1,i≠j . Our software package includes demo code584

for determining the best parameters for a new type of data, using the following strategy:585

1. Start with K slightly larger than the number of sequences anticipated in the data586

2. Start with L slightly longer than the maximum expected factor length587

3. Run seqNMF for a range of �’s, and for each � measure the reconstruction error588

(

||X −W⊛H||2F
)

and the factor competition regularization term

(

||W
⊤
⊛ XSH⊤

||1,i≠j

)

589

4. Choose a � slightly above the crossover point �0590

5. Decrease K if desired, as otherwise some factors will be consistently empty591

6. Decrease L if desired, as otherwise some time bins will consistently be empty592

In some applications, achieving the desired accuracy may depend on choosing a �593

that allows some inconsistency. It is possible to deal with this remaining inconsistency594
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by comparing factors produced by different random initializations, and only considering595

factors that arise from several different initializations, a strategy that has been previously596

applied to standard CNMF on neural data [34].597

During validation of our lambda choosing strategy we compared factorizations to598

ground truth sequences as shown in figure 4. To find the optimal lambda we used the599

product of two curves. The first curve was obtained by calculating the fraction of fits in600

which the true number of sequences was recovered as a function of �. The second curve601

was obtained by calculating similarity to ground truth as a function of �. The product602

of these two curves was smoothed using a three sample boxcar sliding window and the603

width was found as the lambda on either side of the peak value which was nearest the604

half-maximum.605

Measuring performance on noisy data by comparing seqNMF sequences to606

ground-truth sequences607

We wanted to measure the ability of seqNMF to recover ground-truth sequences even608

when the sequences are obstructed by noise. Our noisy data consisted of two ground-609

truth sequences, obstructed by a variety of noise types. We first took the top seqNMF610

factor, and made a reconstruction with only this factor. We then measured the correlation611

between this reconstruction and reconstructions generated from each of the ground-612

truth factors, and chose the best match. Next, we measured the correlation between the613

remaining ground-truth reconstruction and the second seqNMF factor. The mean of these614

two correlations was used as a measure of similarity between the seqNMF factorization615

and the ground-truth (noiseless) sequences.616

Algorithm speed617

In practice, our algorithm converges rapidly: fewer than 100 iterations on a typical 150618

neuron by 10,000 time point data matrix, typically less than 30 seconds on a standard619

PC. However, applications to much larger datasets may require faster performance. In620

these cases, we recommend running seqNMF on smaller subsets of the dataset, perhaps621

by incorporating seqNMF regularization into an online version of CNMF [46], and/or622

parallelizing the algorithm by running it on shorter datasets and merging/recombining623

factors that are common across these shorter runs (finding common factors by e.g. [34]).624

Hippocampus data625

The hippocampal data we used was collected in the Buzsaki lab [32], and is publicly626

available on the Collaborative Research in Computational Neuroscience (CRCNS) Data627

sharing website. The dataset we refer to as ‘Rat 1’ is in the hc-5 dataset, and the dataset628

we refer to as ‘Rat 2’ is in the hc-3 and dataset. Before running seqNMF, we processed629

the data by convolving the raw spike trains with a gaussian kernel of standard deviation630

100ms.631

Animal care and use632

We used male zebra finches (Taeniopygia guttata) from the MIT zebra finch breeding facility633

(Cambridge, MA). Animal care and experiments were reviewed and approved by the634

Massachusetts Institute of Technology Committee on Animal Care.635
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In order to prevent exposure to a tutor song, birds were foster-raised by female birds,636

which do not sing, starting on or before post-hatch day 15. For experiments, birds were637

housed singly in custom-made sound isolation chambers.638

Calcium imaging639

The calcium indicator GCaMP6f was expressed in HVC by intercranial injection of the viral640

vector AAV9.CAG.GCaMP6f.WPRE.SV40 [6] into HVC. In the same surgery, a cranial window641

was made using a GRIN (gradient index) lens (1mm diamenter, 4mm length, Inscopix).642

After at least one week, in order to allow for sufficient viral expression, recordings were643

made using the Inscopix nVista miniature fluorescent microscope.644

Neuronal activity traces were extracted from raw fluorescence movies using the645

CNMF_E algorithm, a constrained non-negative matrix factorization algorithm specialized646

for microendoscope data by including a local background model to remove activity from647

out-of-focus cells [48].648
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Figures802

Figure 1. Introduction to CNMF factorization failure modes motivating seqNMF regularization
(A) NMF (non-negative matrix factorization) approximates a dataset containing N neurons at T timepoints as a
sum of K rank-one matrices. Each matrix is generated as the outer product of two nonnegative vectors : wk
of length N , which stores a neural ensemble, and hk of length T , which holds the times at which the neural
ensemble is active. (B) Convolutional NMF also approximates an N × T dataset as a sum of K matrices. Each
matrix is generated as the convolution of two components: a non-negative matrix wk of dimension N × L that
stores a sequential pattern of the N neurons at L lags, and a vector of temporal loadings, hk, which holds
the times at which each factor pattern is active in the data. (C) Three types of inefficiencies are present in
unregularized CNMF: Type 1 in which two factors are used to reconstruct the same instance of a sequence, Type

2 in which two factors reconstruct a sequence in a piecewise manner, and Type 3 in which two factors are used

to reconstruct different instances of the same sequence.
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Figure 2. Testing seqNMF on simulated data
(A) A simulated dataset with two simulated neural sequences and a seqNMF factorization (K = 4, L = 250,
� = 0.0005) (B) SeqNMF is far more consistent than unregularized CNMF across 100 independent fits (K = 20,
L = 250, � = 0.0005). Inset: neural patterns for a typical CNMF factorization showing redundant copies of the
lower sequence. (C) Discrete violin plots showing the number of statistically significant factors vs. true number
of simulated sequences for seqNMF and CNMF for 100 fits of simulated data containing between 1 and 10

sequences (K = 20, L = 250, � = 0.0005). (D) A seqNMF factorization of two simulated neural sequences with
shared neurons that participate at the same latency in both sequences (E) A seqNMF factorization of two
simulated neural sequences with shared neurons that participate at different latencies in each sequence.
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Figure 3. Testing seqNMF performance on sequences contaminated with noise
(A) Ground-truth (noiseless) data, as well as an example of one ground-truth sequence used to generate the
data. Performance of seqNMF was tested under 4 different noise conditions: (B) probabilistic participation, (C)
additive noise, (D) timing jitter, and (E) sequence warping. For each noise type, we show: (top) examples of
synthetic data at 2 different noise levels, (middle) similarity of seqNMF factors to ground-truth factors across a

range of noise levels, showing 50 fits for each noise level, with red lines indicating the median, and (bottom)

exampleW’s extracted at 3 different noise levels. SeqNMF was run with K = 20, L = 250, and � chosen using the
automated procedure outlined in Figure 4.

23 of 35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/273128doi: bioRxiv preprint 

https://doi.org/10.1101/273128


seqNMF

Figure 4. Procedure for choosing � for a new dataset based on finding a balance between
reconstruction cost and correlation cost in noisy and noiseless data

(A) Normalized reconstruction cost (||X̃ − X||2F ) and correlation cost (||W
⊤
⊛ XSH⊤

||1,i≠j ) as a function of � for
simulated data containing two sequences in the presence of participation noise (70% participation probability).

The cross-over point �0 is marked. (B) The number of significant factors obtained from 20 fits of these data as a
function of � (mean number plotted in green). (C) The fraction of fits returning the correct number of significant
factors (two) as a function of �. (D) Similarity of the top two factors to ground-truth (noiseless) factors as a
function of �. (E) The product of the curves shown in (C) and (D), (smoothed curve plotted in orange) with a
circle marking the peak. (F) Normalized reconstruction cost and correlation cost as a function of � for simulated
data containing two noiseless sequences. (G-J) Same as (B-E) but for the noiseless data. (K) Summary plot
showing the range of values of � (vertical bars), relative to the cross-over point �0, that work well for each noise
condition (± half height points of the curve shown in panel E; note that this curve is a product of two other
curves, and thus narrower, giving a conservative estimate of the range of effective �s). Circles indicate the value
of � at the peak of the curves in (E). For each noise type, results for the first five non-zero noise levels from
Figure 3 are shown (increasing color saturation at high noise levels; Red, participation: 90,80,70,60 and 50%;

Orange, additive noise 0.4, 0.8, 1.2, 1.6 and 2%; Green, jitter: 5,10,15,20, and 25 timesteps; Purple, timewarp:

10,20,30,40,and 50%)
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Figure 5. Application of seqNMF to extract hippocampal sequences from two rats
(A) Firing rates of 110 neurons recorded in the hippocampus of Rat 1 during an alternating left-right task with a
delay period [32], as well as the seqNMF factor. Neurons are sorted according to their latency within the factor.

The red line shows the onset and offset of the forced delay periods, during which the animal ran on a treadmill

(B) Firing rates of 43 hippocampal neurons recorded in Rat 2 during the same task [32]. Neurons are sorted
according to their latency within each of the three significant extracted sequences. Both seqNMF reconstruction

of each factor (left) and raw data (right) are shown. The first two factors correspond to left and right trials, and

the third corresponds to running along the stem of the maze. (C) (Left) Reconstruction (red) and correlation
(blue) costs as a function of � for Rat 1. Arrow indicates � = 6x10−5, used for seqNMF factorization shown in (A)
(Right) Histogram of the number of significant factors across 30 runs of seqNMF. (D) Same as in (C) but for Rat 2.
Arrow indicates � = 3x10−5 used for factorization shown in (B).
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Figure 6. SeqNMF applied to calcium imaging data from a singing isolate bird reveals abnormal
sequence deployment

(A) Functional calcium signals recorded from 75 neurons, unsorted, in a singing isolate bird. (B) Reconstruction
and correlation cost as a function of lambda. The arrow at � = 0.005 indicates the value selected for the rest of
the analysis. (C) Number of significant factors for 100 runs of seqNMF with K = 10, � = 0.005. Arrow indicates 3
is the most common number of significant factors. (D) SeqNMF factor exemplars (W’s), sorting neurons by their
latency within each factor (E) The same data shown in (A), after sorting neurons by their latency within each
factor as in (D). A spectrogram of the bird’s song is shown at top, with a purple ‘*’ denoting syllable variants

correlated with w2. (F) Same as (E), but showing reconstructed data rather than calcium signals. Shown at top
are the temporal loadings (H) of each factor.
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Figure 7. SeqNMF applied to song spectrograms
(A) Spectrogram of juvenile song, with hand-labeled syllable types [31]. (B) Reconstruction cost and correlation
cost for these data as a function of �. Arrow denotes � = 0.0003, which was used to run seqNMF (C) SeqNMFW’s
for this song, fit with K = 8, L = 200ms, � = 0.0003. Note that there are three non-empty factors, corresponding
to the three hand-labeled syllables a, b, and c. (D) SeqNMF H’s (for the three non-empty factors) and seqNMF
reconstruction of the song shown in (A) using these factors.
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Table 1. Notation for convolutional matrix factorization

Shift operator

The operator

l→

(⋅) shifts a matrix in the→ direction by l timebins:

(
l→

A )⋅t = A⋅(t−l) and likewise (
←l

A )⋅t = A⋅(t+l)

The shift operator inserts zeros when (t − l) < 0 or (t + l) > T

Tensor convolution operator

Convolutive matrix factorization reconstructs a data matrix X

using a N ×K × L tensorW and a K × T matrix H:

X̃ =W⊛H =
∑

l W⋅⋅l

l→

H

Note that each neuron n is reconstructed as the sum of k convolutions:

X̃nt =
∑

k
∑

l WnklHk(t−l) ≡ (W⊛H)nt

Transpose tensor convolution operator

The following quantity is useful in several contexts:

W
⊤
⊛ X =

∑

l W⊤
⋅⋅l

←l

X

Note that each element (W
⊤
⊛ X)kt =

∑

l W⊤
⋅klX⋅(t+l) measures

the overlap (correlation) of factor k with the data at time t

CNMF reconstruction

X ≈ X̃ =
∑

kW⋅k⋅ ⊛Hk⋅ =W⊛H

Note that NMF is special case of CNMF, where L = 1

L1 norm excluding diagonal

For any K ×K matrix C,

||C||1,i≠j ≡
∑

k
∑

j≠k Cjk

Special matrices

1 is a K ×K matrix of ones

I is the K ×K identity matrix

S is a smoothing matrix: sij = 1 when |i − j| < L and otherwise sij = 0
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Table 2. Regularized NMF and CNMF: cost functions and algorithms

NMF

L = 1
2 ||X̃ − X||22 +R W ← W × XH⊤

X̃H⊤+ dR
dW

X̃ =WH H ← H × W⊤X
W⊤X̃+ dR

dH

CNMF

L = 1
2 ||X̃ − X||22 +R W⋅⋅l ← W⋅⋅l ×

X
l→
H
⊤

X̃
l→
H
⊤

+ dR
dW⋅⋅l

X̃ =W⊛H H ← H × W
⊤
⊛X

W
⊤
⊛X̃+ dR

dH

L1 regularization for H ( L1 forW is analogous)

R = �||H||1
dR

dW⋅⋅l
= 0

dR

dH = �

Soft orthogonality for H

R = �
2 ||HH⊤

||1,i≠j
dR

dW⋅⋅l
= 0

dR

dH = �(1 − I)H

Smoothed soft orthogonality for H (favors ‘events-based’)

R = �
2 ||HSH⊤

||1,i≠j
dR

dW⋅⋅l
= 0

dR

dH = �(1 − I)HS

Smoothed soft orthogonality forW (favors ‘parts-based’)

R = �
2 ||W

⊤
flatWflat||1,i≠j

dR

dW⋅⋅l
= �Wflat(1 − I)

where (Wflat)nt =
∑

lWnkl
dR

dH = 0

Smoothed cross-factor orthogonality (main seqNMF R)

R = �||W
⊤
⊛ XSH⊤

||1,i≠j
dR

dW⋅⋅l
= �

←l
X SH⊤(1 − I)

dR

dH = �(1 − I)W
⊤
⊛ XS
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Table 3. Key resources

Software/algorithm Source Link to code

seqNMF This paper https://github.com/FeeLab/seqNMF

CNMF [41, 40] https://github.com/colinvaz/nmf-toolbox

Sparse CNMF [30, 36] https://github.com/colinvaz/nmf-toolbox

Soft orthogonal NMF [7]

Other NMF extensions [9]

NMF [27]

CNMF_E (cell extraction) [48] https://github.com/zhoupc/CNMF_E

MATLAB MathWorks www.mathworks.com

Dataset Source Link to data

HVC, Isolate songbird This paper will upload to CRCNS after publication

Hippocampus, running wheel task [32] https://crcns.org/data-sets/hc/hc-3 and /hc-5

Other Source Link

Zebra finches (Taeniopygia guttata) MIT animal facility

AAV9.CAG.GCaMP6f.WPRE.SV40 [6] https://pennvectorcore.med.upenn.edu

Miniature microscope Inscopix https://www.inscopix.com/nvista
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Supplemental Figures803

Figure S1. Outline of the procedure used to assess factor significance.
(A) In order to test the significance of a factor on held-out data, we constructed null (shifted) versions of the
factor, and measured the distribution of overlap values (W

⊤
⊛ X) between each null factor and the held-out data.

(B)We also measured the distribution of overlap values between the real factor and the held-out data. (C)We
then compared the skewness of the actual distribution to the skewness of null distributions, and asked whether

it was significantly higher than the null case.

Figure S2. Biasing factorizations between sparsity inW or H
Two different factorizations of the same simulated data, where a sequence is always repeated precisely three

times. Both yield perfect reconstructions, and no cross-factor correlations. The factorizations differ in the

amount of features placed in W versus H. Both use K = 3 and � = 0.001. (A) Factorization achieved using
additional smoothed soft orthogonality for H, with �L1H = 1. (B) Factorization achieved using additional
smoothed soft orthogonality forW, with �L1W = 1.
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Figure S3. Biasing towards parts-based and events-based factorizations
Illustration of a trade-off between parts-based (W is more strictly orthogonal) and events-based (H is more
strictly orthogonal) factorizations in a dataset where some neurons are shared between different sequences.

The same data as in Figure 6 is factorized using smoothed soft orthogonality on H (top, events-based), or onW
(bottom, parts-based). Below each motivating cartoon factorization, we show seqNMF fits (W and H together
with the reconstruction) of the data in Figure 6. The right panels contain the raw data sorted according to

these factorizations. Favoring events-based or parts-based factorizations is a matter of preference. Parts-based

factorizations are particularly useful for separating neurons into ensembles. Events-based factorizations are

particularly useful for identifying what neural events occur when.
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Appendix 1804

Deriving multiplicative update rules
Standard gradient descent methods for minimizing a cost functionmust be adapted

when solutions are constrained to be non-negative, since gradient descent steps

may result in negative values. Lee and Seung invented an elegant and widely-

used algorithm for non-negative gradient descent that avoids negative values by

performing multiplicative updates [27]. They derive these multiplicative updates by

choosing an adaptive learning rate that makes additive terms cancel from standard

gradient descent on the cost function. We will reproduce their derivation here,

and detail how to extend it to the convolutional case [41] apply several forms of

regularization [30, 36, 7]. See Table 2 for a compilation of cost functions, derivatives

andmultiplicative updates for NMF and CNMF under several different regularization

conditions.

Standard NMF
NMF factorizes data X ≈ X̃ =WH. NMF factorizations seek to solve the following
problem:

(W̃, H̃) = argmin
W,H

L (W,H) (11)

L (W,H) = 1
2
||X̃ − X||2F (12)

W̃, H̃ ≥ 0 (13)

This problem is convex inW and H separately, not together, so a local minimum
is found by alternatingW and H updates. Note that:

d
dW

L (W,H) = X̃H⊤ − XH⊤
(14)

d
dH

L (W,H) = W⊤X̃ −W⊤X (15)

Thus, gradient descent steps forW and H are:

W ← W − �W(X̃H⊤ − XH⊤) (16)

H ← H − �H(W⊤X̃ −W⊤X) (17)

To arrive at multiplicative updates, Lee and Seung [27] set:

�W = W
WHH⊤ (18)

�H = H
W⊤WH

(19)
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Thus, the gradient descent updates become multiplicative:

W ← W × XH⊤

WHH⊤ = W × XH⊤

X̃H⊤
(20)

H ← H × W⊤X
W⊤WH

= H × W⊤X
W⊤X̃

(21)

where the division and × are element-wise.

Standard CNMF
Convolutional NMF factorizes data X ≈ X̃ =

∑

lW⋅⋅l

l→
H = W⊛H. CNMF factoriza-

tions seek to solve the following problem:

(W̃, H̃) = argmin
W,H

L (W,H) (22)

L (W,H) = 1
2
||X̃ − X||2F (23)

W̃, H̃ ≥ 0 (24)

The derivation above for standard NMF can be applied for each l, yielding the
following update rules for CNMF [41]:

W⋅⋅l ← W⋅⋅l ×
X
l→
H
⊤

X̃
l→
H
⊤ (25)

H ← H ×
∑

lW⊤
⋅⋅l

←l
X

∑

lW⊤
⋅⋅l

←l

X̃

= H × W
⊤
⊛ X

W
⊤
⊛ X̃

(26)

Note that NMF is a special case of CNMF where L = 0.

Incorporating regularization terms
Suppose we want to regularize by adding a new term, R to the cost function:

(W̃, H̃) = argmin
W,H

L (W,H) (27)

L (W,H) = 1
2
||X̃ − X||2F +R (28)

W̃, H̃ ≥ 0 (29)

Using a similar trick to Lee and Seung, we choose a �W, �H to arrive at a simple
multiplicative update. Below is the standard NMF case, which generalizes trivially

to the CNMF case.
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Note that:
dL
dW

= X̃H⊤ − XH⊤ + dR
dW

(30)

dL
dH

= W⊤X̃ −W⊤X + dR
dH

(31)

We set:

�W = W
X̃H⊤ + dR

dW

(32)

�H = H
W⊤X̃ + dR

dH

(33)

Thus, the gradient descent updates become multiplicative:

W ← W − �W
dL
dW

= W × XH⊤

X̃H⊤ + dR

dW

(34)

H ← H − �H
dL
dH

= H × W⊤X
W⊤X̃ + dR

dH

(35)

where the division and × are element-wise.
This framework enables flexible incorporation of different types of regulariza-

tion into the multiplicative NMF update algorithm. This framework also extends

naturally to the convolutional case. See Table 2 for examples of several regulariza-

tion terms, including L1 sparsity [30, 36] and soft orthogonality [7], as well as the
terms we introduce here to combat the types of inefficiencies and cross correlations

we identified in convolutional NMF, namely, smoothed orthogonality for H andW,
and smoothed cross-factor orthogonality, the primary seqNMF regularization term.

For the seqNMF regularization term, �||W
⊤
⊛ XSH⊤

||1,i≠j , the multiplicative update

rules are:

W⋅⋅l ← W⋅⋅l ×
X
(l→
H
)⊤

X̃
(l→
H
)⊤

+ �
←l
X SH⊤(1 − I)

(36)

H ← H × W
⊤
⊛ X

W
⊤
⊛ X̃ + �(1 − I)(W

⊤
⊛ XS)

(37)

Where the division and × are element-wise. The operator
l→
(⋅) shifts a matrix in the

→ direction by l timebins, i.e. a delay by l timebins, and
←l
(⋅) shifts a matrix in the

← direction by l timebins (Table 1). Note that multiplication with the K ×K matrix
(1 − I) effectively implements factor competition because it places in the kth row a
sum across all other factors.
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