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1

Abstract2

The ability to identify interpretable, low-dimensional features that capture the dynamics3

of large-scale neural recordings is a major challenge in neuroscience. Repeated temporal4

patterns (sequences) are not succinctly captured by traditional dimensionality reduction5

techniques, so neural data is often aligned to behavioral task references. We describe a6

task-independent, unsupervised method, which we call seqNMF, that provides a7

framework for extracting sequences from high-dimensional datasets, and assessing the8

significance in held-out data. We test seqNMF on simulated datasets under a variety of9

noise conditions, and also on several neural datasets. In a hippocampal dataset, seqNMF10

identifies neural sequences that match those calculated manually by reference to11

behavioral events. In a songbird dataset, seqNMF discovers abnormal motor sequences12

in birds that lack stereotyped songs. Thus, by identifying temporal structure directly from13

neural data, seqNMF enables dissection of complex neural circuits in the absence of14

reliable temporal references from stimuli or behavioral outputs.15

16

Introduction17

The ability to detect and analyze temporal sequences embedded in a complex sensory18

stream is an essential cognitive function, and as such is a necessary capability of neuronal19

circuits in the brain [13, 28, 5, 26], as well as artificial intelligence systems [14, 57]. The20

detection and characterization of temporal structure in signals is also useful for the21

analysis of many forms of physical and biological data. In neuroscience, recent advances22

in technology for electrophysiological and optical measurements of neural activity have23

enabled the simultaneous recording of hundreds or thousands of neurons [9, 33, 52, 29],24

in which neuronal dynamics are often structured in sparse sequences [23, 24, 44, 19, 45].25
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Such sequences can be identified by averaging across multiple trials, but only in cases26

where an animal receives a temporally precise sensory stimulus, or generates a sufficiently27

stereotyped motor output.28

However, it could be useful to extract sequences on a moment-to-moment basis29

(without averaging), for example to study internal neuronal dynamics in the brain during30

learning, sleep, or diseased states. In these applications, it is not possible to use external31

timing references, and sequences must be extracted directly from the neuronal data. A32

traditional unsupervised approach for directly extracting structure in neuronal data is33

dimensionality reduction. Intuitively, sequences may be thought of as low dimensional,34

and yet dimensionality reduction techniques such as PCA and NMF do not work for35

sequences, because those methods only model synchronous patterns of activity.36

Alternative approaches that search for repeating neural patterns require surprisingly37

challenging statistical analysis [7, 41, 49]. While progress has been made in analyzing non-38

synchronous sequential patterns using statistical models that capture cross-correlations39

between pairs of neurons [51, 21, 53, 59, 22], suchmethodsmay not have statistical power40

to scale to patterns that include many (more than a few dozen) neurons, may require long41

periods (≥ 105 timebins) of stationary data, and may have challenges in dealing with (non-42

sequential) background activity. For a review highlighting features and limitations of these43

methods see [49]. Here we took an alternative, matrix factorization-based, approach that44

aims to extract sequences. We reasoned that this approach would complement existing45

methods by providing a more holistic and potentially simpler description of neural firing46

dynamics.47

One promising method for the unsupervised detection of temporal patterns is convo-48

lutional non-negative matrix factorization (convNMF) [56, 55] (Figure 1), which has been49

applied to the analysis of audio signals such as speech [43, 55, 61], as well as neural50

signals [47]. ConvNMF identifies exemplar patterns (factors) in conjunction with the times51

and amplitudes of pattern occurrences. This strategy eliminates the need to average52

activity aligned to any external behavioral references. While convNMF produces excellent53

reconstructions of the data, it does not automatically produce the minimal number of54

factors required. Indeed, if the number of factors in the convNMF model is greater than55

the true number of sequences, the algorithm returns overly complex and redundant56

factorizations. These redundant factorizations are different each time the algorithm is run,57

producing inconsistent results [47]. Notably, there is nothing in the convNMF algorithm58

that favors the minimal factorization, as would be favored by the principle of ‘Occam’s59

Razor’.60

Here we describe a modification of the convNMF algorithm that suppresses redundant61

factors, biasing the results toward factorizations with a minimal number of factors. This is62

achieved by adding a penalty term to the convNMF cost function. Unlike other common63

approaches such as sparsity regularization [65, 43, 50, 47] that constrain the make-up64

of each factor, our regularization penalizes the correlations between factors that result65

from redundant factorizations. We build on earlier applications of soft-orthogonality66

constraints to NMF [10] to capture the types of temporally offset correlations that may67

occur in the convolutional case.68

Our algorithm, which we call seqNMF, produces minimal and consistent factorizations69

in synthetic data, including under a variety of noise conditions, with high similarity to70

ground-truth sequences. We further tested seqNMF on hippocampal spiking data in71
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Figure 1. Introduction to convNMF factorization
(A) NMF (non-negative matrix factorization) approximates a dataset containing N neurons at T timepoints as a
sum of K rank-one matrices. Each matrix is generated as the outer product of two nonnegative vectors: wk
of length N , which stores a neural ensemble, and hk of length T , which holds the times at which the neural
ensemble is active, and the relative amplitudes of this activity. (B) Convolutional NMF also approximates an
N × T dataset as a sum of K matrices. Each matrix is generated as the convolution of two components: a
non-negative matrix wk of dimension N × L that stores a sequential pattern of the N neurons at L lags, and a
vector of temporal loadings, hk, which holds the times at which each factor pattern is active in the data, and the
relative amplitudes of this activity. (C) Three types of inefficiencies are present in unregularized convNMF: Type
1 in which two factors are used to reconstruct the same instance of a sequence, Type 2 in which two factors

reconstruct a sequence in a piecewise manner, and Type 3 in which two factors are used to reconstruct different

instances of the same sequence. For each case, the factors (W and H) are shown, as well as the reconstruction
(X̃ =W⊛H = w1 ⊛ h1 + w2 ⊛ h2).

which neural sequences have previously been described. Finally, we use seqNMF to72

extract sequences in a functional calcium imaging dataset recorded in vocal/motor cortex73

of untutored songbirds that sing pathologically variable songs. We found that repeat-74

able neural sequences are activated in an atypical and overlapping fashion, suggesting75

potential neural mechanisms for this pathological song variability.76

Results77

Matrix factorization framework for unsupervised discovery of fea-78

tures in neural data79

Matrix factorization underlies many well known unsupervised learning algorithms [60]80

with applications to neuroscience [15], including principal component analysis (PCA) [46],81

non-negative matrix factorization (NMF) [34], dictionary learning, and k-means clustering.82

We start with a data matrix, X, containing the activity of N neurons at T times. If the83

neurons exhibit a single repeated pattern of synchronous activity, the entire data matrix84

can be reconstructed using a column vector w representing the neural pattern, and a row85

vector h representing the times and amplitudes at which that pattern occurs (temporal86

loadings). In this case, the data matrix X is mathematically reconstructed as the outer87
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product of w and h). If multiple patterns are present in the data, then each pattern can be88

reconstructed by a separate outer product, where the reconstructions are summed to89

approximate the entire data matrix (Figure 1A) as follows:90

Xnt ≈ X̃nt =
K
∑

k=1
WnkHkt = (WH)nt (1)

Where Xnt is the (nt)tℎ element of matrix X. Here, in order to store K different patterns,91

W is aN×K matrix containing theK exemplar patterns, andH is aK×T matrix containing92

the K timecourses:93

W =

⎡

⎢

⎢

⎢

⎣

| | |

w1 w2 ⋯ wK
| | |

⎤

⎥

⎥

⎥

⎦

H =

⎡

⎢

⎢

⎢

⎢

⎣

− h1 −
− h2 −

⋮
− hK −

⎤

⎥

⎥

⎥

⎥

⎦

(2)

Given a data matrix with unknown patterns, the goal of these unsupervised learning94

algorithms is to discover a small set of patterns (W) and a corresponding set of temporal95

loading vectors (H) that approximate the data. In the case that the number of patterns96

(K) is sufficiently small (less than N and T), this corresponds to a dimensionality reduction,97

whereby the data is expressed in more compact form. NMF additionally requires that98

W and Hmust contain only non-negative numbers. The discovery of unknown factors99

is often accomplished by minimizing the following cost function, which measures (using100

the Frobenius norm, ‖M‖F=
√

∑

ij Mij ) the element-by-element sum of all squared errors101

between a reconstruction X̃ =WH and the original data matrix X:102

(W∗,H∗) = argmin
W,H

‖X̃ − X‖2F (3)

The factors W∗ and H∗ that minimize this cost function produce an optimal recon-103

struction X̃∗ =W∗H∗ While this general strategy works well for extracting synchronous104

activity, it is unsuitable for discovering temporally extended patterns—first, because each105

element in a sequence must be represented by a different factor, and second, because106

NMF assumes that the columns of the data matrix are independent ‘samples’ of the107

data, so permutations in time have no effect on the factorization of a given dataset. It is108

therefore necessary to adopt a different strategy for temporally extended features.109

Convolutional non-negative matrix factorization (convNMF)110

Convolutional NMF (convNMF) [56, 55] extends NMF to provide a framework for extracting111

temporal patterns and sequences from data. While classical NMF represents each pattern112

as a single vector (Figure 1A), convNMF explicitly represents an exemplar pattern of neural113

activity over a brief period of time; the pattern is stored as an N × Lmatrix, where each114

column (indexed by l = 1 to L) indicates the activity of neurons at different timelags115

within the pattern (Figure 1B, where we call this matrix pattern w1 by analogy with NMF).116

The times at which this pattern/sequence occurs are stored using timeseries vector h1,117

as for NMF. The reconstruction is produced by convolving the N × L pattern with the118

timeseries h1 (Figure 1B).119

If the dataset contains multiple patterns, each pattern is captured by a differentN × L120

matrix and a different associated timeseries vector h. A collection of K different patterns121
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Table 1. Notation for convolutional matrix factorization

Shift operator

The operator

l→

(H) shifts a matrix H in the→ direction by l timebins:

(
l→

H )⋅t = H⋅(t−l) and likewise (
←l

H )⋅t = H⋅(t+l)

where ⋅ indicates all elements along the respective matrix dimension.

The shift operator inserts zeros when (t − l) < 0 or (t + l) > T

Tensor convolution operator

Convolutive matrix factorization reconstructs a data matrix X

using a N ×K × L tensorW and a K × T matrix H:

X̃ =W⊛H =
∑

l W⋅⋅l

l→

H

Note that each neuron n is reconstructed as the sum of k convolutions:

X̃nt =
∑

k
∑

l WnklHk(t−l) ≡ (W⊛H)nt

Transpose tensor convolution operator

The following quantity is useful in several contexts:

W
⊤
⊛ X =

∑

l(W⋅⋅l)⊤
←l

X

Note that each element (W
⊤
⊛ X)kt =

∑

l(W⋅kl)⊤X⋅(t+l) =
∑

l
∑

nWnklXn(t+l) measures

the overlap (correlation) of factor k with the data at time t

CNMF reconstruction

X ≈ X̃ =
∑

kW⋅k⋅ ⊛Hk⋅ =W⊛H

Note that NMF is a special case of CNMF, where L = 1

L1 norm excluding diagonal elements

For any K ×K matrix C, ‖C‖1,i≠j≡
∑

k
∑

j≠k Cjk

Special matrices

1 is a K ×K matrix of ones

I is the K ×K identity matrix

S is a T × T smoothing matrix: Sij = 1 when |i − j| < L and otherwise Sij = 0
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can be compiled together into an N × K × L array (also known as a tensor) W and a122

corresponding K × T timeseries matrix H. Analogous to NMF, convNMF generates a123

reconstruction of the data as a sum of K convolutions between each neural activity124

pattern (W), and its corresponding temporal loadings (H):125

Xnt ≈ X̃nt =
K
∑

k=1

L−1
∑

l=0
WnklHk(t−l) ≡ (W⊛H)nt (4)

where the tensor/matrix convolution operator ⊛ (notation summary, Table 1) reduces to126

matrix multiplication in the L = 1 case, which is equivalent to standard NMF. The quality127

of this reconstruction can be measured using the same cost function shown in Equation128

3, and W and H may be found iteratively using similar multiplicative gradient descent129

updates to standard NMF [34, 56, 55].130

While convNMF can perform extremely well at reconstructing sequential structure,131

it can be challenging to use when the number of sequences in the data is not known132

[47]. In this case, a reasonable strategy would be to choose K at least as large as the133

number of sequences that one might expect in the data. However, if the number of134

sequences is than the actual number of sequences, convNMF will identify more significant135

factors than are minimally required. This is because each sequence in the data may136

be approximated equally well by a single sequential pattern or by a linear combination137

of multiple partial patterns. A related problem is that running convNMF from different138

random initial conditions produces inconsistent results, finding different combinations139

of partial patterns on each run [47]. These inconsistency errors fall into three main140

categories (Figure 1C):141

• Type 1: Two or more factors are used to reconstruct the same instances of a se-142

quence.143

• Type 2: Two or more factors are used to reconstruct temporally different parts of144

the same sequence, for instance the first half and the second half.145

• Type 3: Identical factors are used to reconstruct different instances of a sequence.146

Together, these inconsistency errors manifest as strong correlations between different147

redundant factors, as seen in the similarity of their temporal loadings (H) and/or their148

exemplar activity patterns (W).149

SeqNMF: A constrained convolutional non-negative matrix factorization150

Regularization is a common technique in optimization that allows the incorporation of151

constraints or additional information with the goal of improving generalization perfor-152

mance or simplifying solutions to resolve degeneracies [25]. To reduce the occurrence of153

redundant factors (and inconsistent factorizations) in convNMF, we sought a principled154

way of penalizing the correlations between factors by introducing a penalty term, R, into155

the convNMF cost function of the following form:156

(W∗,H∗) = argmin
W,H

(

‖X̃ − X‖2F+R
)

(5)

In this section, we will motivate a novel cost function that effectively minimizes the number157

of factors by penalizing spatial and temporal correlations between different factors. We158

will build up the full cost function by addressing, one at a time, the types of correlations159

generated by each type of error.160

6 of 48

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2018. ; https://doi.org/10.1101/273128doi: bioRxiv preprint 

https://doi.org/10.1101/273128


seqNMF

Regularization has previously been used in NMF to address the problem of duplicated161

factors, which, similar to Type 1 errors above, present as correlations between theH’s [10].162

Such correlations are measured by computing the correlation matrix HH⊤, which contains163

the correlations between the temporal loadings of every pair of factors. The regularization164

may be implemented using the penalty term R = �‖HH⊤
‖1,i≠j , where the norm ‖⋅‖1,i≠j165

sums the absolute value of every matrix entry except those along the diagonal (notation166

summary, Table 1) so that correlations between different factors are penalized, while167

the requisite correlation of each factor with itself is not. Thus, during the minimization168

process, similar factors compete, and a larger amplitude factor drives down the H of a169

correlated smaller factor. The parameter � controls the magnitude of the penalty term R.170

In convNMF, a penalty term based onHH⊤ yields an effective method to prevent errors171

of Type 1, because it penalizes the associated zero lag correlations. However, it does172

not prevent errors of the other types, which exhibit different types of correlations. For173

example Type 2 errors result in correlated temporal loadings that have a small temporal174

offset and thus are not detected by HH⊤. One simple way to address this problem is175

to smooth the H’s in the penalty term with a square window of length 2L − 1 using176

the smoothing matrix S (Sij = 1 when |i − j| < L and otherwise Sij = 0). The resulting177

penalty, R = �‖HSH⊤
‖, allows factors with small temporal offsets to compete, effectively178

preventing errors of Type 1 and 2.179

Unfortunately this penalty does not prevent errors of Type 3, in which redundant180

factors with highly similar patterns inW are used to explain different instances of the181

same sequence. Such factors have temporal loadings that are segregated in time, and182

thus have low correlations, to which the cost term ‖HSH⊤
‖ is insensitive. One way to183

resolve errors of Type 3 might be to include an additional cost term that penalizes the184

similarity of the factor patterns in W. A challenge with this approach is that, in the185

convNMF framework, there is no constraint on temporal translations of the sequence186

within W. For example, if two redundant factors contain identical sequences that are187

simply offset by one time bin (in the L dimension), then these patterns would have zero188

correlation. Such offsets might be accounted for by smoothing theWmatrices in time189

before computing the correlation (Table 3), analogous to ‖HSH⊤
‖. The general approach190

of adding an additional cost term forW correlations has the disadvantage that it requires191

setting an extra parameter, namely the � associated with this cost.192

Thus, we chose an alternative approach to resolve errors of Type 3 that simultaneously193

detects correlations inW and H using a single correlation cost term. We note that, for194

Type 3 errors, redundantW patterns have a high degree of overlap with the data at the195

same times, even though their temporal loadings are segregated at different times. To196

introduce competition between these factors, we first compute, for each pattern inW its197

overlap with the data at each time t. This quantity is captured in symbolic form byW
⊤
⊛ X198

(See Table 1). We then compute the pairwise correlation between the temporal loading of199

each factor and the overlap of every other factor with the data. The correlation cost sums200

up these correlations across all pairs of factors, implemented as follows:201

R = �‖(W
⊤
⊛ X)SH⊤

‖1,i≠j (6)

When incorporated into the update rules, this causes any factor that has a high overlap202

with the data to suppress the temporal loadings (H) of any other factors active at that203

time. Thus, factors compete to explain each feature of the data, favoring solutions that204
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use a minimal set of factors to give a good reconstruction. We refer to this minimal set as205

an efficient factorization. The resulting global cost function is:206

(W∗,H∗) = argmin
W,H

(

‖X̃ − X‖2F+�‖(W
⊤
⊛ X)SH⊤

‖1,i≠j

)

(7)

The update rules forW and H are based on the derivatives of this global cost function,207

leading to a simple modification of the standard multiplicative update rules used for NMF208

and convNMF [34, 56, 55] (Table 3). Note that the addition of this correlation cost term209

does not formally constitute regularization, because it also includes a contribution from210

the data matrix X. rather than just the model variablesW and H.211

Below, we test the performance of this penalty based on correlations between factors.212

We will later consider different approaches to adding penalties to the convNMF cost213

function, including an L1 norm penalty. We will also examine a parameter sweep of214

the number of factors (K), as well as additional penalties to bias the tradeoff between215

temporal or pattern correlations.216

Testing the performance of seqNMF on simulated sequences217

To compare the performance of seqNMF to unregularized convNMF, we simulated neural218

sequences of a sort commonly encountered in neuronal data (Figure 2A). The simulated219

data were used to test several aspects of the seqNMF algorithm: convergence, consis-220

tency of factorizations, the ability of the algorithm to discover the correct number of221

sequences in the data, and robustness to noise. As an initial pass, simulated datasets222

were constructed by placing three ground-truth sequences at random non-overlapping223

times. Each sequence ensemble consisted of 10 neurons evenly spaced throughout224

a duration of 30 timesteps. The resulting data matrix had a total duration of 15000225

timesteps and contained on average 60±6 instances of each of the three sequences.226

The seqNMF algorithm was run for 1000 iterations and reliably converged to a stable227

asymptotic value of root-mean-squared-error (RMSE) (Figure 2B). RMSE reached to within228

10% of the asymptotic value within 100 iterations.229

Consistency of seqNMF factorization230

We set out to determine if seqNMF exhibits the desirable property of consistency—namely231

whether it returns similar sequences each time it is run on the same dataset using different232

random initializations ofW and H. Consistency was assessed as the extent to which there233

is a good one-to-one match between factors across different runs (Methods 10). Due to234

the inefficiencies outlined in Figure 1C, with K larger than the true number of sequences,235

convNMF yielded low consistency scores typically ranging from 0.2 to 0.4 on a scale from236

zero to one (Figure 2C, orange). In contrast, seqNMF factorizations were nearly identical237

across different fits of noiseless data, producing consistency scores that were always238

higher than any we measured for convNMF, and typically (>80% of the time) higher than239

0.99 (Figure 2C, gray). Both convNMF and seqNMF had near-perfect reconstruction error240

for all combinations of K and L that exceed the number and duration of sequences in241

the data (not shown). However, convNMF exhibited low consistency scores, a problem242

that was further exacerbated for larger values of K. In contrast, seqNMF exhibited high243

consistency scores across a wide range of values of both K and L.244

We also tested the consistency of seqNMF factorizations for the case in which a245

population of neurons is active in multiple different sequences. Such neurons that are246
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Figure 2. Testing seqNMF on simulated data
(A) A simulated dataset with three sequences and a seqNMF factorization (K = 20, L = 50, � = 0.003). Each
significant seqNMF factor is shown in a different color. At left are the exemplar patterns (W) and on top are
the timecourses (H). (B) RMSE as a function of seqNMF iteration number. SeqNMF was run on a simulated
dataset with three sequences and 15000 timebins (≈ 60 instances of each sequence). Twenty independent runs
of seqNMF are shown. On this dataset, seqNMF converges to within 10% of the asymptotic error value within ≈
100 iterations. (C) SeqNMF is more consistent than unregularized convNMF across 400 independent fits (K = 20,
L = 50, � = 0.003). (D) Plot showing the number of statistically significant factors vs. true number of simulated
sequences for seqNMF and convNMF, for data containing between 1 and 10 sequences. Shown for each case is

a vertical histogram representing the number of significant factors over 20 runs (K = 20, L = 50, � = 0.003). (E)
A seqNMF factorization of two simulated neural sequences with shared neurons that participate at the same

latency in both sequences. (F) A seqNMF factorization of two simulated neural sequences with shared neurons
that participate at different latencies in each sequence.
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shared across different sequences have been observed in several neuronal datasets247

[44, 45, 24]. For one test, we constructed two sequences in which shared neurons were248

active at a common pattern of latencies in both sequences; in another test, shared249

neurons were active in a different pattern of latencies in each sequence. In both tests,250

seqNMF achieved near-perfect reconstruction error, and consistency was similar to the251

case with no shared neurons (Figure 2E, F).252

Validating the statistical significance of extracted sequences253

To assess statistical significance, one can apply seqNMF to a subset of the data and254

measure whether the extracted sequences appear in held-out data substantially more255

than sequences drawn from a null model. We measured the appearance of sequences in256

held-out data by measuring their overlap with held-out data,W
⊤
⊛ X. The overlap is high257

at timepoints at which the sequence occurs (relative to other timepoints). For a sequence258

that matches ground truth in synthetic data, this distribution of overlap values exhibits a259

heavy tail, indicating the presence of large outliers that correspond to times where the260

extracted sequence appears in held out data. In contrast, a candidate sequence that does261

not reliably occur in the held-out data produces a distribution of overlaps that appears262

more symmetric (Figure S1).263

While there are many ways of detecting outliers and quantifying “heavy-tailedness”264

of a distribution, we use the skewness (the third central moment) as a simple measure.265

In particular, we generate null distributions by circularly shifting the pattern matrices266

W along the time lag dimension (see Methods 10) and compare the skewness of these267

distributions to the skewness of the distribution produced by the unshiftedW.268

Runs of seqNMF on simulated and real data have revealed that the algorithm produces269

two types of factors that can be immediately ruled out as candidate sequences: 1)270

empty factors with zero amplitude in all neurons at all lags and 2) factors that have271

amplitude in only one neuron. The latter case occurs often in datasets where one neuron272

is substantially more active than other neurons, and thus accounts for a large amount273

of variance in the data. SeqNMF also occasionally generates factors that appear to274

capture one moment in the test data, especially in short datasets, where this can account275

for a substantial fraction of the data variance. Such sequences are easily identified as276

non-significant when tested on held-out data using the skewness test.277

Note that if � is set too small, seqNMF will produce multiple redundant factors to278

explain one sequence in the data. In this case, each redundant candidate sequence will279

pass the significance test outlined here. We will address below a procedure for choosing280

� and methods for determining the number of sequences.281

SeqNMF extracts the correct number of sequences in noise-free synthetic data282

A successful factorization should contain the same number of significant factors as283

exist sequences in the data, at least in datasets for which the number of sequences284

is unambiguous. To compare the ability of seqNMF and convNMF to recover the true285

number of patterns in a dataset, we generated simulated noise-free data containing286

between 1 and 10 different sequences. We then ran many independent fits of these data,287

using both seqNMF and convNMF, and measured the number of significant factors. We288

found that convNMF overestimates the number of sequences in the data, returning K289

significant factors on nearly every run. In contrast, seqNMF tends to return a number of290
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Figure 3. Testing seqNMF performance on sequences contaminated with noise
Performance of seqNMF was tested under 4 different noise conditions: (A) probabilistic participation, (B)
additive noise, (C) timing jitter, and (D) sequence warping. For each noise type, we show: (top) examples of
synthetic data at 3 different noise levels; (middle) similarity of seqNMF factors to ground-truth factors across a

range of noise levels, showing 20 fits for each noise level; and (bottom) example of one of theW’s extracted at 3
different noise levels (same noise levels as data shown in top row). SeqNMF was run with K = 20, L = 50. In
these examples, the algorithm was run with � chosen using the automated procedure outlined in Figure 4. For
results at different values of �, see Figure S2.

significant factors that closely matches the actual number of sequences (Figure 2D).291

Robustness to noisy data292

SeqNMF was able to correctly extract sequences even in data corrupted by noise of types293

commonly found in neural data. We consider four common types of noise: participation294

noise, in which individual neurons participate probabilistically in instances of a sequence;295

additive noise, in which neuronal events occur randomly outside of normal sequence296

patterns; temporal jitter, in which the timing of individual neurons is shifted relative to297

their typical time in a sequence; and finally, temporal warping, in which each instance298

of the sequence occurs at a different randomly selected speed. To test the robustness299

of seqNMF to each of these noise conditions, we factorized data containing three neu-300

ral sequences at a variety of noise levels. The value of � was chosen using methods301

described in the next section. SeqNMF proved relatively robust to all four noise types,302

as measured by quantifying the similarity between seqNMF factors and ground-truth303

sequences (Methods section 10, Figure 3). For low noise conditions, seqNMF produced304

factors that were highly similar to ground-truth; this similarity gracefully declined as noise305

increased. Visualization of the extracted factors revealed that they tend to qualitatively306

match ground-truth sequences even in the presence of high noise (Figure 3). Together,307

these findings suggest that seqNMF is suitable for extracting sequence patterns from308

neural data with realistic forms of noise.309
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We also tested the performance of seqNMF as a function of dataset size. To do so,310

we generated data of different sizes containing different numbers of instances of the311

underlying ground-truth sequences, ranging from 1 to 20. For intermediate levels of312

additive noise, we found that 3 examples of each sequence were sufficient for seqNMF313

to correctly extract factors with similarity scores within 10% of asymptotic performance314

(Figure S3).315

Method for choosing an appropriate value of �316

Here we present procedures for guiding the choice of � in seqNMF that address two317

goals of regularization: to simplify the solution space of ill-posed problems and to reduce318

overfitting. The choice of � controls a trade-off between reconstruction accuracy and the319

efficiency/consistency of the resulting factorizations (Figure 4). The goal is to reconstruct320

only the repeating temporal patterns in the data and to do so with an efficient, maximally321

uncorrelated set of factors. We will first describe a procedure that balances a measure322

of correlation between factors with reconstruction error. We then describe a procedure323

based on cross-validation in held-out data. Both of these procedures are validated under324

a variety of noise conditions using simulated data for which the ground truth factors are325

known.326

In the first procedure we measure the effect of � on both reconstruction error and327

correlation cost in synthetic datasets containing three sequences (Figure 4). For any328

given factorization, the reconstruction error is ‖W⊛H − X‖2F , and the efficiency may be329

estimated using the correlation cost term (‖(W
⊤
⊛X)SH⊤

‖1,i≠j ). SeqNMF was run with many330

random initializations over a range of � spanning six orders of magnitude. For small �, the331

behavior of seqNMF approaches that of convNMF, producing a large number of redundant332

factors with high correlation cost. In the regime of small �, correlation cost saturates at333

a large value and reconstruction error saturates at a minimum value (Figure 4A). At the334

opposite extreme, in the limit of large �, seqNMF returns a single significant factor with335

zero correlation cost because all other factors have been suppressed to zero amplitude.336

In this limit, the single factor is unable to reconstruct multi-sequence data, resulting337

in large reconstruction error. Between these extremes, there exists a region in which338

increasing � produces a rapidly increasing reconstruction error and a rapidly decreasing339

correlation cost. Following the intuition that the optimal choice of � for seqNMF would340

lie in this cross-over region where the costs are balanced, we set out to quantitatively341

identify, for known synthetic sequences, the optimal � at which seqNMF has the highest342

probability of recovering the correct number of significant factors, and at which these343

factors most closely match the ground truth sequences.344

The following procedure was implemented: For a given dataset, seqNMF is run several345

times at a range of values of �, and saturating values of reconstruction cost and correlation346

cost are recorded (at the largest and smallest values of �). Costs are normalized to vary347

between 0 and 1, and the value of � at which the reconstruction and correlation cost348

curves intersect is determined (Figure 4B). This intersection point, �0, then serves as a349

precise reference by which to determine the correct choice of �. We then separately350

calibrated the reference �0 to the �’s that performed well in synthetic datasets, with and351

without noise, for which the ground-truth is known. This analysis revealed that values of �352

between 2�0 and 5�0 performed well across different noise types and levels (Figure 4B,C).353

For additive noise, performance was better when � was chosen to be near �0, while with354
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Figure 4. Procedure for choosing � for a new dataset based on finding a balance between
reconstruction cost and correlation cost

(A) Simulated data containing three sequences in the presence of participation noise (50% participation prob-
ability). This noise condition is used for the tests in (B-F). (B) Normalized reconstruction cost (||X̃ − X||2F ) and

correlation cost (||(W
⊤
⊛ X)SH⊤

||1,i≠j ) as a function of � for these data. The cross-over point �0 is marked with a
black circle. (C) The number of significant factors obtained from 20 fits of these data as a function of � (mean
number plotted in orange). The correct number of factors (three) is marked by a red triangle. (D) The fraction of
fits returning the correct number of significant factors as a function of �. (E) Similarity of the top three factors
to ground-truth (noiseless) factors as a function of �. (F) Composite performance measured as the product of
the curves shown in (D) and (E), (smoothed curve plotted in orange with a circle marking the peak). Shaded

region indicates the range of � that works well (± half height of composite performance). (G) Simulated data
containing three noiseless sequences. (H-L) Same as (B-F) but for the noiseless data. (M) Summary plot showing
the range of values of � (vertical bars), relative to the cross-over point �0, that work well for each noise condition
(± half height points of composite performance; note that this curve is a product of two other curves, and thus
narrower, giving a conservative estimate of the range of effective �s). Circles indicate the value of � at the peak
composite performance. For each noise type, results for the all non-zero noise levels from Figure 3 are shown

(increasing color saturation at high noise levels; Green, participation: 90, 80, 70, 60, 50, 40, 30, and 20%; Orange,

additive noise 0.5, 1, 2, 2.5, 3, 3.5, and 4%; Purple, jitter: SD of the distribution of random jitter: 5, 10, 15, 20, 25,

30, 35, 40, and 45 timesteps; Grey, timewarp: 13, 16, 20, 26, 33, 40, 46, and 53%). The noise type and level in

panels (A-F) is indicated by *. Gray band indicates a range between 2�0 and 5�0. Values of � in this range tended
to perform well across the different noise conditions. In real data, it may be useful to explore a wider range of �.
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other noise types, performance was better at higher �s (≈ 5�0). For all of the data shown355

in Figure 3, we chose � = 2�0. Figure S2 shows how choosing � = �0 for additive noise356

and � = 5�0 for the other noise types yields slightly improved performance. Note that the357

procedure for choosing � does not need to be run on every dataset analyzed, rather, only358

when seqNMF is applied to a new type of data for which a reasonable range of � is not359

already known. Similar ranges of � appeared to work for datasets with different numbers360

of ground-truth sequences—for the datasets used in Figure 2D, a range of � between361

0.001 and 0.01 returned the correct number of sequences at least 90% of the time for362

datasets containing between 1 and 10 sequences (Figure S4). Furthermore, this method363

for choosing � also works on datasets containing sequences with shared neurons (Figure364

S5).365

Our second method for choosing � directly tests generalization error by randomly366

holding out a small subset of elements in the data matrix [64, 6] (Figure S6). This held-out367

set is only used to test the performance of seqNMF, but is not used for fitting. At high368

values of �, seqNMF extracts only one factor, which exhibits similar reconstruction error on369

training data and held-out test data. At low values of �, seqNMF extracts a large number370

of factors, yielding better reconstruction error on the training data, but the performance371

of these factors on held-out data is often far worse, corresponding to overfitting. At372

intermediate values of �, within the optimal range described above, there was often a373

minimum in the reconstruction error on held-out data (test error). This corresponds to374

the classical approach for choosing regularization strength using cross-validation. In some375

datasets, the minimum in test error can be subtle or nonexistent, so we instead identify376

the � corresponding to the rapid divergence between training error and test error (Figure377

S6C). In many of our test datasets, this divergence point agrees with the ground-truth and378

with the procedure described above based on the crossover between correlation cost379

and reconstruction cost. One caution in using the cross-validation method to choose an380

optimal � is that it fails on synthetic datasets that have zero or very low noise (because381

of a lack of overfitting), as well as in datasets with temporal warping. More broadly,382

difficulties using cross-validation to choose �may reflect that the primary function of the383

seqNMF penalty term is to reduce factor correlations and redundancies, not to minimize384

over-fitting.385

Can we choose K rather than choosing �?386

A goal of the seqNMF correlation cost term is to limit the factorization to a small number387

of non-redundant factors. An alternative approach may be to directly constrain the388

number of factors (K) in the convNMF algorithm without regularization. If the number389

of underlying sequences in the data is unambiguous and is precisely known, as for the390

simulated datasets described above, then this approach works well, yielding factorizations391

close to ground truth sequences. We have found that the number of underlying sequences392

can sometimes be estimated by running convNMF for all reasonable values of K and393

selecting the value that yields the best cross-validated performance on held-out data. This394

method works reasonably well for simulated datasets with participation noise, additive395

noise, or temporal jitter over a range of noise levels that might be expected in real neural396

data. In some cases, there is a clear minimum in the test error at the correct K. In other397

cases there is a distinguishing feature such as a kink or a plateau in the test error as a398

function of K that could potentially be used to estimate the correct number of sequences399
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Figure 5. Using penalties to bias towards events-based and parts-based factorizations
Datasets that have neurons shared between multiple sequences can be factorized in different ways, emphasiz-

ing discrete temporal events (events-based) or component neuronal ensembles (parts-based), by penalizing

correlations in H orW respectively. (Left) A dataset with two different ensembles of neurons that participate in

two different types of events, with (A) events-based and (B) parts-based factorizations. (Right) A dataset with six
different ensembles of neurons that participate in three different types of events, with (C) events-based and (D)
parts-based factorizations.

(Figure S7). Notably, this method fails to identify the number of underlying sequences in400

the case of temporal warping—an issue to which we will return in the next section.401

Strategies for dealing with ambiguous cases402

In some datasets, there is not a unique answer for the desired factorization of sequences.403

A common example of such ambiguity arises when neurons are shared between different404

sequences, as is shown in Figure 5A and B. In this case, there are two ensembles of405

neurons (1 and 2), that participate in two different types of events. In one event type,406

ensemble 1 is active alone, while in the other event type, ensemble 1 is coactive with407

ensemble 2. There are two different reasonable factorizations of these data. In one408

factorization the two different ensembles are separated into two different factors, while409

in the other factorization the two different event types are separated into two different410

factors. We refer to these as ’parts-based’ and ’events-based’ respectively. Note that411

these different factorizations may correspond to different intuitions about underlying412

mechanisms. ‘Parts-based’ factorizations will be particularly useful for clustering neurons413

into ensembles, and ‘events-based’ factorizations will be particularly useful for correlating414

neural events with behavior.415

We have found that seqNMF and convNMF can produce either type of factorization,416

depending on initial conditions and the structure of shared neurons in the data. It417

may therefore be useful to explicitly control the tendency to produce these different418

factorizations by the addition of penalties on eitherW or H correlations. Note that in the419

‘events-based’ factorization, the Hs are orthogonal (uncorrelated) while theWs have high420

overlap; in the ‘parts-based’ factorization, theWs are orthogonal while the Hs are strongly421

correlated. Note that these correlations inW or H are unavoidable in the presence of422
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shared neurons and the presence of such correlations does not indicate a redundant423

factorization. Update rules to implement penalties on correlations inW or H are provided424

in Table 3 with derivations in Appendix 1. Figure S9 shows examples of using these425

penalties on the songbird dataset described in Figure 7.426

Another type of ambiguity arises from the presence of systematic variations in the427

amplitude or timing of neuronal participation in a sequence. A notable example of this428

is data with temporal warping. In the case of high �, seqNMF extracts a single factor429

for the underlying ground truth sequence. In contrast, at lower � seqNMF extracts430

multiple factors for the underlying ground truth sequence, corresponding to slower and431

faster variations of the sequence, effectively tiling the space of warped sequences at a432

finer granularity depending on the strength of the penalty (�). Note that each of these433

factorizations corresponds to a reasonable interpretation, in the context of seqNMF,434

for the same underlying timewarping process. Different neural datasets may require435

estimating warping with different degrees of precision, depending on the behavior being436

studied, leading to different reasonable choices of �.437

Another case requiring a choice between different reasonable levels of � occurs when438

a sequence exhibits two variants in which, for example, two subensembles of neurons439

participate with different amplitudes in different instances of the sequence. Depending440

on the desired level of granularity, controlled by the choice of �, this dataset could be441

factorized either as a single sequence or as two sequences. Any example in which a442

sequence has multiple close variants, either in the timing or activity of different neurons,443

can lead to this type of ambiguity. Depending on what type of factorization is desired,444

a different value of � might be preferable. In real datasets, it can be useful to explore445

the factorization for different values of � between �0 and 10�0. There may often be a446

range of � that give rise to different reasonable factorizations. Note that high � risks447

missing sequences, especially sequences that occur rarely or include only a small number448

of neurons, and low �may give rise to redundant factors.449

Addition of a sparsity penalty to seqNMF or convNMF450

Sparsity regularization is a widely used strategy for achieving more interpretable and451

generalizable results across a variety of algorithms and datasets [65], including convNMF452

[43, 50]. In some of our datasets, we found it useful to include L1 regularization for453

sparsity. The multiplicative update rules in the presense of L1 regularization are included454

in Table 3, and as part of our code package. Sparsity on the matricesW and Hmay be455

particularly useful in cases when sequences are repeated rhythmically (Figure S8). For456

example, the addition of a sparsity regularizer on theW update will bias theW exemplars457

to include only a single repetition of the repeated sequence, while the addition of a458

sparsity regularizer on H will bias theW exemplars to include multiple repetitions of the459

repeated sequence. This gives one fine control over how much structure in the signal460

to pack into W versus H. Like the ambiguities described above, these are both valid461

interpretations of the data, but each may be more useful in different contexts.462

Application of seqNMF to hippocampal sequences463

To test the ability of seqNMF to discover patterns in electrophysiological data, we analyzed464

spiking activity in datasets of simultaneously recorded hippocampal neurons acquired in465

the Buszaki lab and available from a public repository (https://crcns.org/data-sets/hc) [2, 1].466
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Figure 6. Application of seqNMF to extract hippocampal sequences from two rats
(A) Firing rates of 110 neurons recorded in the hippocampus of Rat 1 during an alternating left-right task with a
delay period [2], as well as the single significant extracted seqNMF factor. Neurons are sorted according to the

latency of their peak activation within the factor. The red line shows the onset and offset of the forced delay

periods, during which the animal ran on a treadmill (B) Firing rates of 43 hippocampal neurons recorded in Rat
2 during the same task [1]. Neurons are sorted according to the latency of their peak activation within each

of the three significant extracted sequences. Both seqNMF reconstruction of each factor (left) and raw data

(right) are shown. The first two factors correspond to left and right trials, and the third corresponds to running

along the stem of the maze. (C) (Left) Reconstruction (red) and correlation (blue) costs as a function of � for Rat
1. Arrow indicates � = 8x10−5, used for seqNMF factorization shown in (A). (Right) Histogram of the number of
significant factors across 30 runs of seqNMF. (D) Same as in (C) but for Rat 2. Arrow indicates � = 8x10−5 used
for factorization shown in (B).
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The data were acquired in two rats as part of published studies describing sequences in467

the hippocampus [45, 16]. In these experiments, rats were trained to alternate between468

left and right turns in a T-maze to earn a water reward. Between alternations, the rats ran469

on a running wheel during an imposed delay period lasting either 10 or 20 seconds. By470

averaging spiking activity during the delay period, the authors reported long temporal471

sequences of neural activity spanning the delay. In some rats, the same sequence472

occurred on left and right trials, while in other rats, different sequences were active in the473

delay period during the different trial types.474

Without reference to the behavioral landmarks, seqNMF was able to extract sequences475

in both datasets. The automated method described above was used to choose � (Figure476

6). In Rat 1, with � = 2�0, most runs of seqNMF extracted a single significant factor,477

corresponding to a sequence active throughout the running wheel delay period and478

immediately after, when the rat runs up the stem of the maze (Figure 6B). Some runs479

of seqNMF extracted two factors, splitting the delay period sequence and the maze480

stem sequence; this is a reasonable interpretation of the data, and likely results from481

variability in the relative timing of running wheel and maze stem traversal. At somewhat482

lower values of �, seqNMF more often split these sequences into two factors. At even483

lower values of �, seqNMF produced more significant factors. Such higher granularity484

factorizations may correspond to real variants of the sequences, as they generalize to485

held-out data (Figure S7J).486

In Rat 2, at a � of 1.5 �0, three significant factors were typically identified (Figure 6C).487

The first two correspond to distinct sequences active for the duration of the delay period488

on alternating trials. The third sequence was active immediately following each of the489

alternating sequences, corresponding to the time at which the animal exits the wheel490

and runs up the stem of the maze. Taken together, these results suggest that seqNMF491

can detect multiple neural sequences without the use of any behavioral landmarks.492

Having validated this functionality in both simulated data and previously published neural493

sequences, we then applied seqNMF to find structure in a novel dataset, in which the494

ground truth is unknown and difficult to ascertain using previous methods.495

Application of seqNMF to abnormal sequence development in avian496

motor cortex497

We applied seqNMF to analyze new functional imaging data recorded in songbird HVC498

during singing. Normal adult birds sing a highly stereotyped song, making it possible to499

detect sequences by averaging neural activity aligned to the song. Using this approach, it500

has been shown that HVC neurons generate precisely timed sequences that tile each song501

syllable [23, 48, 37]. In contrast to adult birds, young birds sing highly variable babbling502

vocalizations, known as subsong, for which HVC is not necessary [3]. The emergence of503

sequences in HVC occurs gradually over development, as the song matures from subsong504

to adult song [44].505

Songbirds learn their song by imitation and must hear a tutor to develop normal adult506

vocalizations. Birds isolated from a tutor sing highly variable and abnormal songs as507

adults [18]. Such ‘isolate’ birds provide an opportunity to study how the absence of normal508

auditory experience leads to pathological vocal/motor development. However, the high509

variability of pathological ‘isolate’ song makes it difficult to identify neural sequences510

using the standard approach of aligning neural activity to vocal output.511
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Figure 7. SeqNMF applied to calcium imaging data from a singing isolate bird reveals abnormal
sequence deployment

(A) Functional calcium signals recorded from 75 neurons, unsorted, in a singing isolate bird. (B) Reconstruction
and correlation cost as a function of �. The arrow at � = 0.005 indicates the value selected for the rest of the
analysis. (C) Number of significant factors for 100 runs of seqNMF with K = 10, � = 0.005. Arrow indicates 3
is the most common number of significant factors. (D) SeqNMF factor exemplars (W’s), Neurons are grouped
according to the factor in which they have peak activation, and within each group neurons are sorted by the

latency of their peak activation within the factor (E) The same data shown in (A), after sorting neurons by their
latency within each factor as in (D). A spectrogram of the bird’s song is shown at top, with a purple ‘*’ denoting

syllable variants correlated with w2. (F) Same as (E), but showing reconstructed data rather than calcium signals.
Shown at top are the temporal loadings (H) of each factor.
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Using seqNMF, we were able to identify repeating neural sequences in isolate song-512

birds (Figure 7A). At the chosen � (Figure 7B), seqNMF typically extracts three significant513

sequences (Figure (7C). Similarly, our masked cross-validation test indicated good con-514

vNMF performance at K = 3, with over-fitting starting at K = 4 (Figure S7I). The extracted515

sequences include sequences deployed during syllables of abnormally long and variable516

durations (Figure 7D-F).517

In addition, the extracted sequences exhibit properties not observed in normal adult518

birds. We see an example of two distinct sequences that sometimes, but not always,519

co-occur (Figure 7). We observe that a short sequence occurs alone on some syllable520

renditions, while on other syllable renditions, a second longer sequence is generated521

simultaneously. This probabilistic overlap of different sequences is highly atypical in nor-522

mal adult birds [23, 36, 48, 37]. Furthermore, this pattern of neural activity is associated523

with abnormal variations in syllable structure—in this case resulting in a longer variant524

of the syllable when both sequences co-occur. This acoustic variation is a characteristic525

pathology of isolate song [18]. Thus, even though we observe HVC generating some526

sequences in the absence of a tutor, it appears that these sequences are deployed in a527

highly abnormal fashion.528

Application of seqNMF to a behavioral dataset: song spectrograms529

Although we have focused on the application of seqNMF to neural activity data, this530

method naturally extends to other types of high-dimensional datasets, including behav-531

ioral data with applications to neuroscience. The neural mechanisms underlying song532

production and learning in songbirds is an area of active research. However, the identifi-533

cation and labeling of song syllables in acoustic recordings is challenging, particularly in534

young birds where song syllables are highly variable. Because automatic segmentation535

and clustering often fail, song syllables are still routinely labelled by hand [44]. We tested536

whether seqNMF, applied to a spectrographic representation of zebra finch vocalizations,537

is able to extract meaningful features in behavioral data. SeqNMF correctly identified538

repeated acoustic patterns in juvenile songs, placing each distinct syllable type into a539

different factor (Figure 8). The resulting classifications agree with previously published540

hand-labeled syllable types [44]. A similar approach could be applied to other behavioral541

data, for example movement data or human speech, and could facilitate the study of542

neural mechanisms underlying even earlier and more variable stages of learning. Indeed,543

convNMF was originally developed for application to spectrograms [56]; notably it has544

been suggested that auditory cortex may use similar computations to represent and545

parse natural song statistics [40].546

Discussion547

As neuroscientists strive to record larger datasets, there is a need for rigorous tools to548

reveal underlying structure in high-dimensional data [20, 54, 11, 8]. In particular, sequen-549

tial structure is increasingly regarded as a fundamental property of neuronal circuits550

[23, 24, 44, 45], but standardized statistical approaches for extracting such structure have551

not been widely adopted or agreed upon.552

Here, we explored a simple matrix factorization-based approach to identify neural553

sequences [47]. The convNMF model elegantly captures sequential structure in an un-554

supervised manner [56, 55]. However, in datasets where the number of sequences is555
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Figure 8. SeqNMF applied to song spectrograms
(A) Spectrogram of juvenile song, with hand-labeled syllable types [44]. (B) Reconstruction cost and correlation
cost for these data as a function of �. Arrow denotes � = 0.0003, which was used to run seqNMF (C) SeqNMFW’s
for this song, fit with K = 8, L = 200ms, � = 0.0003. Note that there are three non-empty factors, corresponding
to the three hand-labeled syllables a, b, and c. (D) SeqNMF H’s (for the three non-empty factors) and seqNMF
reconstruction of the song shown in (A) using these factors.
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not known, convNMF may return redundant, inefficient, or inconsistent factorizations. In556

order to resolve these challenges, we introduced a new regularization (penalty) term to557

encourage the model to identify sparse and non-redundant sequential firing patterns.558

Furthermore, we carefully explored the robustness of this method to noise and devel-559

oped procedures for choosing hyperparameters (K and �) based on cross-validation and560

assessing the significance of identified sequences based on shuffled null distributions.561

Our results show that seqNMF is highly robust to many forms of noise. For example, even562

when (synthetic) neurons participate probabilistically in sequences at a rate of 50%, the563

model typically identifies factors with greater than 80% similarity to the ground truth (Fig-564

ure 3A). Additionally, seqNMF performs well even with limited data, successfully extracting565

sequences that only appear a handful of times in a noisy data stream (Figure S3)566

Prior investigations of neural sequences have relied on manual alignment of neural567

activity to behavioral events, such as animal position for the case of hippocampal and568

cortical sequences [24, 45], or syllable onset for the case of songbird vocalizations [23].569

This approach is not ideally suited for the case of highly variable behaviors, such as in570

early learning and development [44]. For example, the analysis of neural activity in singing571

juvenile birds has been challenging because of the difficulty in identifying distinct syllable572

types on which to perform the temporal alignment. This problem would also apply to573

isolate song birds because of the pathologically variable nature of their vocalizations. By574

applying seqNMF, we were able to identify neural sequences without reference to song575

syllables, enabling future work into the neural basis of singing in isolate birds.576

As in many data analysis scenarios, a variety of statistical approaches may be brought577

to bear on finding sequences in neural data. A classic method is to construct cross-578

correlogram plots, showing spike time correlations between pairs of neurons at various579

time lags. However, other forms of spike rate covariation, such as trial-to-trial gain mod-580

ulation, can produce spurious peaks in this measure [7]; recent work has developed581

statistical corrections for these effects [51]. After significant pairwise correlations are582

identified, one can heuristically piece together pairs of neurons with significant interac-583

tions into a sequence. This bottom-up approach may be better than seqNMF at detecting584

sequences involving small numbers of neurons if such microsequences contribute only585

a small amount of variance in the overall dataset. On the other hand, this bottom-up586

approach may fail to identify long sequences with high participation noise or jitter in each587

neuron [49]. One can think of seqNMF as a complementary top-down approach, which588

performs very well in the high-noise regime since it learns a template sequence at the589

level of the full population that is robust to noise at the level of individual units.590

Statistical models with a dynamical component, such as Hidden Markov Models591

(HMMs) [38], linear dynamical systems [30], and models with switching dynamics [35],592

can also capture sequential firing patterns. These methods will typically require many593

hidden states or latent dimensions to capture sequences, similar to PCA and NMF which594

require many components to recover sequences. However, since dynamical models are595

much more constrained than PCA or NMF, they can yield more interpretable results. For596

example, visualizing the transition matrix of an HMM can provide insight into the order597

in which hidden states of the model are visited, mapping onto different sequences that598

manifest in population activity [38]. One advantage of this approach is that it can model599

sequences that occasionally end prematurely, while seqNMF will always produce the full600

sequence. On the other hand, this pattern completion property makes seqNMF robust601
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to participation noise and jitter. In contrast, a standard HMM must pass through each602

hidden state to model a sequence, and therefore will have trouble whenever one of these603

hidden states is skipped. Thus, we expect HMMs (or related models) and seqNMF to604

exhibit complementary strengths and weaknesses.605

Another contribution of our work is a natural framework in which to bias factorizations606

towards parts-based versus events-based solutions. While existing computational work607

has focused on neural sequences that do not have ensembles of shared neurons, such608

shared populations have been observed during song learning [44], demonstrating that609

neural sequences in real biological data can substantially overlap. Such shared sequences610

can lead to different reasonable factorizations of the data that may correspond to dif-611

ferent interpretations of underlying mechanisms. For example, we found that neural612

sequences in HVC of isolated songbirds are well-described by both parts- or events-based613

factorizations (figure S9), each of which could correspond to a different biophysical model614

of sequence generation. This capacity for a combinatorial description of overlapping615

sequences distinguishes convNMF and seqNMF from clustering methods [22, 39] and616

methods based on hypothesis testing [49, 51], which seek to identify full snapshots of617

repeated population firing patterns rather than parts- or events-based representations.618

Another difference between these methods and seqNMF, particularly when using an619

events-based factorization, is its ability to model different amplitudes in the sequences by620

changing the magnitude of the event loadings in H.621

More generally, a key strength of seqNMF is that it can be easily tuned to the require-622

ments and goals of a particular analysis. In addition to changing between a parts- and623

events-based factorization, one can tune the overall sparsity in the model by classic L1624

regularization. Future work could incorporate outlier detection into the objective function625

as has been done in other matrix factorization models [42]. One could also incorporate626

additional parameters to model changes in neural sequences across trials or days during627

development or learning of a new behavior, similar to extensions of PCA and NMF to628

multi-trial data [63]. Thus, adding convolutional structure to factorization-based mod-629

els of neural data represents a rich opportunity for future developments in statistical630

methodology.631

Despite limiting ourselves to a relatively simple model for the purposes of this paper,632

we extracted biological insights that were difficult to achieve by other methods in practical633

experimental datasets. Overall, seqNMF can extract neural sequences from large-scale634

population recordings without reference to stereotyped behavior or rigid sensory stimuli,635

enabling the dissection of neural circuit activity during rich and variable animal behaviors.636

Acknowledgements637

This work was supported by a grant from the Simons Collaboration for the Global Brain,638

the National Institutes of Health (NIH) [grant number R01 DC009183] and the G. Harold639

& Leila Y. Mathers Charitable Foundation. ELM received support through the NDSEG640

Fellowship program. AHB received support through NIH training grant 5T32EB019940-641

03. MSG received support from the NIH [grant number U19NS104648]. AHW received642

support from the U.S. Department of Energy Computational Science Graduate Fellowship643

(CSGF) program. Thanks to Pengcheng Zhou for advice on his CNMF_E calcium data644

cell extraction algorithm. Thanks to Wiktor Młynarski for helpful convNMF discussions.645

Thanks to Michael Stetner, Galen Lynch, Nhat Le, Dezhe Jin, Edward Nieh, Adam Charles646

23 of 48

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2018. ; https://doi.org/10.1101/273128doi: bioRxiv preprint 

https://doi.org/10.1101/273128


seqNMF

and Jane Van Velden for comments on the manuscript and on our code package. Special647

thanks to the 2017 Methods in Computational Neuroscience course [supported by NIH648

grant R25 MH062204 and Simons Foundation] at the Woods Hole Marine Biology Lab,649

where this collaboration was started.650

Author contributions651

ELM, AHB, AHW, MSG and MSF conceived the project, based on previous discussions of652

MSG, MSF and ELM. ELM, AHB and MSF designed and tested the seqNMF regularizers,653

the method for validating the significance of sequences in a held-out dataset, and the654

method for choosing �. ELM, AHB, AHW, and MSF designed and tested the method for655

measuring RMSE on a masked test set. ELM and AHB wrote the algorithm and demo code.656

ELM and NID collected the imaging data in singing birds. ELM and SG analyzed imaging657

data. All authors contributed to writing the manuscript.658

Methods and Materials659

Table of key resources660

Key resources, and references for how to access them, are listed in Table 2.661

Contact for resource sharing662

Further requests should be directed to Michale Fee (fee@mit.edu).663

Software and data availability664

Our seqNMF MATLAB code is publicly available as a github repository, along with some of665

our data for demonstration:666

https://github.com/FeeLab/seqNMF667

The repository includes the seqNMF function, as well as helper functions for selecting668

�, testing the significance of factors, plotting, and other functions. It also includes a669

demo script that goes through an example of how to select � for a new dataset, test for670

significance of factors, plot the seqNMF factorization, switch between parts-based and671

events-based factorizations, and calculate cross-validated performance on a masked test672

set.673

We plan to post more of our data publicly on the CRCNS data-sharing platform.674

Generating simulated data675

We simulated neural sequences containing between 1 and 10 distinct neural sequences676

in the presence of various noise conditions. Each neural sequence was made up of 10677

consecutively active neurons, each separated by three timebins. The binary activity matrix678

was convolved with an exponential kernel (� = 10 timebins) to resemble neural calcium679

imaging activity.680

SeqNMF algorithm details681

Our algorithm for seqNMF (convNMF with additional regularization to promote efficient682

factorizations) is a direct extension of the multiplicative update convNMF algorithm [56],683

and draws on previous work regularizing NMF to encourage factor orthogonality [10].684
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Table 2. Key resources

Software/algorithm Source Link to code

seqNMF This paper https://github.com/FeeLab/seqNMF

convNMF [56, 55] https://github.com/colinvaz/nmf-toolbox

Sparse convNMF [43, 50] https://github.com/colinvaz/nmf-toolbox

Soft orthogonal NMF [10]

Other NMF extensions [12]

NMF [34]

CNMF_E (cell extraction) [66] https://github.com/zhoupc/CNMF_E

MATLAB MathWorks www.mathworks.com

Dataset Source Link to data

HVC, Isolate songbird This paper To be uploaded to CRCNS after publication

Hippocampus, running wheel task (rat 1) [2] /hc-5

hline Hippocampus, running wheel task (rat 2) [1] https://crcns.org/data-sets/hc/hc-3

Other Source Link

Zebra finches (Taeniopygia guttata) MIT animal facility

AAV9.CAG.GCaMP6f.WPRE.SV40 [9] https://pennvectorcore.med.upenn.edu

Miniature microscope Inscopix https://www.inscopix.com/nvista
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Table 3. Regularized NMF and convNMF: cost functions and algorithms

NMF

L = 1
2 ||X̃ − X||22 +R W ← W × XH⊤

X̃H⊤+ dR
dW

X̃ =WH H ← H × W⊤X
W⊤X̃+ dR

dH

convNMF

L = 1
2 ||X̃ − X||22 +R W⋅⋅l ← W⋅⋅l ×

X
l→
H
⊤

X̃
l→
H
⊤

+ dR
dW⋅⋅l

X̃ =W⊛H H ← H × W
⊤
⊛X

W
⊤
⊛X̃+ dR

dH

L1 regularization for H ( L1 forW is analogous)

R = �||H||1
dR

dW⋅⋅l
= 0

dR

dH = �1

Soft orthogonality for H

R = �
2 ||HH⊤

||1,i≠j
dR

dW⋅⋅l
= 0

dR

dH = �(1 − I)H

Smoothed soft orthogonality for H (favors ‘events-based’)

R = �
2 ||HSH⊤

||1,i≠j
dR

dW⋅⋅l
= 0

dR

dH = �(1 − I)HS

Smoothed soft orthogonality forW (favors ‘parts-based’)

R = �
2 ||W

⊤
flatWflat||1,i≠j

dR

dW⋅⋅l
= �Wflat(1 − I)

where (Wflat)nk =
∑

lWnkl
dR

dH = 0

Smoothed cross-factor orthogonality (main seqNMF R)

R = �||W
⊤
⊛ XSH⊤

||1,i≠j
dR

dW⋅⋅l
= �

←l
X SH⊤(1 − I)

dR

dH = �(1 − I)W
⊤
⊛ XS
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The uniqueness and consistency of traditional NMF has been better studied than685

convNMF, but in special cases, NMF has a unique solution comprised of sparse, ‘parts-686

based’ features that can be consistently identified by known algorithms [17, 4]. However,687

this ideal scenario does not hold in many practical settings. In these cases, NMF is688

sensitive to initialization, resulting in potentially inconsistent features. This problem can689

be addressed by introducing additional constraints or regularization terms that encourage690

the model to extract particular, e.g. sparse or approximately orthogonal, features [27, 31].691

Both theoretical work and empirical observations suggest that these modifications result692

in more consistently identified features [58, 31].693

For seqNMF, we added to the convNMF cost function a term that promotes competition694

between overlapping factors, resulting in the following cost function:695

(W̃, H̃) = argmin
W,H

(

||X̃ − X||2F + �||(W
⊤
⊛ X)SH⊤

||1,i≠j

)

(8)

We derived the following multiplicative update rules forW and H (Appendix 1):696

W⋅⋅l ← W⋅⋅l ×
X
(l→
H
)⊤

X̃
(l→
H
)⊤

+ �
←l
X SH⊤(1 − I)

(9)

H ← H × W
⊤
⊛ X

W
⊤
⊛ X̃ + �(1 − I)(W

⊤
⊛ XS)

(10)

Where the division and × are element-wise. The operator
l→
(⋅) shifts a matrix in the →697

direction by l timebins, i.e. a delay by l timebins, and
←l
(⋅) shifts a matrix in the← direction698

by l timebins (notation summary, Table 1). Note that multiplication with the K ×K matrix699

(1 − I) effectively implements factor competition because it places in the kth row a sum700

across all other factors. These update rules are derived in Appendix 1 by taking the701

derivative of the cost function in Equation 8.702

In addition to the multiplicative updates outlined in Table 3, we also renormalize so703

rows of H have unit norm; shift factors to be centered in time such that the center of704

mass of eachW pattern occurs in the middle; and in the final iteration run one additional705

step of unregularized convNMF to prioritize the cost of reconstruction error over the706

regularization (Algorithm 1). This final step is done to correct a minor suppression in707

the amplitude of some peaks in H that may occur within 2L timebins of neighboring708

sequences.709

Calculating consistency710

The consistency between two factorizations measures the extent to which it is possible to711

create a one-to-one match between factors in factorization A and factors in factorization712

B. Specifically, given two factorizations (WA, HA) and (WB , HB) respectively, consistency713

is measured with the following procedure:714

1. For each factor number k, compute the part of the reconstruction explained by this715

factor in each reconstruction, X̃Ak =WA
⋅k⋅ ⊛HA

k⋅ and X̃Bk =WB
⋅k⋅ ⊛HB

k⋅716
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Algorithm 1: SeqNMF
Input: Data matrix X, number of factors K , factor duration L, regularization

strength �
Output: Factor exemplarsW, and factor timecourses H

1 InitializeW and H randomly
2 Iter = 1
3 while (Iter <maxIter) & (Δ cost > tolerance) do
4 Update H using multiplicative update from Table 3
5 ShiftW and H to centerW’s in time
6 RenormalizeW and H so rows of H have unit norm
7 UpdateW using multiplicative update from Table 3

8 Iter = Iter+1

9 Do one final unregularized convNMF update ofW and H
10 return

2. Reshape X̃Ak and X̃Bk into vectors containing all the elements of each matrix re-717

spectively, then compute C, a K ×K correlation matrix where Cij is the correlation718

between the vectorized X̃Ai and X̃Bj719

3. Permute the factors greedily so factor 1 is the best matched pair of factors, factor 2720

is the best matched pair of the remaining factors, etc. The quality of the match is721

measured by the correlation between the reconstructions computed using just each722

factor individually.723

4. Measure consistency as the ratio of the power (sum of squared matrix elements)724

contained on the diagonal of the permuted Cmatrix to the total power in C725

Thus, two factorizations are perfectly consistent when there exists a permutation of factor726

numbers for which there is a one-to-one match between what parts of the reconstruction727

are explained by each factor.728

Testing the significance of each factor on held-out data729

In order to test whether a factor is significantly present in held-out data, we measure730

the distribution across timebins of the overlaps of the factor with the held-out data, and731

compare the skewness of this distrubution to the null case (Figure S1). Overlap with the732

data is measured asW
⊤
⊛X, so this quantity will be high at timepoints when the sequence733

occurs, producing a distribution ofW
⊤
⊛ X with high skew. In contrast, a distribution of734

overlaps exhibiting low skew indicates a sequence is not present in the data, since there735

are few timepoints of particularly high overlap. We estimate what skew levels would736

appear by chance by constructing null factors where temporal relationships between737

neurons have been eliminated. To create such null factors, we start from the real factors738

then circularly shift the timecourse of each neuron by a random amount between 0 and739

L. We measure the skew of the overlap distributions for each null factor, and ask whether740

the skew we measured for the real factor is significant at p-value �, that is, if it exceeds741

the ((1 − �
K ) × 100)

tℎ percentile of the null skews. Note the required Bonferroni correction742

for K comparisons when testing K factors.743
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Choosing appropriate parameters for a new dataset744

Choice of appropriate parameters (�, K and L) will depend on the data type (sequence745

length, number, and density; amount of noise; etc.).746

In practice, we find that results are relatively robust to choice of parameters. When K747

or L is set larger than necessary, seqNMF tends to simply leave the unnecessary factors748

or time bins empty. For �, the goal is to find the ‘sweet spot’ (Figure 4) to explain as much749

data as possible while still producing sensible factorizations, that is, minimally correlated750

factors, with low values of ||(W
⊤
⊛ X)SH⊤

||1,i≠j . Our software package includes demo code751

for determining the best parameters for a new type of data, using the following strategy:752

1. Start with K slightly larger than the number of sequences anticipated in the data753

2. Start with L slightly longer than the maximum expected factor length754

3. Run seqNMF for a range of �’s, and for each � measure the reconstruction error755

(

||X −W⊛H||2F
)

and the factor competition regularization term

(

||(W
⊤
⊛ X)SH⊤

||1,i≠j

)

756

4. Choose a � slightly above the crossover point �0757

5. Decrease K if desired, as otherwise some factors will be consistently empty758

6. Decrease L if desired, as otherwise some time bins will consistently be empty759

In some applications, achieving the desired accuracy may depend on choosing a �760

that allows some inconsistency. It is possible to deal with this remaining inconsistency761

by comparing factors produced by different random initializations, and only considering762

factors that arise from several different initializations, a strategy that has been previously763

applied to standard convNMF on neural data [47].764

During validation of our procedure for choosing �, we compared factorizations to765

ground truth sequences as shown in Figure 4. To find the optimal lambda we used the766

product of two curves. The first curve was obtained by calculating the fraction of fits in767

which the true number of sequences was recovered as a function of �. The second curve768

was obtained by calculating similarity to ground truth as a function of �. Similarity to769

ground truth is measured as the consistency the factorization and the noiseless sequences770

used to generate the data. The product of these two curves was smoothed using a three-771

sample boxcar sliding window, and the width was found as the values of � on either side772

of the peak value that correspond mose closely to the half-max points of the curve.773

Measuring performance on noisy data by comparing seqNMF sequences to774

ground-truth sequences775

We wanted to measure the ability of seqNMF to recover ground-truth sequences even776

when the sequences are obstructed by noise. Our noisy data consisted of two ground-777

truth sequences, obstructed by a variety of noise types. We first took the top seqNMF778

factor, and made a reconstruction with only this factor. We then measured the correlation779

between this reconstruction and reconstructions generated from each of the ground-780

truth factors, and chose the best match. Next, we measured the correlation between the781

remaining ground-truth reconstruction and the second seqNMF factor. The mean of these782

two correlations was used as a measure of similarity between the seqNMF factorization783

and the ground-truth (noiseless) sequences.784
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Testing generalization of factorization to randomly held-out (masked) data785

entries786

The data matrix X was divided into training data and test data by randomly selecting 5 or787

10% of matrix entries to hold out. Specifically, the objective function (equation 5, in the788

Results section) was modified to:789

argmin
W,H

||M × (W⊛H − X)||2F +R (11)

where × indicates elementwise multiplication (Hadamard product) and M is a binary790

matrix with 5 or 10% of the entries randomly selected to be zero (held-out test set) and791

the remaining 95 or 90% set to one (training set). To search for a solution, we reformulate792

this optimization problem as:793

argmin
W,H,Z

||W⊛H − Z||2F +R

subject to M × Z =M × X
(12)

where we have introduced a new optimization variable Z, which can be thought of as794

a surrogate dataset that is equal to the ground truth data only on the training set. The795

goal is now to minimize the difference between the model estimate, X̃ =W⊛H, and the796

surrogate, Z, while constraining Z to equal X at unmasked elements (where mij = 1) and797

allowing Z to be freely chosen at masked elements (where mij = 0). Clearly, at masked798

elements, the best choice is to make Z equal to the current model estimate X̃ as this799

minimizes the cost function without violating the constraint. This leads to the following800

update rules which are applied cyclically to update Z,W, and H.801

Znt ←
⎧

⎪

⎨

⎪

⎩

Xnt if Mnt = 1

(W⊛H)nt if Mnt = 0
(13)

W⋅⋅l ← W⋅⋅l ×
Z
(l→
H
)⊤

X̃
(l→
H
)⊤

+ �
←l
Z SH⊤(1 − I)

(14)

H ← H × W
⊤
⊛ Z

W
⊤
⊛ X̃ + �(1 − I)(W

⊤
⊛ ZS)

(15)

The measure used for testing generalization performance was RMSE. For the testing802

phase, RMSE was computed from the difference between X̃ and the data matrix X only803

for held-out entries.804

Algorithm speed805

In practice, our algorithm converges rapidly: fewer than 100 iterations on a typical 150806

neuron by 10,000 time point data matrix. Typically, 100 iterations on such data take807

less than 30 seconds on a standard PC. However, applications to much larger datasets808

may require faster performance. In these cases, we recommend running seqNMF on809

smaller subsets of the dataset, perhaps by incorporating seqNMF regularization into an810

online version of convNMF [62], and/or parallelizing the algorithm by running it on shorter811
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datasets and merging/recombining factors that are common across these shorter runs812

(finding common factors by e.g. [47]).813

Notes on data preprocessing814

While seqNMF is generally quite robust, proper preprocessing of the data can be important815

to obtaining reasonable factorizations on real neural data. A key principle is that, in816

minimizing the reconstruction error, seqNMF is most strongly influenced by parts of817

the data that exhibit high variance. This can be problematic if the regions of interest in818

the data have relatively low amplitude. For example, high firing rate neurons may be819

prioritized over those with lower firing rate. As an alternative to subtracting the mean820

firing rate of each neuron, which would introduce negative values, neurons could be821

normalized divisively or by subtracting off a NMF reconstruction fit in method that forces822

a non-negative residual [32]. Additionally, variations in behavioral state may lead to823

seqNMF factorizations that prioritize regions of the data with high variance and neglect824

other regions. It may be possible to mitigate these effects by normalizing data, or by825

restricting analysis to particular subsets of the data, either by time or by neuron.826

Hippocampus data827

The hippocampal data we used was collected in the Buzsaki lab [2, 1], and is publicly828

available on the Collaborative Research in Computational Neuroscience (CRCNS) Data829

sharing website. The dataset we refer to as ‘Rat 1’ is in the hc-5 dataset, and the dataset830

we refer to as ‘Rat 2’ is in the hc-3 and dataset. Before running seqNMF, we processed831

the data by convolving the raw spike trains with a gaussian kernel of standard deviation832

100ms.833

Animal care and use834

We used male zebra finches (Taeniopygia guttata) from the MIT zebra finch breeding facility835

(Cambridge, MA). Animal care and experiments were carried out in accordance with NIH836

guidelines, and reviewed and approved by the Massachusetts Institute of Technology837

Committee on Animal Care (protocol 0715-071-18).838

In order to prevent exposure to a tutor song, birds were foster-raised by female birds,839

which do not sing, starting on or before post-hatch day 15. For experiments, birds were840

housed singly in custom-made sound isolation chambers.841

Calcium imaging842

The calcium indicator GCaMP6f was expressed in HVC by intercranial injection of the viral843

vector AAV9.CAG.GCaMP6f.WPRE.SV40 [9] into HVC. In the same surgery, a cranial window844

was made using a GRIN (gradient index) lens (1mm diamenter, 4mm length, Inscopix).845

After at least one week, in order to allow for sufficient viral expression, recordings were846

made using the Inscopix nVista miniature fluorescent microscope.847

Neuronal activity traces were extracted from raw fluorescence movies using the848

CNMF_E algorithm, a constrained non-negative matrix factorization algorithm specialized849

for microendoscope data by including a local background model to remove activity from850

out-of-focus cells [66].851

We performed several preprocessing steps before applying seqNMF to functional852

calcium traces extracted by CNMF_E. First, we estimated burst times from the raw traces853

31 of 48

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2018. ; https://doi.org/10.1101/273128doi: bioRxiv preprint 

https://crcns.org/data-sets/hc/hc-5
https://crcns.org/data-sets/hc/hc-3
https://doi.org/10.1101/273128


seqNMF

by deconvolving the traces using an AR-2 process. The deconvolution parameters (time854

constants and noise floor) were estimated for each neuron using the CNMF_E code855

package [66]. Some neurons exhibited larger peaks than others, likely due to different856

expression levels of the calcium indicator. Since seqNMF would prioritize the neurons857

with the most power, we renormalized by dividing the signal from each neuron by the858

sum of the maximum value of that row and the 95tℎ percentile of the signal across all859

neurons. In this way, neurons with larger peaks were given some priority, but not much860

more than that of neurons with weaker signals.861
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Figures1090

Supplemental Figures1091

Figure S1. Outline of the procedure used to assess factor significance.
(A) The distribution of overlap values between the real factor and the held-out data. (B) In order to test the
significance of a factor on held-out data, we constructed null (shifted) versions of the factor, and measured the

distribution of overlap values (W
⊤
⊛X) between each null factor and the held-out data. (C)We then compared the

skewness of the actual distribution to the skewness of null distributions, and asked whether it was significantly

higher than the null case.
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Figure S2. Robustness to noise at different values of �
Performance of seqNMF was tested under 4 different noise conditions, at different values of � than in Figure 3
(where � = 2�0): (A) probabilistic participation, � = 5�0, (B) additive noise, � = �0 (C) timing jitter, � = 5�0 and (D)
sequence warping, � = 5�0. For each noise type, we show: (top) examples of synthetic data at 3 different noise
levels; (middle) similarity of seqNMF factors to ground-truth factors across a range of noise levels, showing 20

fits for each noise level; and (bottom) example of one of the W’s extracted at 3 different noise levels (same
conditions as data shown above). SeqNMF was run with K = 20, L = 50.
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Figure S3. Effect of dataset size on seqNMF reconstruction
(A) A short (400 timestep) dataset containing one example each of three ground-truth sequences, as well as
additive noise. (B) As a function of dataset size, similarity of extracted factors to noiseless, ground-truth factors.
At each dataset size, 20 independent fits of seqNMF are shown. Median shown in red. (C) Example factors fit on
data containing 2, 3, 4 or 20 examples of each sequence. Extracted factors were significant on held-out data

compared to null (shuffled) factors even when training and test datasets each only contained only 2 examples

of each sequence.
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Figure S4. Number of significant factors as a function of � for datasets containing between 1 and
10 sequences

Number of significant factors were obtained by fitting seqNMF to data containing between 1 and 10 ground

truth sequences (K = 20, L = 50) for a large range of values of �. For each dataset a � ranging between 0.001
and 0.1 tended to return the correct number of significant sequences at least 90% of the time.
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Figure S5. Procedure for choosing � applied to data with shared neurons
(A) Simulated data containing two patterns which share 50% of their neurons, in the presence of participation
noise (70% participation probability). (B) Normalized reconstruction cost (||X̃ − X||2F ) and correlation cost

(||(W
⊤
⊛ X)SH⊤

||1,i≠j ) as a function of � for these data. The cross-over point �0 is marked with a black circle. (C)
The number of significant factors obtained from 20 fits of these data as a function of � (mean number plotted
in orange). The correct number of factors (two) is marked by a red triangle. (D) The fraction of fits returning
the correct number of significant factors as a function of �. (E) Similarity of the top two factors to ground-truth
(noiseless) factors as a function of �. (F) Composite performance measured as the product of the curves shown
in (D) and (E), (smoothed curve plotted in orange with a circle marking the peak). Shaded region indicates the

range of � that works well (± half height of composite performance). For this data set, the best performance
occurs at � = 5�0, while a range of � between 2 �0 and 10 �0 performs well.

42 of 48

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2018. ; https://doi.org/10.1101/273128doi: bioRxiv preprint 

https://doi.org/10.1101/273128


seqNMF

Figure S6. Using cross-validation on held-out (masked) data to choose �
A method for choosing a reasonable value of � based on cross validation is shown for five different noise types
(each column shows a different noise type; from left to right: (I) participation probability, (II) additive noise, (III)
jitter, (IV) temporal warping), and (V) a lower level of participation noise. For all fits, 10% of the data was held
out as the test set. (A) Examples of each dataset. (B) Test error (blue) and training error (red) as a function of �
for each of the different noise conditions. (C) The difference between the test error and training error values
shown above. (D) Normalized reconstruction cost (||X̃ − X||2F ) and correlation cost (||(W

⊤
⊛ X)SH⊤

||1,i≠j ) as a

function of � for each of the different noise conditions. (E) Composite performance as a function of �. Panels
D and E are identical to those in Figure 4, and are included here for comparison. (V) These data have a lower
amount of participation noise than (I). Note that in low-noise conditions, test error may not exhibit a minima

within the optimal range of �.
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Figure S7. Estimating the number of sequences in a dataset using cross-validation on randomly
masked held-out datapoints

(A) Reconstruction error (RMSE) for test data (red) and training data (blue) plotted as a function of the number of
components (K) used in convNMF. Twenty independent convNMF fits are shown for each value of K. This panel

shows results for 1% participation noise. For synthetic data fit fits, 10% of the data was held out as the test

set. For neural data 5% of the data was held out. Other noise conditions are shown as follows: (B) jitter noise
(10 timestep SD); (C) warping (13%); (D) higher additive noise (2.5%); (E) higher jitter noise (25 timestep SD); (F)
higher warping (33%) (G) Reconstruction error vs. K for neuronal data collected from premotor cortex (area
HVC) of a singing bird (Figure 7) and (H) hippocampus of a rat performing a left-right alternation task (Figure 6).

Figure S8. Biasing factorizations between sparsity inW or H
Two different factorizations of the same simulated data, where a sequence is always repeated precisely three

times. Both yield perfect reconstructions, and no cross-factor correlations. The factorizations differ in the

amount of features placed inW versus H. Both use K = 3 and � = 0.001. (A) Factorization achieved using a
sparsity penalty on H, with �L1H = 1. (B) Factorization achieved using a sparsity penalty onW, with �L1W = 1.
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Figure S9. Events-based and parts-based factorizations of songbird data
Illustration of a trade-off between parts-based (W is more strictly orthogonal) and events-based (H is more
strictly orthogonal) factorizations in a dataset where some neurons are shared between different sequences.

The same data as in Figure 7 is factorized using smoothed soft orthogonality on H (A, events-based), or onW
(B, parts-based). Below each motivating cartoon factorization, we show seqNMF fits (W and H together with
the reconstruction) of the data in Figure 7. The right panels contain the raw data sorted according to these

factorizations. Favoring events-based or parts-based factorizations is a matter of preference. Parts-based

factorizations are particularly useful for separating neurons into ensembles. Events-based factorizations are

particularly useful for identifying what neural events occur when.
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Appendix 11092

Deriving multiplicative update rules
Standard gradient descent methods for minimizing a cost functionmust be adapted

when solutions are constrained to be non-negative, since gradient descent steps

may result in negative values. Lee and Seung invented an elegant and widely-used

algorithm for non-negative gradient descent that avoids negative values by per-

forming multiplicative updates [34]. They derive these multiplicative updates by

choosing an adaptive learning rate that makes additive terms cancel from standard

gradient descent on the cost function. We will reproduce their derivation here, and

detail how to extend it to the convolutional case [56] and apply several forms of

regularization [43, 50, 10]. See Table 3 for a compilation of cost functions, deriva-

tives and multiplicative updates for NMF and convNMF under several different

regularization conditions.

Standard NMF
NMF performs the factorization X ≈ X̃ =WH. NMF factorizations seek to solve the
following problem:

(W̃, H̃) = argmin
W,H

L (W,H) (16)

L (W,H) = 1
2
||X̃ − X||2F (17)

W̃, H̃ ≥ 0 (18)

This problem is convex inW and H separately, not together, so a local minimum
is found by alternatingW and H updates. Note that:

d
dW

L (W,H) = X̃H⊤ − XH⊤
(19)

d
dH

L (W,H) = W⊤X̃ −W⊤X (20)

Thus, gradient descent steps forW and H are:

W ← W − �W(X̃H⊤ − XH⊤) (21)

H ← H − �H(W⊤X̃ −W⊤X) (22)

To arrive at multiplicative updates, Lee and Seung [34] set:

�W = W
WHH⊤ (23)

�H = H
W⊤WH

(24)
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Thus, the gradient descent updates become multiplicative:

W ← W × XH⊤

WHH⊤ = W × XH⊤

X̃H⊤
(25)

H ← H × W⊤X
W⊤WH

= H × W⊤X
W⊤X̃

(26)

where the division and × are element-wise.

Standard convNMF
Convolutional NMF factorizes data X ≈ X̃ =

∑

lW⋅⋅l

l→
H =W⊛H. convNMF factor-

izations seek to solve the following problem:

(W̃, H̃) = argmin
W,H

L (W,H) (27)

L (W,H) = 1
2
||X̃ − X||2F (28)

W̃, H̃ ≥ 0 (29)

The derivation above for standard NMF can be applied for each l, yielding the
following update rules for convNMF [56]:

W⋅⋅l ← W⋅⋅l ×
X
l→
H
⊤

X̃
l→
H
⊤ (30)

H ← H ×
∑

lW⊤
⋅⋅l

←l
X

∑

lW⊤
⋅⋅l

←l

X̃

= H × W
⊤
⊛ X

W
⊤
⊛ X̃

(31)

Where the operator l → shifts a matrix in the→ direction by l timebins, i.e. a delay
by l timebins, and← l shifts a matrix in the ← direction by l timebins (Table 1).
Note that NMF is a special case of convNMF where L = 1.

Incorporating regularization terms
Suppose we want to regularize by adding a new term, R to the cost function:

(W̃, H̃) = argmin
W,H

L (W,H) (32)

L (W,H) = 1
2
||X̃ − X||2F +R (33)

W̃, H̃ ≥ 0 (34)

Using a similar trick to Lee and Seung, we choose a �W, �H to arrive at a simple
multiplicative update. Below is the standard NMF case, which generalizes trivially

to the convNMF case.
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Note that:
dL
dW

= X̃H⊤ − XH⊤ + dR
dW

(35)

dL
dH

= W⊤X̃ −W⊤X + dR
dH

(36)

We set:

�W = W
X̃H⊤ + dR

dW

(37)

�H = H
W⊤X̃ + dR

dH

(38)

Thus, the gradient descent updates become multiplicative:

W ← W − �W
dL
dW

= W × XH⊤

X̃H⊤ + dR

dW

(39)

H ← H − �H
dL
dH

= H × W⊤X
W⊤X̃ + dR

dH

(40)

where the division and × are element-wise.
This framework enables flexible incorporation of different types of regulariza-

tion or penalty terms into the multiplicative NMF update algorithm. This framework

also extends naturally to the convolutional case. See Table 3 for examples of several

regularization terms, including L1 sparsity [43, 50] and soft orthogonality [10], as
well as the terms we introduce here to combat the types of inefficiencies and cross

correlations we identified in convolutional NMF, namely, smoothed orthogonal-

ity for H andW, and smoothed cross-factor orthogonality, the primary seqNMF

regularization term. For the seqNMF regularization term, �||(W
⊤
⊛ X)SH⊤

||1,i≠j , the

multiplicative update rules are:

W⋅⋅l ← W⋅⋅l ×
X
(l→
H
)⊤

X̃
(l→
H
)⊤

+ �
←l
X SH⊤(1 − I)

(41)

H ← H × W
⊤
⊛ X

W
⊤
⊛ X̃ + �(1 − I)(W

⊤
⊛ XS)

(42)

Where the division and × are element-wise. Note that multiplication with the K ×K
matrix (1− I) effectively implements factor competition because it places in the kth
row a sum across all other factors.
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