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1

Abstract2

Identifying low-dimensional features that describe large-scale neural recordings is a3

major challenge in neuroscience. Repeated temporal patterns (sequences) are thought to4

be a salient feature of neural dynamics, but are not succinctly captured by traditional5

dimensionality reduction techniques. Here we describe a software toolbox—called6

seqNMF—with new methods for extracting informative, non-redundant, sequences from7

high-dimensional neural data, testing the significance of these extracted patterns, and8

assessing the prevalence of sequential structure in data. We test these methods on9

simulated data under multiple noise conditions, and on several real neural and10

behavioral data sets. In hippocampal data, seqNMF identifies neural sequences that11

match those calculated manually by reference to behavioral events. In songbird data,12

seqNMF discovers neural sequences in untutored birds that lack stereotyped songs.13

Thus, by identifying temporal structure directly from neural data, seqNMF enables14

dissection of complex neural circuits without relying on temporal references from stimuli15

or behavioral outputs.16

17

Introduction18

The ability to detect and analyze temporal sequences embedded in a complex sensory19

stream is an essential cognitive function, and as such is a necessary capability of neuronal20

circuits in the brain [12, 26, 2, 24], as well as artificial intelligence systems [13, 59]. The21

detection and characterization of temporal structure in signals is also useful for the22

analysis of many forms of physical and biological data. In neuroscience, recent advances23

1 of 48

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 23, 2018. ; https://doi.org/10.1101/273128doi: bioRxiv preprint 

elm@mit.edu
fee@mit.edu
msgoldman@ucdavis.edu
https://doi.org/10.1101/273128


Manuscript submitted to eLife

in technology for electrophysiological and optical measurements of neural activity have24

enabled the simultaneous recording of hundreds or thousands of neurons [7, 31, 54, 27],25

in which neuronal dynamics are often structured in sparse sequences [21, 22, 38, 45, 16,26

47]. Such sequences can be identified by averaging across multiple trials, but only in cases27

where an animal receives a temporally precise sensory stimulus, or executes a sufficiently28

stereotyped behavioral task.29

Neural sequences have been hypothesized to play crucial roles over a much broader30

range of natural settings, including during learning, sleep, or diseased states [39]. In31

these applications, it may not possible to use external timing references, either because32

behaviors are not stereotyped or are entirely absent. Thus, sequences must be extracted33

directly from the neuronal data using unsupervised learning methods. Commonly used34

methods of this type, such as principal components analysis (PCA) or clustering methods,35

do not efficiently extract sequences, because they typically only model synchronous36

patterns of activity, rather than extended spatio-temporal motifs of firing.37

Existing approaches that search for repeating neural patterns require computationally38

intensive or statistically challenging analysis [4, 42, 51, 5]. While progress has been made39

in analyzing non-synchronous sequential patterns using statistical models that capture40

cross-correlations between pairs of neurons [53, 18, 55, 62, 20, 65], such methods may41

not have statistical power to scale to patterns that include many (more than a few dozen)42

neurons, may require long periods (≥ 105 timebins) of stationary data, and may have43

challenges in dealing with (non-sequential) background activity. For a review highlighting44

features and limitations of these methods see [51].45

Here we explore a complementary approach, which uses matrix factorization to46

reconstruct neural dynamics using a small set of exemplar sequences. In particular,47

we build on convolutional non-negative matrix factorization (convNMF) [57, 58] (Figure48

1B), which has been previously applied to identify recurring motifs in audio signals such49

as speech [44, 58, 66], as well as neural signals [49]. ConvNMF identifies exemplar50

patterns (factors) in conjunction with the times and amplitudes of pattern occurrences.51

This strategy eliminates the need to average activity aligned to any external behavioral52

references.53

While convNMF produces excellent reconstructions of the data, it does not automati-54

cally produce the minimal number of factors required. Indeed, if the number of factors in55

the convNMF model is greater than the true number of sequences, the algorithm returns56

overly complex and redundant factorizations. Moreover, in these cases, the sequences57

extracted by convNMF will often be inconsistent across optimization runs from different58

initial conditions, complicating scientific interpretations of the results [49, 70].59

To address these concerns, we developed a toolbox of methods, called seqNMF, which60

includes two different strategies to resolve the problem of redundant factorizations61

described above. In addition, the toolbox includes methods for promoting potentially de-62

sirable features such as orthogonality or sparsity of the spatial and temporal structure of63

extracted factors, and methods for analyzing the statistical significance and prevalence of64

identified sequential structure. To assess these tools, we characterize their performance65

on synthetic data under a variety of noise conditions and also show that they are able to66

find sequences in neural data collected from two different animal species using different67

behavioral protocols and recording technologies. Applied to extracellular recordings68

from rat hippocampus, seqNMF identifies neural sequences that were previously found69
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Figure 1. Convolutional NMF factorization

(A) NMF (non-negative matrix factorization) approximates a data matrix describing the activity ofN neurons at T
timepoints as a sum of K rank-one matrices. Each matrix is generated as the outer product of two nonnegative
vectors: wk of length N , which stores a neural ensemble, and hk of length T , which holds the times at which the
neural ensemble is active, and the relative amplitudes of this activity. (B) Convolutional NMF also approximates

an N × T data matrix as a sum of K matrices. Each matrix is generated as the convolution of two components:
a non-negative matrix wk of dimension N × L that stores a sequential pattern of the N neurons at L lags, and a
vector of temporal loadings, hk, which holds the times at which each factor pattern is active in the data, and
the relative amplitudes of this activity. (C) Three types of inefficiencies present in unregularized convNMF:

Type 1, in which two factors are used to reconstruct the same instance of a sequence; Type 2, in which two

factors reconstruct a sequence in a piece-wise manner; and Type 3, in which two factors are used to reconstruct

different instances of the same sequence. For each case, the factors (W and H) are shown, as well as the
reconstruction (X̃ =W⊛H = w1 ⊛ h1 + w2 ⊛ h2 +⋯).
Figure 1–Figure supplement 1. Quantifying the effect of different penalties on convNMF

by trial-averaging. Applied to functional calcium imaging data recorded in vocal/motor70

cortex of untutored songbirds, seqNMF robustly identifies neural sequences active in71

a biologically atypical and overlapping fashion. This finding highlights the utility of our72

approach to extract sequences without reference to external landmarks; untutored bird73

songs are so variable that aligning neural activity to song syllables would be difficult and74

highly subjective.75

Results76

Matrix factorization framework for unsupervised discovery of fea-77

tures in neural data78

Matrix factorization underlies many well known unsupervised learning algorithms, in-79

cluding principal component analysis (PCA) [48], non-negative matrix factorization (NMF)80

[32], dictionary learning, and k-means clustering (see [64] for a review). We start with81

a data matrix, X, containing the activity of N neurons at T timepoints. If the neurons82

exhibit a single repeated pattern of synchronous activity, the entire data matrix can be83

reconstructed using a column vector w representing the neural pattern, and a row vector84
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h representing the times and amplitudes at which that pattern occurs (temporal loadings).85

In this case, the data matrix X is mathematically reconstructed as the outer product of w86

and h). If multiple component patterns are present in the data, then each pattern can be87

reconstructed by a separate outer product, where the reconstructions are summed to88

approximate the entire data matrix (Figure 1A) as follows:89

Xnt ≈ X̃nt =
K
∑

k=1
WnkHkt = (WH)nt (1)

where Xnt is the (nt)tℎ element of matrix X, i.e. the activity of neuron n at time t. Here,90

in order to store K different patterns, W is a N × K matrix containing the K exemplar91

patterns, and H is a K × T matrix containing the K timecourses:92

W =

⎡

⎢

⎢

⎢

⎣

| | |

w1 w2 ⋯ wK
| | |

⎤

⎥

⎥

⎥

⎦

H =

⎡

⎢

⎢

⎢

⎢

⎣

− h1 −
− h2 −

⋮
− hK −

⎤

⎥

⎥

⎥

⎥

⎦

(2)

Given a data matrix with unknown patterns, the goal of matrix factorization is to93

discover a small set of patterns,W, and a corresponding set of temporal loading vectors,94

H, that approximate the data. In the case that the number of patterns, K , is sufficiently95

small (less than N and T ), this corresponds to a dimensionality reduction, whereby the96

data is expressed in more compact form. PCA additionally requires that the columns97

ofW and the rows of H are orthogonal. NMF instead requires that the elements ofW98

and H are nonnegative. The discovery of unknown factors is often accomplished by99

minimizing the following cost function, which measures the element-by-element sum of100

all squared errors between a reconstruction X̃ =WH and the original data matrix X using101

the Frobenius norm, ‖M‖F=
√

∑

ij M2
ij :102

(W∗,H∗) = argmin
W,H

‖X̃ − X‖2F (3)

(Note that other loss functions may be substituted if desired, for example to better reflect103

the noise statistics; see [64] for a review). The factorsW∗ and H∗ that minimize this cost104

function produce an optimal reconstruction X̃∗ =W∗H∗. Iterative optimization methods105

such as gradient descent can be used to search for global minima of the cost function;106

however, it is often possible for these methods to get caught in local minima. Thus, as107

described below, it is important to run multiple rounds of optimization to assess the108

stability/consistency of each model.109

While this general strategy works well for extracting synchronous activity, it is un-110

suitable for discovering temporally extended patterns—first, because each element in111

a sequence must be represented by a different factor, and second, because NMF as-112

sumes that the columns of the data matrix are independent ‘samples’ of the data, so113

permutations in time have no effect on the factorization of a given data set. It is therefore114

necessary to adopt a different strategy for temporally extended features.115

Convolutional Matrix Factorization116

Convolutional nonnegative matrix factorization (convNMF) [57, 58] extends NMF to pro-117

vide a framework for extracting temporal patterns, including sequences, from data. While118
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Table 1. Notation for convolutional matrix factorization

Shift operator

The operator

l→

(H) shifts a matrix H in the→ direction by l timebins:

(
l→

H )⋅t = H⋅(t−l) and likewise (
←l

H )⋅t = H⋅(t+l)

where ⋅ indicates all elements along the respective matrix dimension.

The shift operator inserts zeros when (t − l) < 0 or (t + l) > T

Tensor convolution operator

Convolutive matrix factorization reconstructs a data matrix X

using a N ×K × L tensorW and a K × T matrix H:

X̃ =W⊛H =
∑

l W⋅⋅l

l→

H

Note that each neuron n is reconstructed as the sum of k convolutions:

X̃nt =
∑

k
∑

l WnklHk(t−l) ≡ (W⊛H)nt

Transpose tensor convolution operator

The following quantity is useful in several contexts:

W
⊤
⊛ X =

∑

l(W⋅⋅l)⊤
←l

X

Note that each element (W
⊤
⊛ X)kt =

∑

l(W⋅kl)⊤X⋅(t+l) =
∑

l
∑

nWnklXn(t+l) measures

the overlap (correlation) of factor k with the data at time t

convNMF reconstruction

X ≈ X̃ =
∑

kW⋅k⋅ ⊛Hk⋅ =W⊛H

Note that NMF is a special case of convNMF, where L = 1

L1 entrywise norm excluding diagonal elements

For any K ×K matrix C, ‖C‖1,i≠j≡
∑

k
∑

j≠k Cjk

Special matrices

1 is a K ×K matrix of ones

I is the K ×K identity matrix

S is a T × T smoothing matrix: Sij = 1 when |i − j| < L and otherwise Sij = 0
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in classical NMF each factorW is represented by a single vector (Figure 1A), the factorsW119

in convNMF represent patterns of neural activity over a brief period of time. Each pattern120

is stored as an N × L matrix, wk, where each column (indexed by l = 1 to L) indicates121

the activity of neurons at different timelags within the pattern (Figure 1B). The times at122

which this pattern/sequence occurs are encoded in the row vector h1, as for NMF. The123

reconstruction is produced by convolving theN ×L pattern with the time series h1 (Figure124

1B).125

If the data set contains multiple patterns, each pattern is captured by a different126

N × Lmatrix and a different associated time series vector h. A collection of K different127

patterns can be compiled together into an N ×K × L array (also known as a tensor)W128

and a corresponding K × T time series matrix H. Analogous to NMF, convNMF generates129

a reconstruction of the data as a sum of K convolutions between each neural activity130

pattern (W), and its corresponding temporal loadings (H):131

Xnt ≈ X̃nt =
K
∑

k=1

L−1
∑

l=0
WnklHk(t−l) ≡ (W⊛H)nt (4)

The tensor/matrix convolution operator ⊛ (notation summary, Table 1) reduces to matrix132

multiplication in the L = 1 case, which is equivalent to standard NMF. The quality of this133

reconstruction can be measured using the same cost function shown in Equation 3, and134

W and Hmay be found iteratively using similar multiplicative gradient descent updates to135

standard NMF [32, 57, 58].136

While convNMF can perform extremely well at reconstructing sequential structure,137

it can be challenging to use when the number of sequences in the data is not known138

[49]. In this case, a reasonable strategy would be to choose K at least as large as the139

number of sequences that one might expect in the data. However, if K is greater than140

the actual number of sequences, convNMF often identifies more significant factors than141

are minimally required. This is because each sequence in the data may be approximated142

equally well by a single sequential pattern or by a linear combination of multiple partial143

patterns. A related problem is that running convNMF from different random initial144

conditions produces inconsistent results, finding different combinations of partial patterns145

on each run [49]. These inconsistency errors fall into three main categories (Figure 1C):146

• Type 1: Two or more factors are used to reconstruct the same instances of a se-147

quence.148

• Type 2: Two or more factors are used to reconstruct temporally different parts of149

the same sequence, for instance the first half and the second half.150

• Type 3: Duplicate factors are used to reconstruct different instances of the same151

sequence.152

Together, these inconsistency errors manifest as strong correlations between different153

redundant factors, as seen in the similarity of their temporal loadings (H) and/or their154

exemplar activity patterns (W).155

We next describe two strategies for overcoming the redundancy errors described156

above. Both strategies build on previous work that reduces correlations between factors157

in NMF. The first strategy is based on regularization, a common technique in optimization158

that allows the incorporation of constraints or additional information with the goal of im-159

proving generalization performance or simplifying solutions to resolve degeneracies [23].160
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A second strategy directly estimates the number of underlying sequences by minimizing161

a measure of correlations between factors (stability NMF; [70]).162

Optimization penalties to reduce redundant factors163

To reduce the occurrence of redundant factors (and inconsistent factorizations) in con-164

vNMF, we sought a principled way of penalizing the correlations between factors by165

introducing a penalty term, R, into the convNMF cost function:166

(W∗,H∗) = argmin
W,H

(

‖X̃ − X‖2F+R
)

(5)

Regularization has previously been used in NMF to address the problem of duplicated167

factors, which, similar to Type 1 errors above, present as correlations between the H’s168

[9, 8]. Such correlations are measured by computing the correlation matrix HH⊤, which169

contains the correlations between the temporal loadings of every pair of factors. The170

regularization may be implemented using the penalty term R = �‖HH⊤
‖1,i≠j , where171

the seminorm ‖⋅‖1,i≠j sums the absolute value of every matrix entry except those along172

the diagonal (notation summary, Table 1) so that correlations between different factors173

are penalized, while the correlation of each factor with itself is not. Thus, during the174

minimization process, similar factors compete, and a larger amplitude factor drives down175

the H of a correlated smaller factor. The parameter � controls the magnitude of the176

penalty term R.177

In convNMF, a penalty term based onHH⊤ yields an effective method to prevent errors178

of Type 1, because it penalizes the associated zero lag correlations. However, it does179

not prevent errors of the other types, which exhibit different types of correlations. For180

example Type 2 errors result in correlated temporal loadings that have a small temporal181

offset and thus are not detected by HH⊤. One simple way to address this problem is182

to smooth the H’s in the penalty term with a square window of length 2L − 1 using183

the smoothing matrix S (Sij = 1 when |i − j| < L and otherwise Sij = 0). The resulting184

penalty, R = �‖HSH⊤
‖, allows factors with small temporal offsets to compete, effectively185

preventing errors of Type 1 and 2.186

This penalty does not prevent errors of Type 3, in which redundant factors with highly187

similar patterns inW are used to explain different instances of the same sequence. Such188

factors have temporal loadings that are segregated in time, and thus have low correlations,189

to which the cost term ‖HSH⊤
‖ is insensitive. One way to resolve errors of Type 3 might190

be to include an additional cost term that penalizes the similarity of the factor patterns in191

W. This has the disadvantage of requiring an extra parameter, namely the � associated192

with this cost.193

Instead we chose an alternative approach to resolve errors of Type 3 that simulta-194

neously detects correlations in W and H using a single cross-orthogonality cost term.195

We note that, for Type 3 errors, redundant W patterns have a high degree of overlap196

with the data at the same times, even though their temporal loadings are segregated197

at different times. To introduce competition between these factors, we first compute,198

for each pattern in W, its overlap with the data at time t. This quantity is captured in199

symbolic form byW
⊤
⊛X (See Table 1). We then compute the pairwise correlation between200

the temporal loading of each factor and the overlap of every other factor with the data.201

This cross-orthogonality penalty term, which we refer to as "x-ortho", sums up these202
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correlations across all pairs of factors, implemented as follows:203

R = �‖(W
⊤
⊛ X)SH⊤

‖1,i≠j (6)

When incorporated into the update rules, this causes any factor that has a high overlap204

with the data to suppress the temporal loadings (H) of any other factors that have high205

overlap with the data at that time (Further analysis, Appendix 2). Thus, factors compete206

to explain each feature of the data, favoring solutions that use a minimal set of factors to207

give a good reconstruction. The resulting global cost function is:208

(W∗,H∗) = argmin
W,H

(

‖X̃ − X‖2F+�‖(W
⊤
⊛ X)SH⊤

‖1,i≠j

)

(7)

The update rules forW and H are based on the derivatives of this global cost function,209

leading to a simple modification of the standard multiplicative update rules used for NMF210

and convNMF [32, 57, 58] (Table 2). Note that the addition of this cross-orthogonality term211

does not formally constitute regularization, because it also includes a contribution from212

the data matrix X, rather than just the model variablesW and H. However, at least for213

the case that the data is well reconstructed by the sum of all factors, the x-ortho penalty214

can be shown to be approximated by a formal regularization (Appendix 2). This formal215

regularization contains both a term corresponding to a weighted (smoothed) orthogo-216

nality penalty onW and a term corresponding to a weighted (smoothed) orthogonality217

penalty on H, consistent with the observation that the x-ortho penalty simultaneously218

punishes factor correlations inW and H.219

There is an interesting relation between our method for penalizing correlations and220

other methods for constraining optimization, namely sparsity. Because of the non-221

negativity constraint imposed in NMF, correlations can also be reduced by increasing the222

sparsity of the representation. Previous efforts have been made to minimize redundant223

factors using sparsity constraints, however this approach may require penalties on both224

W and H, necessitating the selection of two hyper-parameters (�w and �ℎ) [49]. Since the225

use of multiple penalty terms increases the complexity of model fitting and selection of226

parameters, one goal of our work was to design a simple, single penalty function that227

could regularize both W and H simultaneously. The x-ortho penalty described above228

serves this purpose (Equation 6). As we will describe below, the application of sparsity229

penalties can be very useful for shaping the factors produced by convNMF and our code230

includes options for applying sparsity penalties on bothW and H.231

Extracting ground-truth sequences with the x-ortho penalty when K is too large232

We next examined the effect of the x-ortho penalty on factorizations of sequences in233

simulated data, with a focus on convergence, consistency of factorizations, the ability of234

the algorithm to discover the correct number of sequences in the data, and robustness235

to noise (Figure 2A). We first assessed the model’s ability to extract three ground-truth236

sequences lasting 30 timesteps and containing 10 neurons in the absence of noise (Figure237

2A). The resulting data matrix had a total duration of 15000 timesteps and contained on238

average 60±6 instances of each sequence. Neural activation events were represented239

with an exponential kernel to simulate calcium imaging data. The algorithm was run with240

x-ortho penalty for 1000 iterations; it reliably converged to a root-mean-squared-error241

(RMSE) close to zero (Figure 2B). RMSE reached to within 10% of the asymptotic value242

within 100 iterations.243
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Figure 2. Effect of the x-ortho penalty on the factorization of sequences

(A) A simulated data set with three sequences. Also shown is a factorization with x-ortho penalty (K = 20,
L = 50, � = 0.003). Each significant factor is shown in a different color. At left are the exemplar patterns (W)
and on top are the timecourses (H). (B) Reconstruction error as a function of iteration number. Factorizations
were run on a simulated data set with three sequences and 15000 timebins (≈ 60 instances of each sequence).
Twenty independent runs are shown. Here the algorithm converges to within 10% of the asymptotic error value

within ≈ 100 iterations. (C) The x-ortho penalty produces more consistent factorizations than unregularized
convNMF across 400 independent fits (K = 20, L = 50, � = 0.003). (D) The number of statistically significant
factors (Figure supplement 1) vs. the number of ground-truth sequences for factorizations with and without

the x-ortho penalty. Shown for each condition is a vertical histogram representing the number of significant

factors over 20 runs (K = 20, L = 50, � = 0.003). (E) Factorization with x-ortho penalty of two simulated neural
sequences with shared neurons that participate at the same latency. (F) Same as E but for two simulated neural

sequences with shared neurons that participate at different latencies.

Figure 2–Figure supplement 1. Outline of the procedure used to assess factor significance

Figure 2–Figure supplement 2. Number of significant factors as a function of � for data sets
containing between 1 and 10 sequences
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While similar RMSE values were achieved using convNMF with and without the x-ortho244

penalty; the addition of this penalty allowed three ground-truth sequences to be robustly245

extracted into three separate factors (w1, w2, and w3 in Figure 2A) so long as K was chosen246

to be larger than the true number of sequences. In contrast, convNMF with no penalty247

converged to inconsistent factorizations from different random initializations when K248

was chosen to be too large, due to the ambiguities described in Figure 1. We quantified249

the consistency of each model (see Methods), and found that factorizations using the250

x-ortho penalty demonstrated near perfect consistency across different optimization runs251

(Figure 2C).252

We next evaluated the performance of convNMF with and without the x-ortho penalty253

on data sets with a larger number of sequences. In particular, we set out to observe the254

effect of the x-ortho penalty on the number of statistically significant factors extracted.255

Statistical significance was determined based on the overlap of each extracted factor with256

held out data (see Methods and code package). With the penalty term, the number of257

significant sequences closely matched the number of ground-truth sequences. Without258

the penalty, all 20 extracted sequences were significant by our test (Figure 2D).259

We next considered how the x-ortho penalty performs on sequences with more260

complex structure than the sparse uniform sequences of activity examined above. We261

examined the case in which a population of neurons is active in multiple different se-262

quences. Such neurons that are shared across different sequences have been observed263

in several neuronal data sets [45, 47, 22]. For one test, we constructed two sequences in264

which shared neurons were active at a common pattern of latencies in both sequences;265

in another test, shared neurons were active in a different pattern of latencies in each266

sequence. In both tests, factorizations using the x-ortho penalty achieved near-perfect267

reconstruction error, and consistency was similar to the case with no shared neurons268

(Figure 2E, F). We also examined other types of complex structure and have found that269

the x-ortho penalty performs well in data with large gaps between activity or with large270

overlaps of activity between neurons in the sequence. This approach also worked well in271

cases in which the duration of the activity or the interval between the activity of neurons272

varied across the sequence (Figure 3-Figure supplement 3).273

Robustness to noisy data274

The cross-orthogonality penalty performed well in the presence of types of noise com-275

monly found in neural data. In particular, we considered: participation noise, in which276

individual neurons participate probabilistically in instances of a sequence; additive noise,277

in which neuronal events occur randomly outside of normal sequence patterns; temporal278

jitter, in which the timing of individual neurons is shifted relative to their typical time in a279

sequence; and finally, temporal warping, in which each instance of the sequence occurs280

at a different randomly selected speed. To test the robustness of the algorithm with the281

x-ortho penalty to each of these noise conditions, we factorized data containing three282

neural sequences at a variety of noise levels (Figure 3, top row). The value of � was chosen283

using methods described in the next section. Factorizations with the x-ortho penalty284

proved relatively robust to all four noise types, with a high probability of returning the285

correct numbers of significant factors (Figure 4-Figure supplement 5). Furthermore, under286

low noise conditions, the algorithm produced factors that were highly similar to ground-287

truth, and this similarity declined gracefully at higher noise levels (Figure 3). Visualization288
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Figure 3. Testing factorization performance on sequences contaminated with noise

Performance of the x-ortho penalty was tested under 4 different noise conditions: (A) probabilistic participation,

(B) additive noise, (C) temporal jitter, and (D) sequence warping. For each noise type, we show: (top) examples

of synthetic data at 3 different noise levels; (middle) similarity of extracted factors to ground-truth patterns

across a range of noise levels (20 fits for each level); and (bottom) examples of extracted factorsW’s for one
of the ground-truth patterns. Examples are shown at the same 3 noise levels illustrated in top row. In these

examples, the algorithm was run with K = 20, L = 50 and � = 2�0 (via procedure described in Figure 4). For D,
timewarp conditions 1-10 indicate: 0, 66, 133, 200, 266, 333, 400, 466, 533 and 600 max % stretching respectively.

For results at different values of �, see Figure supplement 1.
Figure 3–Figure supplement 1. Robustness to noise at different values of �
Figure 3–Figure supplement 2. Robustness to small data set size when using the x-ortho penalty

Figure 3–Figure supplement 3. Robustness to different types of sequences
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of the extracted factors revealed a good qualitative match to ground-truth sequences289

even in the presence of high noise except for the case of temporal jitter (Figure 3). We290

also found that the x-ortho penalty allows reliable extraction of sequences in which the291

duration of each neuron’s activity exhibits substantial random variation across different292

renditions of the sequence, and in which the temporal jitter of neural activity exhibits293

systematic variation at different points in the sequences (Figure 3-Figure supplement3).294

Finally, we wondered how our approach with the x-ortho penalty performs on data sets295

with only a small number of instances of each sequence. We generated data containing296

different numbers of repetitions ranging from 1 to 20, of each underlying ground-truth297

sequence. For intermediate levels of additive noise, we found that 3 repetitions of each298

sequence were sufficient to correctly extract factors with similarity scores close to those299

obtained with much larger numbers of repetitions (Figure 3-Figure supplement 2).300

Methods for choosing an appropriate value of �301

The x-ortho penalty performs best when the strength of the regularization term (deter-302

mined by the hyperparameter �) is chosen appropriately. For � too small, the behavior303

of the algorithm approaches that of convNMF, producing a large number of redundant304

factors with high x-ortho cost. For � too large, all but one of the factors are suppressed to305

zero amplitude, resulting in a factorization with near-zero x-ortho cost, but with large re-306

construction error if multiple sequences are present in the data. Between these extremes,307

there exists a region in which increasing � produces a rapidly increasing reconstruction308

error and a rapidly decreasing x-ortho cost. Thus there is a single point, which we term �0,309

at which changes in reconstruction cost and changes in x-ortho cost are balanced (Figure310

4A). We hypothesized that the optimal choice of � (i.e. the one producing the correct311

number of ground-truth factors) would lie near this point.312

To test this intuition, we examined the performance of the x-ortho penalty as a function313

of lambda in noisy synthetic data consisting of 3 non-overlapping sequences (Figure 4A).314

Our analysis revealed that, overall, values of � between 2�0 and 5�0 performed well315

for these data across all noise types and levels (Figure 4B,C). In general, near-optimal316

performance was observed over an order of magnitude range of � (Figure 1). However317

there were systematic variations depending on noise type: for additive noise, performance318

was better when � was closer to �0, while with other noise types, performance was better319

at somewhat higher values of �s (≈ 10�0).320

Similar ranges of � appeared to work for data sets with different numbers of ground-321

truth sequences—for the data sets used in Figure 2D, a range of � between 0.001 and322

0.01 returned the correct number of sequences at least 90% of the time for data sets323

containing between 1 and 10 sequences (Figure 2-Figure supplement 2). Furthermore,324

this method for choosing � also worked on data sets containing sequences with shared325

neurons (Figure 4-Figure supplement 2).326

The value of � may also be determined by cross-validation (see Methods). Indeed,327

the � chosen with the heuristic described above coincided with a minimum or distinctive328

feature in the cross-validated test error for all the cases we examined (Figure 4-Figure329

supplement 3). The seqNMF code package accompanying this paper provides functions330

to determine � both by cross-validation or in reference to �0.331
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Figure 4. Procedure for choosing � for a new data set based on finding a balance between
reconstruction cost and x-ortho cost

(A) Simulated data containing three sequences in the presence of participation noise (50% participation prob-

ability). This noise condition is used for the tests in (B-F). (B) Normalized reconstruction cost (||X̃ − X||2F ) and

cross-orthogonality cost (||(W
⊤
⊛ X)SH⊤

||1,i≠j ) as a function of � for 20 fits of these data. The cross-over point
�0 is marked with a black circle. Note that in this plot the reconstruction cost and cross-orthogonality cost are
normalized to vary between 0 and 1. (C) The number of significant factors obtained as a function of �; 20 fits,
mean plotted in orange. Red arrow at left indicates the correct number of sequences (three). (D) Fraction of

fits returning the correct number of significant factors as a function of �. (E) Similarity of extracted factors to
ground-truth sequences as a function of �. (F) Composite performance,computed as the product of the curves
in (D) and (E) (smoothed using a three sample boxcar, plotted in orange with a circle marking the peak). Shaded

region indicates the range of � that works well (± half height of composite performance). (G-L) same as (A-F)
but for simulated data containing three noiseless sequences. (M) Summary plot showing the range of values of

� (vertical bars), relative to the cross-over point �0, that work well for each noise condition (± half height points
of composite performance). Circles indicate the value of � at the peak of the smoothed composite performance.
For each noise type, results for all noise levels from Figure 3 are shown (increasing color saturation at high noise

levels; Green, participation: 90, 80, 70, 60, 50, 40, 30, and 20%; Orange, additive noise 0.5, 1, 2, 2.5, 3, 3.5, and

4%; Purple, jitter: SD of the distribution of random jitter: 5, 10, 15, 20, 25, 30, 35, 40, and 45 timesteps; Grey,

timewarp: 66, 133, 200, 266, 333, 400, 466, 533, 600, and 666 max % stretching. Asterisk (*) indicates the noise

type and level used in panels (A-F). Gray band indicates a range between 2�0 and 5�0, a range that tended to
perform well across the different noise conditions. In real data, it may be useful to explore a wider range of �.
Figure 4–Figure supplement 1. Analysis of the best range of �
Figure 4–Figure supplement 2. Procedure for choosing � applied to data with shared neurons
Figure 4–Figure supplement 3. Using cross-validation on held-out (masked) data to choose �
Figure 4–Figure supplement 4. Quantifying the effect of L1 sparsity penalties on W and H

Figure 4–Figure supplement 5. Comparing the performance of convNMF with an x-ortho or a

sparsity penalty
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Figure 5. Direct selection of K using the dissmetric, a measure of the dissimilarity of different
factorizations

Panels show the distribution of diss as a function of K for several different noise conditions. Lower values of
diss indicate greater consistency or stability of the factorizations, an indication of low factor redundancy. (A)
probabilistic participation (60%), (B) additive noise (2.5% bins), (C) timing jitter (SD = 20 bins), and (D) sequence

warping (max % warping = 266). For each noise type, we show: (top) examples of synthetic data ; (bottom) the

dissmetric for 20 fits of convNMF for K from 1 to 10; the black line shows the median of the dissmetric and the
dotted red line shows the true number of factors.

Figure 5–Figure supplement 1. Direct selection of K using the dissmetric for all noise conditions
Figure 5–Figure supplement 2. Estimating the number of sequences in a data set using cross-

validation on randomly masked held-out datapoints
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Sparsity constraints to reduce redundant factors332

One of the advantages of the x-ortho penalty is that it includes only a single term to333

penalize correlations between different factors, and thus requires only a single hyperpa-334

rameter �. This contrasts with the approach of incorporating a sparsity constraint onW335

and H of the form �w‖W‖1 + �ℎ‖H‖1 [49]. We have found that the performance of the336

sparsity approach depends on the correct choice of both hyperparameters �w and �ℎ337

(Figure 4-Figure supplement 4). Given the optimal choice of these parameters, the L1338

sparsity constraint yields an overall performance approximately as good as the x-ortho339

penalty (Figure 4-Figure supplement 4). However, there are some consistent differences340

in the performance of the sparsity and x-ortho approaches depending on noise type; an341

analysis at moderately high noise levels reveals that the x-ortho penalty performs slightly342

better with warping and participation noise, while the L1 sparsity penalty performs slightly343

better on data with jitter and additive noise (Figure 4-Figure supplement 5). However,344

given the added complexity of choosing two hyperparameters for L1 sparsity, we prefer345

the x-ortho approach.346

Direct selection of K to reduce redundant factors347

An alternative strategy to minimizing redundant factorizations is to estimate the number348

of underlying sequences and to select the appropriate value of K. An approach for349

choosing the number of factors in regular NMF is to run the algorithm many times with350

different initial conditions, at different values of K , and choose the case with the most351

consistent and uncorrelated factors. This strategy is called stability NMF [70] and is352

similar to other stability-based metrics that have been used in clustering models [67].353

The stability NMF score, diss, is measured between two factorizations, F1 = {W1,H1} and354

F2 = {W2,H2}, run from different initial conditions:355

diss(F1,F2) = 1
2K

(

2K −
K
∑

j=1
max
1≤k≤K

Cjk −
K
∑

k=1
max
1≤j≤K

Cjk

)

where C is the cross-correlation matrix between the columns of the matrixW1 and the356

the columns of the matrixW2. Note that diss is low when there is a one-to-one mapping357

between factors in F1 and F2, which tends to occur at the correct K in NMF [70, 63]. NMF358

is run many times and the dissmetric is calculated for all unique pairs. The best value of359

K is chosen as that which yields the lowest average dissmetric.360

To use this approach for convNMF we needed to slightly modify the stability NMF diss361

metric. Unlike in NMF, convNMF factors have a temporal degeneracy; that is, one can362

shift the elements of hk by one time step while shifting the elements of wk by one step in363

the opposite direction with little change to the model reconstruction. Thus, rather than364

computing correlations from the factor patternsW or loadings H, we computed the diss365

metric using correlations between factor reconstructions (X̃k = wk ⊛ hk).366

Cij =
Tr

[

X̃Ti X̃j
]

‖X̃i‖F ‖X̃j‖F
where Tr[⋅] denotes the trace operator, Tr[M] =

∑

iMii. That is, Cij measures the correla-367

tion between the reconstruction of factor i in F1 and the reconstruction of factor j in F2.368

As for stability NMF, the approach is to run convNMF many times with different numbers369

of factors (K) and choose the K which minimizes the dissmetric.370
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Figure 6. Using penalties to bias towards events-based and parts-based factorizations

Data sets that have neurons shared betweenmultiple sequences can be factorized in different ways, emphasizing

discrete temporal events (events-based) or component neuronal ensembles (parts-based), by using orthogonality

penalties on H orW to penalize factor correlations (see Table 3). (Left) A data set with two different ensembles

of neurons that participate in two different types of events, with (A) events-based factorization obtained using

an orthogonality penalty on H and (B) parts-based factorizations obtained using an orthogonality penalty onW.
(Right) A data set with six different ensembles of neurons that participate in three different types of events, with

(C) events-based and (D) parts-based factorizations obtained as in (A) and (B) .

Figure 6–Figure supplement 1. Biasing factorizations between sparsity inW or H

We evaluated the robustness of this approach in synthetic data with the four noise371

conditions examined earlier. Synthetic data were constructed with 3 ground-truth se-372

quences and 20 convNMF factorizations were carried out for each K ranging from 1 to373

10. For each K the average dissmetric was computed over all 20 factorizations. In many374

cases, the average dissmetric exhibited a minimum at the ground-truth K (Figure 5-Figure375

supplement 1). As shown below, this method also appears to be useful for identifying the376

number of sequences in real neural data.377

Not only does the dissmetric identify factorizations that are highly similar to the ground378

truth and have the correct number of underlying factors, it also yields factorizations that379

minimize reconstruction error in held out data (Figure 5, Figure 5-Figure supplement 2),380

as shown using the same cross-validation procedure described above (Figure 5-Figure381

supplement 2). For simulated data sets with participation noise, additive noise, and382

temporal jitter, there is a clear minimum in the test error at the K given by dissmetric. In383

other cases there is a distinguishing feature such as a kink or a plateau in the test error at384

this K (Figure 5-Figure supplement 2).385

Strategies for dealing with ambiguous sequence structure386

Some sequences can be interpreted in multiple ways, and these interpretations will387

correspond to different factorizations. A common example arises when neurons are388

shared between different sequences, as is shown in Figure 6A and B. In this case, there389

are two ensembles of neurons (1 and 2), that participate in two different types of events.390

In one event type, ensemble 1 is active alone, while in the other event type, ensemble 1 is391

coactive with ensemble 2. There are two different reasonable factorizations of these data.392
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In one factorization the two different ensembles are separated into two different factors,393

while in the other factorization the two different event types are separated into two394

different factors. We refer to these as ’parts-based’ and ’events-based’ respectively. Note395

that these different factorizations may correspond to different intuitions about underlying396

mechanisms. ‘Parts-based’ factorizations will be particularly useful for clustering neurons397

into ensembles, and ‘events-based’ factorizations will be particularly useful for correlating398

neural events with behavior.399

Here we show that the addition of penalties on eitherW or H correlations can be used400

to shape the factorizations of convNMF, with or without the x-ortho penalty, to produce401

‘parts-based’ or ‘events-based’ factorization. Without this additional control, factorizations402

may be either ‘parts-based’, or ‘events-based’ depending on initial conditions and the403

structure of shared neurons activities. This approach works because, in ‘events-based’404

factorization, the H’s are orthogonal (uncorrelated) while theW’s have high overlap; con-405

versely, in the ‘parts-based’ factorization, theW’s are orthogonal while the H’s are strongly406

correlated. Note that these correlations inW or H are unavoidable in the presence of407

shared neurons and such correlations do not indicate a redundant factorization. Update408

rules to implement penalties on correlations in W or H are provided in Table 2 with409

derivations in Appendix 1. Figure 9-Figure supplement 2 shows examples of using these410

penalties on the songbird data set described in Figure 9.411

L1 regularization is a widely used strategy for achieving sparse model parameters [71],412

and has been incorporated into convNMF in the past [44, 52]. In some of our data sets, we413

found it useful to include L1 regularization for sparsity. The multiplicative update rules in414

the presence of L1 regularization are included in Table 2, and as part of our code package.415

Sparsity on the matricesW and Hmay be particularly useful in cases when sequences416

are repeated rhythmically (Figure 6-Figure supplement 1A). For example, the addition of a417

sparsity regularizer on theW update will bias theW exemplars to include only a single418

repetition of the repeated sequence, while the addition of a sparsity regularizer on H will419

bias theW exemplars to include multiple repetitions of the repeated sequence. Like the420

ambiguities described above, these are both valid interpretations of the data, but each421

may be more useful in different contexts.422

Quantifying the prevalence of sequential structure in a data set423

While sequences may be found in a variety of neural data sets, their importance and424

prevalence is still a matter of debate and investigation. To address this, we developed425

a metric to assess how much of the explanatory power of a seqNMF factorization was426

due to synchronous vs. asynchronous neural firing events. Since convNMF can fit both427

synchronous and sequential events in a data set, reconstruction error is not, by itself,428

diagnostic of the ’sequenciness’ of neural activity. Our approach is guided by the obser-429

vation that in a data matrix with only synchronous temporal structure (i.e. patterns of430

rank 1), the columns can be permuted without sacrificing convNMF reconstruction error.431

In contrast, permuting the timebins eliminates the ability of convNMF to model data432

that contains sparse temporal sequences (i.e. high rank patterns) but no synchronous433

structure. We thus compute a ’sequenciness’ metric, ranging from 0 to 1, that compares434

the performance of convNMF on column-shuffled versus non-shuffled data matrices (see435

Methods), and quantify the performance of this metric in simulated data sets containing436

synchronous and sequential events with varying prevalence (Figure 7C). We found that this437
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Figure 7. Using seqNMF to assess the prevalence of sequences in noisy data

(A), Example simulated data sets. Each data set contains ten neurons, with varying amounts of additive noise,

and varying proportions of synchronous events versus asynchronous sequences. For the purposes of this

figure, ‘sequence’ refers to a sequential pattern with no synchrony between different neurons in the pattern.

The duration of each data set used below is 3000 time bins, and here 300 timebins are shown. (B), Median

percent power explained by convNMF (L=12; K=2; �=0) for each type of data set (100 examples of each data
set type). Different colors indicate the three different levels of additive noise shown in A. Solid lines and filled

circles indicate results on unshuffled data sets. Note that performance is flat for each noise level, regardless

of the probability of sequences vs synchronous events. Dotted lines and open circles indicate results on

column-shuffled data sets. When no sequences are present, convNMF performs the same on column-shuffled

data. However, when sequences are present, convNMF performs worse on column-shuffled data. (C), For

data sets with patterns ranging from exclusively synchronous events to exclusively asynchronous sequences,

convNMF was used to generate a ‘Sequenciness’ score. Colors correspond to different noise levels shown in A.

Asterisks denote cases where the power explained exceeds the Bonferroni-corrected significance threshold

generated from column-shuffled data sets. Open circles denote cases that do not achieve significance. Note

that this significance test is fairly sensitive, detecting even relatively low presence of sequences, and that the

‘Sequenciness’ score distinguishes between cases where more or less of the data set consists of sequences.
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metric varies approximately linearly with the degree to which sequences are present in a438

data set. Below, we apply this method to real experimental data and demonstrate preva-439

lent levels of asynchronous dynamics, suggesting that convolutional matrix factorization440

is a well-suited tool for summarizing neural dynamics in these data sets.441

Application of seqNMF to hippocampal sequences442

To test the ability of seqNMF to discover patterns in electrophysiological data, we analyzed443

multielectrode recordings from rat hippocampus (https://crcns.org/data-sets/hc), which444

were previously shown to contain sequential patterns of neural firing [46]. Specifically,445

rats were trained to alternate between left and right turns in a T-maze to earn a water446

reward. Between alternations, the rats ran on a running wheel during an imposed delay447

period lasting either 10 or 20 seconds. By averaging spiking activity during the delay448

period, the authors reported long temporal sequences of neural activity spanning the449

delay. In some rats, the same sequence occurred on left and right trials, while in other450

rats, different sequences were active in the delay period during the different trial types.451

Without reference to the behavioral landmarks, seqNMF was able to extract sequences452

in both data sets. In Rat 1, seqNMF extracted a single factor, corresponding to a sequence453

active throughout the running wheel delay period and immediately after, when the rat454

ran up the stem of the maze (Figure 8A); for 10 fits of K ranging from 1 to 10, the average455

dissmetric reached a minimum at 1 and with � = 2�0, most runs using the x-ortho penalty456

extracted a single significant factor (Figure 8C-E). Factorizations of this data with one factor457

captured 40.8% of the power in the data set on average, and had a ’sequenciness’ score of458

0.49. Some runs using the x-ortho penalty extracted two factors (Figure 8E), splitting the459

delay period sequence and the maze stem sequence; this is a reasonable interpretation460

of the data, and likely results from variability in the relative timing of running wheel and461

maze stem traversal. At somewhat lower values of �, factorizations more often split these462

sequences into two factors. At even lower values of �, factorizations had even more463

significant factors. Such higher granularity factorizations may correspond to real variants464

of the sequences, as they generalize to held-out data or may reflect time warping in465

the data (Figure 5-Figure supplement 2J). However a single sequence may be a better466

description of the data because the dissmetric displayed a clear minimum atK = 1 (Figure467

8C). In Rat 2, seqNMF typically identified three factors (Figure 8B). The first two correspond468

to distinct sequences active for the duration of the delay period on alternating left and469

right trials. A third sequence was active immediately following each of the alternating470

sequences, corresponding to the time at which the animal exits the wheel and runs up the471

stem of the maze. For 10 fits of K ranging from 1 to 10, the average dissmetric reached a472

minimum at 3 and with � = 1.5�0, most runs with the x-ortho penalty extracted between473

2 and 4 factors (Figure 8F-H). Factorizations of this data with three factors captured 52.6%474

of the power in the data set on average, and had a pattern ’sequenciness’ score of 0.85.475

Taken together, these results suggest that seqNMF can detect multiple neural sequences476

without the use of any behavioral landmarks.477

Application of seqNMF to abnormal sequence development in avian478

motor cortex479

We applied seqNMF methods to analyze functional imaging data recorded in songbird480

HVC during singing. Normal adult birds sing a highly stereotyped song, making it possible481
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Figure 8. Application of seqNMF to extract hippocampal sequences from two rats

(A) Firing rates of 110 neurons recorded in the hippocampus of Rat 1 during an alternating left-right task

with a delay period [46]. The single significant extracted x-ortho penalized factor. Both an x-ortho penalized

reconstruction of each factor (left) and raw data (right) are shown. Neurons are sorted according to the latency

of their peak activation within the factor. The red line shows the onset and offset of the forced delay periods,

during which the animal ran on a treadmill. (B) Firing rates of 43 hippocampal neurons recorded in Rat 2 during

the same task [40]. Neurons are sorted according to the latency of their peak activation within each of the

three significant extracted sequences. The first two factors correspond to left and right trials, and the third

corresponds to running along the stem of the maze. (C) The dissmetric as a function of K for Rat 1. Black line
represents the median of the black points. Notice the minimum at K = 1. (D) (Left) Reconstruction (red) and

correlation (blue) costs as a function of � for Rat 1. Arrow indicates � = 8x10−5, used for the x-ortho penalized
factorization shown in (A). (E) Histogram of the number of significant factors across 30 runs of x-ortho penalized

convNMF. (D) The dissmetric as a function of K for Rat 2. Notice the minimum at K = 3.(G-H) Same as in (D-E)
but for Rat 2. Arrow indicates � = 8x10−5, used for the factorization shown in (B).
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Figure 9. SeqNMF applied to calcium imaging data from a singing isolate bird reveals abnormal

sequence deployment

(A) Functional calcium signals recorded from 75 neurons, unsorted, in a singing isolate bird. (B) Reconstruction

and cross-orthogonality cost as a function of �. The arrow at � = 0.005 indicates the value selected for the rest of
the analysis. (C) Number of significant factors for 100 runs with the x-ortho penalty with K = 10, � = 0.005. Arrow
indicates 3 is the most common number of significant factors. (D) X-ortho factor exemplars (W’s), Neurons are
grouped according to the factor in which they have peak activation, and within each group neurons are sorted

by the latency of their peak activation within the factor. (E) The same data shown in (A), after sorting neurons

by their latency within each factor as in (D). A spectrogram of the bird’s song is shown at top, with a purple

‘*’ denoting syllable variants correlated with w2. (F) Same as (E), but showing reconstructed data rather than
calcium signals. Shown at top are the temporal loadings (H) of each factor.
Figure 9–Figure supplement 1. Further analysis of sequences

Figure 9–Figure supplement 2. Events-based and parts-based factorizations of songbird data
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to detect sequences by averaging neural activity aligned to the song. Using this approach,482

it has been shown that HVC neurons generate precisely timed sequences that tile each483

song syllable [21, 50, 36]. Songbirds learn their song by imitation and must hear a tutor484

to develop normal adult vocalizations. Birds isolated from a tutor sing highly variable and485

abnormal songs as adults [15]. Such ‘isolate’ birds provide an opportunity to study how the486

absence of normal auditory experience leads to pathological vocal/motor development.487

However, the high variability of pathological ‘isolate’ song makes it difficult to identify488

neural sequences using the standard approach of aligning neural activity to vocal output.489

Using seqNMF, we were able to identify repeating neural sequences in isolate song-490

birds (Figure 9A). At the chosen � (Figure 9B), x-ortho penalized factorizations typically491

extracted three significant sequences (Figure (9C). Similarly, the dissmeasure has a local492

minima at K = 3 (Figure 9-Figure supplement 1B). The three-sequence factorization ex-493

plained 41% of the total power in the data set, with a pattern asynchrony score of 0.7.494

The extracted sequences include sequences deployed during syllables of abnormally long495

and variable durations (Figure 9D-F, Figure 9-Figure supplement 1A).496

In addition, the extracted sequences exhibit properties not observed in normal adult497

birds. We see an example of two distinct sequences that sometimes, but not always,498

co-occur (Figure 9). We observe that a shorter sequence (green) occurs alone on some499

syllable renditions while a second, longer sequence (purple) occurs simultaneously on500

other syllable renditions. We found that biasing x-ortho penalized convNMF towards501

’parts-based’ or ’events-based’ factorizations gives a useful tool to visualize this feature of502

the data (Figure 9-Figure supplement 2). The probabilistic overlap of different sequences503

is highly atypical in normal adult birds [21, 35, 50, 36]. Furthermore, this pattern of neural504

activity is associated with abnormal variations in syllable structure—in this case resulting505

in a longer variant of the syllable when both sequences co-occur. This acoustic variation506

is a characteristic pathology of isolate song [15].507

Thus, even though we observe HVC generating some sequences in the absence of a508

tutor, it appears that these sequences are deployed in a highly abnormal fashion.509

Application of seqNMF to a behavioral data set: song spectrograms510

Although we have focused on the application of seqNMF to neural activity data, these511

methods naturally extend to other types of high-dimensional data sets, including behav-512

ioral data with applications to neuroscience. The neural mechanisms underlying song513

production and learning in songbirds is an area of active research. However, the identifi-514

cation and labeling of song syllables in acoustic recordings is challenging, particularly in515

young birds in which song syllables are highly variable. Because automatic segmentation516

and clustering often fail, song syllables are still routinely labelled by hand [45]. We tested517

whether seqNMF, applied to a spectrographic representation of zebra finch vocalizations,518

is able to extract meaningful features in behavioral data. Using the x-ortho penalty,519

factorizations correctly identified repeated acoustic patterns in juvenile songs, placing520

each distinct syllable type into a different factor (Figure 10). The resulting classifications521

agree with previously published hand-labeled syllable types [45]. A similar approach522

could be applied to other behavioral data, for example movement data or human speech,523

and could facilitate the study of neural mechanisms underlying even earlier and more524

variable stages of learning. Indeed, convNMF was originally developed for application to525

spectrograms [57]; notably it has been suggested that auditory cortex may use similar526
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Figure 10. SeqNMF applied to song spectrograms

(A) Spectrogram of juvenile song, with hand-labeled syllable types [45]. (B) Reconstruction cost and x-ortho cost

for these data as a function of �. Arrow denotes � = 0.0003, which was used to run convNMF with the x-ortho
penalty (C)W’s for this song, fit with K = 8, L = 200ms, � = 0.0003. Note that there are three non-empty factors,
corresponding to the three hand-labeled syllables a, b, and c. (D) X-ortho penalized H’s (for the three non-empty
factors) and reconstruction of the song shown in (A) using these factors.
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computations to represent and parse natural song statistics [41].527

Discussion528

As neuroscientists strive to record larger data sets, there is a need for rigorous tools529

to reveal underlying structure in high-dimensional data [17, 56, 10, 6]. In particular, se-530

quential structure is increasingly regarded as a fundamental property of neuronal circuits531

[21, 22, 45, 47], but standardized statistical approaches for extracting such structure have532

not been widely adopted or agreed upon. Extracting sequences is particularly challenging533

when animal behaviors are variable (e.g. during learning) or absent entirely (e.g. during534

sleep).535

Here, we explored a simple matrix factorization-based approach to identify neural536

sequences without reference to animal behavior. The convNMF model elegantly captures537

sequential structure in an unsupervised manner [57, 58, 49]. However, in data sets where538

the number of sequences is not known, convNMF may return inefficient and inconsistent539

factorizations. To address these challenges, we introduced a new regularization term to540

penalize correlated factorizations, and developed a new dissimilarity measure to assess541

model stability. Both proposed methods can be used to infer the number of sequences in542

neural data and are highly robust to noise. For example, even when (synthetic) neurons543

participate probabilistically in sequences at a rate of 50%, the model typically identifies544

factors with greater than 80% similarity to the ground truth (Figure 3A). Additionally, these545

methods perform well even with very limited amounts of data: e.g., successfully extracting546

sequences that only appear a handful of times in a noisy data stream (Figure 3-Figure547

supplement 2).548

The x-ortho penalty developed in this paper may represent a useful improvement549

over traditional orthogonality regularizations or suggest how traditional regularization550

penalties may be usefully modified. First, it simultaneously provides a penalty on cor-551

relations in both W and H, thus simplifying analyses by only having one penalty term.552

Second, although the x-ortho penalty does not formally constitute regularization due553

to its inclusion of the data X, we have described how the penalty can be approximated554

by a data-free regularization with potentially useful properties (Appendix 2). Specifically,555

the data-free regularization contains terms corresponding to weighted orthogonality in556

(smoothed) H andW, where the weights focus the orthogonality penalty preferentially557

on those factors that contribute the most power to the reconstruction. This concept558

of using power-weighted regularization penalties may be applicable more generally to559

matrix factorization techniques.560

As in many data analysis scenarios, a variety of statistical approaches may be brought561

to bear on finding sequences in neural data. A classic method is to construct cross-562

correlogram plots, showing spike time correlations between pairs of neurons at various563

time lags. However, other forms of spike rate covariation, such as trial-to-trial gain modula-564

tion, can produce spurious peaks in this measure [4]; recent work has developed statistical565

corrections for these effects [53]. After significant pairwise correlations are identified,566

one can heuristically piece together pairs of neurons with significant interactions into a567

sequence. This bottom-up approach may be better than seqNMF at detecting sequences568

involving small numbers of neurons, since seqNMF specifically targets sequences that569

explain large amounts of variance in the data. On the other hand, bottom-up approaches570

to sequence extraction may fail to identify long sequences with high participation noise571
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or jitter in each neuron [51]. One can think of seqNMF as a complementary top-down572

approach, which performs very well in the high-noise regime since it learns a template573

sequence at the level of the full population that is robust to noise at the level of individual574

units.575

Statistical models with a dynamical component, such as Hidden Markov Models576

(HMMs) [37], linear dynamical systems [28], and models with switching dynamics [34],577

can also capture sequential firing patterns. These methods will typically require many578

hidden states or latent dimensions to capture sequences, similar to PCA and NMF which579

require many components to recover sequences. Nevertheless, visualizing the transition580

matrix of an HMM can provide insight into the order in which hidden states of the model581

are visited, mapping onto different sequences that manifest in population activity [37].582

One advantage of this approach is that it can model sequences that occasionally end583

prematurely, while convNMF will always reconstruct the full sequence. On the other hand,584

this pattern completion property makes convNMF robust to participation noise and jitter.585

In contrast, a standard HMMmust pass through each hidden state to model a sequence,586

and therefore may have trouble if many of these states are skipped. Thus, we expect587

HMMs and related models to exhibit complementary strengths and weaknesses when588

compared to convNMF.589

Another strength of convNMF is its ability to accommodate sequences with shared590

neurons, as has been observed during song learning [45]. Sequences with shared neurons591

can be interpreted either in terms of ‘parts-based’ or ‘events-based’ factorizations (Figure592

9-Figure supplement 2). This capacity for a combinatorial description of overlapping593

sequences distinguishes convNMF from many other methods, which assume that neural594

patterns/sequences do not co-occur in time. For example, a vanilla HMM can only595

model each time step with a single hidden state and thus cannot express parts-based596

representations of neural sequences. Likewise, simple clustering models would assign597

each time interval to a single cluster label. Adding hierarchical and factorial structure to598

these models could allow them to test for overlapping neural sequences (see e.g., [19]);599

however, we believe seqNMF provides a simpler and more direct framework to explore600

this possibility.601

Finally, as demonstrated by our development of new regularization terms and stability602

measures, convolutional matrix factorization is a flexible and extensible framework for603

sequence extraction. For example, one can tune the overall sparsity in the model by604

introducing additional L1 regularization terms. The loss function may also be modified,605

for example substituting in KL divergence or more general �-divergence [60]. Both606

L1 regularization and �-divergence losses are included in the seqNMF code package607

so that the model can be tuned to the particular needs of future analyses. Future608

development could incorporate outlier detection into the objective function [43], or609

online optimization methods for large data sets [68]. Other extensions to NMF, for610

example, Union of Intersections NMF Cluster [63], have yielded increased robustness and611

consistency of NMF factorizations, and could potentially also be modified for application612

to convNMF. Thus, adding convolutional structure to factorization-based models of neural613

data represents a rich opportunity for statistical neuroscience.614

Despite limiting ourselves to a relatively simple model for the purposes of this paper,615

we extracted biological insights that would have been difficult to otherwise achieve.616

For example, we identified neural sequences in isolated song birds without aligning to617
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song syllables, enabling new research into song bird learning on two fronts. First, since618

isolated and juvenile birds sing highly variable songs that are not easily segmented into619

stereotyped syllables, it is difficult and highly subjective to identify sequences by aligning620

to human-labeled syllables. SeqNMF enables the discovery and future characterization of621

neural sequences in these cases. Second, while behaviorally aligned sequences exist in622

tutored birds, it is possible many neural sequences—e.g., in different brain areas or stages623

of development—are not closely locked to song syllables. Thus, even in cases where624

stereotyped song syllables exist, behavioral alignment may overlook relevant sequences625

and structure in the data. These lessons apply broadly to many neural systems, and626

demonstrate the importance of general-purpose methods that extract sequences without627

reference to behavior. Our results show that convolutional matrix factorization models628

are an attractive framework to meet this need.629
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Methods and Materials646

Table of key resources

Reagent type (species)

or resource

Designation Source or refer-

ence

Identifiers Additional information

software, algorithm seqNMF this paper https://github.com/FeeLab/seqNMF start with demo.m

software, algorithm convNMF [57, 58] https://github.com/colinvaz/nmf-toolbox

software, algorithm sparse convNMF [44, 52] https://github.com/colinvaz/nmf-toolbox

software, algorithm NMF orthogonality penalties [9, 8]

software, algorithm other NMF extensions [11]

software, algorithm NMF [32]

software, algorithm CNMF_E (cell extraction) [72] https://github.com/zhoupc/CNMF_E

software, algorithm MATLAB MathWorks www.mathworks.com, RRID:SCR_001622

strain, strain back-

ground (adeno-
associated virus)

AAV9.CAG.GCaMP6f.WPRE.SV40 [7] https://pennvectorcore.med.upenn.edu

commercial assay or kit Miniature microscope Inscopix https://www.inscopix.com/nvista

Contact for resource sharing647

Further requests should be directed to Michale Fee (fee@mit.edu).648

Software and data availability649

The seqNMF MATLAB code is publicly available as a github repository, which also includes650

our songbird data (Figure 9) for demonstration:651

https://github.com/FeeLab/seqNMF652

The repository includes the seqNMF function, as well as helper functions for selecting653

�, testing the significance of factors, plotting, and other functions. It also includes a654

demo script that goes through an example of how to select � for a new data set, test for655

significance of factors, plot the seqNMF factorization, switch between parts-based and656

events-based factorizations, and calculate cross-validated performance on a masked test657

set.658

Generating simulated data659

We simulated neural sequences containing between 1 and 10 distinct neural sequences660

in the presence of various noise conditions. Each neural sequence was made up of 10661

consecutively active neurons, each separated by three timebins. The binary activity matrix662

was convolved with an exponential kernel (� = 10 timebins) to resemble neural calcium663

imaging activity.664

SeqNMF algorithm details665

The x-ortho penalized convNMF algorithm is a direct extension of themultiplicative update666

convNMF algorithm [57], and draws on previous work regularizing NMF to encourage667

factor orthogonality [8].668
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Table 2. Regularized NMF and convNMF: cost functions and algorithms

NMF

L = 1
2 ||X̃ − X||22 +R W ← W × XH⊤

X̃H⊤+ )R
)W

X̃ =WH H ← H × W⊤X
W⊤X̃+ )R

)H

convNMF

L = 1
2 ||X̃ − X||22 +R W⋅⋅l ← W⋅⋅l ×

X
l→
H
⊤

X̃
l→
H
⊤

+ )R
)W⋅⋅l

X̃ =W⊛H H ← H × W
⊤
⊛X

W
⊤
⊛X̃+ )R

)H

L1 regularization for H ( L1 forW is analogous)

R = �||H||1
)R
)W⋅⋅l

= 0

)R
)H = �1

Orthogonality cost for H

R = �
2 ||HH⊤

||1,i≠j
)R
)W⋅⋅l

= 0

)R
)H = �(1 − I)H

Smoothed orthogonality cost for H (favors ‘events-based’)

R = �
2 ||HSH⊤

||1,i≠j
)R
)W⋅⋅l

= 0

)R
)H = �(1 − I)HS

Smoothed orthogonality cost forW (favors ‘parts-based’)

R = �
2 ||W

⊤
flatWflat||1,i≠j

)R
)W⋅⋅l

= �Wflat(1 − I)

where (Wflat)nk =
∑

lWnkl
)R
)H = 0

Smoothed cross-factor orthogonality (main seqNMF R)

R = �||(W
⊤
⊛ X)SH⊤

||1,i≠j
)R
)W⋅⋅l

= �
←l
X SH⊤(1 − I)

)R
)H = �(1 − I)W

⊤
⊛ XS
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The uniqueness and consistency of traditional NMF has been better studied than669

convNMF. In special cases, NMF has a unique solution comprised of sparse, ‘parts-based’670

features that can be consistently identified by known algorithms [14, 1]. However, this671

ideal scenario does not hold in many practical settings. In these cases, NMF is sensitive to672

initialization, resulting in potentially inconsistent features. This problem can be addressed673

by introducing additional constraints or regularization terms that encourage the model674

to extract particular, e.g. sparse or approximately orthogonal features [25, 29]. Both675

theoretical work and empirical observations suggest that these modifications result in676

more consistently identified features [61, 29].677

For x-ortho penalized seqNMF, we added to the convNMF cost function a term that pro-678

motes competition between overlapping factors, resulting in the following cost function:679

680

(W̃, H̃) = argmin
W,H

(

||X̃ − X||2F + �||(W
⊤
⊛ X)SH⊤

||1,i≠j

)

(8)

We derived the following multiplicative update rules forW and H (Appendix 1):681

W⋅⋅l ← W⋅⋅l ×
X
(l→
H
)⊤

X̃
(l→
H
)⊤

+ �
←l
X SH⊤(1 − I)

(9)

H ← H × W
⊤
⊛ X

W
⊤
⊛ X̃ + �(1 − I)(W

⊤
⊛ XS)

(10)

Where the division and × are element-wise. The operator
l→
(⋅) shifts a matrix in the →682

direction by l timebins, i.e. a delay by l timebins, and
←l
(⋅) shifts a matrix in the← direction683

by l timebins (notation summary, Table 1). Note that multiplication with the K ×K matrix684

(1 − I) effectively implements factor competition because it places in the kth row a sum685

across all other factors. These update rules are derived in Appendix 1 by taking the686

derivative of the cost function in Equation 8 and choosing an appropriate learning rate687

for each element.688

In addition to the multiplicative updates outlined in Table 2, we also renormalize so689

rows of H have unit norm; shift factors to be centered in time such that the center of690

mass of eachW pattern occurs in the middle; and in the final iteration run one additional691

step of unregularized convNMF to prioritize the cost of reconstruction error over the692

regularization (Algorithm 1). This final step is done to correct a minor suppression in693

the amplitude of some peaks in H that may occur within 2L timebins of neighboring694

sequences.695

Testing the significance of each factor on held-out data696

In order to test whether a factor is significantly present in held-out data, we measured697

the distribution across timebins of the overlaps of the factor with the held-out data, and698

compare the skewness of this distribution to the null case (Figure 1). Overlap with the699

data is measured asW
⊤
⊛X, so this quantity will be high at timepoints when the sequence700

occurs, producing a distribution ofW
⊤
⊛ X with high skew. In contrast, a distribution of701

overlaps exhibiting low skew indicates a sequence is not present in the data, since there702
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Algorithm 1: SeqNMF (x-ortho algorithm)

Input: Data matrix X, number of factors K , factor duration L, regularization
strength �

Output: Factor exemplarsW, and factor timecourses H
1 InitializeW and H randomly
2 Iter = 1

3 while (Iter <maxIter) & (Δ cost > tolerance) do
4 Update H using multiplicative update from Table 2
5 ShiftW and H to centerW’s in time
6 RenormalizeW and H so rows of H have unit norm
7 UpdateW using multiplicative update from Table 2

8 Iter = Iter+1

9 Do one final unregularized convNMF update ofW and H
10 return

are few timepoints of particularly high overlap. We estimated what skew levels would703

appear by chance by constructing null factors where temporal relationships between704

neurons have been eliminated. To create such null factors, we start from the real factors705

then circularly shift the timecourse of each neuron by a random amount between 0 and706

L. We measure the skew of the overlap distributions for each null factor, and ask whether707

the skew we measured for the real factor is significant at p-value �, that is, if it exceeds708

the Bonferroni corrected ((1 − �
K ) × 100)

tℎ percentile of the null skews (see Figure 2-Figure709

supplement 1).710

Note that if � is set too small, seqNMF will produce multiple redundant factors to711

explain one sequence in the data. In this case, each redundant candidate sequence will712

pass the significance test outlined here. We will address below a procedure for choosing713

� and methods for determining the number of sequences.714

Calculating the percent power explained by a factorization715

In assessing the relevance of sequences in a data set, it can be useful to calculate what716

percentage of the total power in the data set is explained by the factorization (X̃). The total717

power in the data is
∑

X2 (abbreviating
∑N
n=1

∑T
t=1 x

2
nt to

∑

X2). The power unexplained718

by the factorization is
∑

(X̃)2. Thus, the percent of the total power explained by the719

factorization is:720
∑

X2 −
∑

(X − X̃)2
∑

X2
=

∑

2XX̃ − X̃2
∑

X2
(11)

721

‘Sequenciness’ score722

The ’sequenciness’ score was developed to distinguish between data sets with exclusively723

synchronous patterns, and data sets with temporally extended sequential patterns. This724

score relies on the observation that synchronous patterns are not disrupted by shuffling725

the columns of the data matrix. The ’sequenciness’ score is calculated by first computing726

the difference between the power explained by seqNMF in the actual and column-shuffled727

data. This quantity is then divided by the power explained in the actual data minus the728
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power explained in data where each neuron is time-shuffled by a different random729

permutation.730

Choosing appropriate parameters for a new data set731

The choice of appropriate parameters (�, K and L) will depend on the data type (sequence732

length, number, and density; amount of noise; etc.).733

In practice, we found that results were relatively robust to the choice of parameters.734

When K or L is set larger than necessary, seqNMF tends to simply leave the unnecessary735

factors or time bins empty. For choosing �, the goal is to find the ‘sweet spot’ (Figure 4)736

to explain as much data as possible while still producing sensible factorizations, that is,737

minimally correlated factors, with low values of ||(W
⊤
⊛X)SH⊤

||1,i≠j . Our software package738

includes demo code for determining the best parameters for a new type of data, using739

the following strategy:740

1. Start with K slightly larger than the number of sequences anticipated in the data741

2. Start with L slightly longer than the maximum expected factor length742

3. Run seqNMF for a range of �’s, and for each � measure the reconstruction error743

(

||X −W⊛H||2F
)

and the factor competition regularization term

(

||(W
⊤
⊛ X)SH⊤

||1,i≠j

)

744

4. Choose a � slightly above the crossover point �0745

5. Decrease K if desired, as otherwise some factors will be consistently empty746

6. Decrease L if desired, as otherwise some time bins will consistently be empty747

In some applications, achieving the desired accuracy may depend on choosing a �748

that allows some inconsistency. It is possible to deal with this remaining inconsistency749

by comparing factors produced by different random initializations, and only considering750

factors that arise from several different initializations, a strategy that has been previously751

applied to standard convNMF on neural data [49].752

During validation of our procedure for choosing �, we compared factorizations to753

ground truth sequences as shown in Figure 4. To find the optimal value of � we used754

the product of two curves. The first curve was obtained by calculating the fraction of fits755

in which the true number of sequences was recovered as a function of �. The second756

curve was obtained by calculating similarity to ground truth as a function of �. Similarity757

to ground truth is measured as the consistency of the factorization and the noiseless758

sequences used to generate the data (see Methods section ‘Measuring performance on759

noisy fits by comparing seqNMF sequence to ground-truth sequences’). The product of760

these two curves was smoothed using a three-sample boxcar sliding window, and the761

width was found as the values of � on either side of the peak value that correspond most762

closely to the half-max points of the curve.763

Preprocessing764

While seqNMF is generally quite robust to noisy data, and different types of sequential765

patterns, proper preprocessing of the data can be important to obtaining reasonable766

factorizations on real neural data. A key principle is that, in minimizing the reconstruction767

error, seqNMF is most strongly influenced by parts of the data that exhibit high variance.768

This can be problematic if the regions of interest in the data have relatively low amplitude.769

For example, high firing rate neurons may be prioritized over those with lower firing rate.770
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As an alternative to subtracting the mean firing rate of each neuron, which would intro-771

duce negative values, neurons could be normalized divisively or by subtracting off a NMF772

reconstruction fit using a method that forces a non-negative residual [30]. Additionally,773

variations in behavioral state may lead to seqNMF factorizations that prioritize regions774

of the data with high variance and neglect other regions. It may be possible to mitigate775

these effects by normalizing data, or by restricting analysis to particular subsets of the776

data, either by time or by neuron.777

Measuring performance on noisy data by comparing seqNMF sequences to778

ground-truth sequences779

We wanted to measure the ability of seqNMF to recover ground-truth sequences even780

when the sequences are obstructed by noise. Our noisy data consisted of three ground-781

truth sequences, obstructed by a variety of noise types. We first computed a reconstruc-782

tion for one of the ground-truth factors. We then measured the correlation between this783

reconstruction and reconstructions generated from each of the extracted factors, and784

chose the best match (highest correlation). Next, we measured the correlation between785

the remaining ground-truth reconstruction and the other extracted factors. This was786

performed in a greedy manner (i.e. an extracted factor could only match at most one787

ground-truth factor). The mean of these three correlations was used as a measure of788

similarity between the seqNMF factorization and the ground-truth (noiseless) sequences.789

Testing generalization of factorization to randomly held-out (masked) data790

entries791

The data matrix X was divided into training data and test data by randomly selecting 5 or792

10% of matrix entries to hold out. Specifically, the objective function (equation 5, in the793

Results section) was modified to:794

argmin
W,H

||M × (W⊛H − X)||2F +R (12)

where × indicates elementwise multiplication (Hadamard product) and M is a binary795

matrix with 5 or 10% of the entries randomly selected to be zero (held-out test set) and796

the remaining 95 or 90% set to one (training set). To search for a solution, we reformulate797

this optimization problem as:798

argmin
W,H,Z

||W⊛H − Z||2F +R

subject to M × Z =M × X
(13)

where we have introduced a new optimization variable Z, which can be thought of as a799

surrogate data set that is equal to the ground truth data only on the training set. The800

goal is now to minimize the difference between the model estimate, X̃ =W⊛H, and the801

surrogate, Z, while constraining Z to equal X at unmasked elements (where mij = 1) and802

allowing Z to be freely chosen at masked elements (where mij = 0). Clearly, at masked803

elements, the best choice is to make Z equal to the current model estimate X̃ as this804

minimizes the cost function without violating the constraint. This leads to the following805
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update rules which are applied cyclically to update Z,W, and H.806

Znt ←
⎧

⎪

⎨

⎪

⎩

Xnt if Mnt = 1

(W⊛H)nt if Mnt = 0
(14)

W⋅⋅l ← W⋅⋅l ×
Z
(l→
H
)⊤

X̃
(l→
H
)⊤

+ �
←l
Z SH⊤(1 − I)

(15)

H ← H × W
⊤
⊛ Z

W
⊤
⊛ X̃ + �(1 − I)(W

⊤
⊛ ZS)

(16)

The measure used for testing generalization performance was root mean squared807

error (RMSE). For the testing phase, RMSE was computed from the difference between X̃808

and the data matrix X only for held-out entries.809

Hippocampus data810

The hippocampal data was collected in the Buzsaki lab [46, 40], and is publicly available on811

the Collaborative Research in Computational Neuroscience (CRCNS) Data sharing website.812

The data set we refer to as ‘Rat 1’ is in the hc-5 data set, and the data set we refer to as ‘Rat813

2’ is in the hc-3 data set. Before running seqNMF, we processed the data by convolving814

the raw spike trains with a gaussian kernel of standard deviation 100ms.815

Animal care and use816

We used male zebra finches (Taeniopygia guttata) from the MIT zebra finch breeding facility817

(Cambridge, MA). Animal care and experiments were carried out in accordance with NIH818

guidelines, and reviewed and approved by the Massachusetts Institute of Technology819

Committee on Animal Care (protocol 0715-071-18).820

In order to prevent exposure to a tutor song, birds were foster-raised by female birds,821

which do not sing, starting on or before post-hatch day 15. For experiments, birds were822

housed singly in custom-made sound isolation chambers.823

Data acquisition and preprocessing824

The calcium indicator GCaMP6f was expressed in HVC by intracranial injection of the viral825

vector AAV9.CAG.GCaMP6f.WPRE.SV40 [7] into HVC. In the same surgery, a cranial window826

was made using a GRIN (gradient index) lens (1mm diamenter, 4mm length, Inscopix).827

After at least one week, in order to allow for sufficient viral expression, recordings were828

made using the Inscopix nVista miniature fluorescent microscope.829

Neuronal activity traces were extracted from raw fluorescence movies using the830

CNMF_E algorithm, a constrained non-negative matrix factorization algorithm specialized831

for microendoscope data by including a local background model to remove activity from832

out-of-focus cells [72].833

We performed several preprocessing steps before applying seqNMF to functional834

calcium traces extracted by CNMF_E. First, we estimated burst times from the raw traces835

by deconvolving the traces using an AR-2 process. The deconvolution parameters (time836
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constants and noise floor) were estimated for each neuron using the CNMF_E code837

package [72]. Some neurons exhibited larger peaks than others, likely due to different838

expression levels of the calcium indicator. Since seqNMF would prioritize the neurons839

with the most power, we renormalized by dividing the signal from each neuron by the840

sum of the maximum value of that row and the 95tℎ percentile of the signal across all841

neurons. In this way, neurons with larger peaks were given some priority, but not much842

more than that of neurons with weaker signals.843
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Appendix 11029

Deriving multiplicative update rules

Standard gradient descent methods for minimizing a cost functionmust be adapted

when solutions are constrained to be non-negative, since gradient descent steps

may result in negative values. Lee and Seung invented an elegant and widely-

used algorithm for non-negative gradient descent that avoids negative values

by performing multiplicative updates [33, 32]. They derived these multiplicative

updates by choosing an adaptive learning rate that makes additive terms cancel

from standard gradient descent on the cost function. We will reproduce their

derivation here, and detail how to extend it to the convolutional case [57] and

apply several forms of regularization [44, 52, 8]. See Table 2 for a compilation of

cost functions, derivatives and multiplicative updates for NMF and convNMF under

several different regularization conditions.

Standard NMF

NMF performs the factorization X ≈ X̃ =WH. NMF factorizations seek to solve the
following problem:

(W̃, H̃) = argmin
W,H

L (W,H) (17)

L (W,H) = 1
2
||X̃ − X||2F (18)

W̃, H̃ ≥ 0 (19)

This problem is convex inW and H separately, not together, so a local minimum
is found by alternatingW and H updates. Note that:

)
)W

L (W,H) = X̃H⊤ − XH⊤
(20)

)
)H

L (W,H) = W⊤X̃ −W⊤X (21)

Thus, gradient descent steps forW and H are:

W ← W − �W(X̃H⊤ − XH⊤) (22)

H ← H − �H(W⊤X̃ −W⊤X) (23)

To arrive at multiplicative updates, Lee and Seung [33] set:

�W = W
WHH⊤ (24)

�H = H
W⊤WH

(25)
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Thus, the gradient descent updates become multiplicative:

W ← W × XH⊤

WHH⊤ = W × XH⊤

X̃H⊤
(26)

H ← H × W⊤X
W⊤WH

= H × W⊤X
W⊤X̃

(27)

where the division and × are element-wise.

Standard convNMF

Convolutional NMF factorizes data X ≈ X̃ =
∑

lW⋅⋅l

l→
H =W⊛H. convNMF factor-

izations seek to solve the following problem:

(W̃, H̃) = argmin
W,H

L (W,H) (28)

L (W,H) = 1
2
||X̃ − X||2F (29)

W̃, H̃ ≥ 0 (30)

The derivation above for standard NMF can be applied for each l, yielding the
following update rules for convNMF [57]:

W⋅⋅l ← W⋅⋅l ×
X
l→
H
⊤

X̃
l→
H
⊤ (31)

H ← H ×
∑

lW⊤
⋅⋅l

←l
X

∑

lW⊤
⋅⋅l

←l

X̃

= H × W
⊤
⊛ X

W
⊤
⊛ X̃

(32)

Where the operator l → shifts a matrix in the→ direction by l timebins, i.e. a delay
by l timebins, and← l shifts a matrix in the ← direction by l timebins (Table 1).
Note that NMF is a special case of convNMF where L = 1.

Incorporating regularization terms

Suppose we want to regularize by adding a new term, R to the cost function:

(W̃, H̃) = argmin
W,H

L (W,H) (33)

L (W,H) = 1
2
||X̃ − X||2F +R (34)

W̃, H̃ ≥ 0 (35)

Using a similar trick to Lee and Seung, we choose a �W, �H to arrive at a simple
multiplicative update. Below is the standard NMF case, which generalizes trivially

to the convNMF case.
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Note that:
)L
)W

= X̃H⊤ − XH⊤ + )R
)W

(36)

)L
)H

= W⊤X̃ −W⊤X + )R
)H

(37)

We set:

�W = W
X̃H⊤ + )R

)W

(38)

�H = H
W⊤X̃ + )R

)H

(39)

Thus, the gradient descent updates become multiplicative:

W ← W − �W
)L
)W

= W × XH⊤

X̃H⊤ + )R
)W

(40)

H ← H − �H
)L
)H

= H × W⊤X
W⊤X̃ + )R

)H

(41)

where the division and × are element-wise.
The above formulation enables flexible incorporation of different types of reg-

ularization or penalty terms into the multiplicative NMF update algorithm. This

framework also extends naturally to the convolutional case. See Table 2 for ex-

amples of several regularization terms, including L1 sparsity [44, 52] and spatial
decorrelation [8], as well as the terms we introduce here to combat the types of

inefficiencies and cross correlations we identified in convolutional NMF, namely,

smoothed orthogonality forH andW, and the x-ortho penalty term. For the x-ortho

penalty term, �||(W
⊤
⊛ X)SH⊤

||1,i≠j , the multiplicative update rules are:

W⋅⋅l ← W⋅⋅l ×
X
(l→
H
)⊤

X̃
(l→
H
)⊤

+ �
←l
X SH⊤(1 − I)

(42)

H ← H × W
⊤
⊛ X

W
⊤
⊛ X̃ + �(1 − I)(W

⊤
⊛ XS)

(43)

where the division and × are element-wise. Note that multiplication with the K ×K
matrix (1− I) effectively implements factor competition because it places in the kth
row a sum across all other factors.
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Appendix 21030

Relation of the x-ortho penalty to traditional regular-

izations

As noted in the main text, the x-ortho penalty term is not formally a regularization

because it includes the data X. In this Appendix, we show how this penalty can be
approximated by a data-free regularization. The resulting regularization contains

three terms corresponding to a weighted orthogonality penalty on pairs of H
factors, a weighted orthogonality penalty on pairs ofW factors, and a term that

penalizes interactions among triplets of factors. We analyze each term in both the

time domain (Equation 50) and in the frequency domain (Equations 50 and 69).

Time domain analysis

We consider the cross-orthogonality penalty term:

R = ‖(W
⊤
⊛ X)SH⊤

‖1,i≠j (44)

and define, R = (W
⊤
⊛X)SH⊤, which is a K ×K matrix. Each element Rij is a positive

number describing the overlap or correlation between factor i and factor j in the
model. Each element of R can be written explicitly as:

Rij =
∑

t

∑

n

∑

l

WnilXn(t+l)
∑

�
St�Hj� (45)

Where the index variables t and � range from 1 to T , n ranges from 1 to N , and l
ranges from 1 to L.
Our goal here is to find a close approximation to this penalty term that does

not contain the data X. This can readily be done if X is well-approximated by the
convNMF decomposition:

Xnt ≈ (W⊛H)nt =
∑

k

∑

l

WnklHk(t−l) (46)

Substituting this expression into equation 45 and defining the smoothed matrix
∑

� St�Hj� as Hsmoothjt gives:

Rij ≈
∑

t

∑

n

∑

l

∑

k

∑

l′
WnilWnkl′HktHsmoothjt (47)

Making the substitution u = l − l′ gives:

Rij ≈
∑

t

∑

n

L−1
∑

u=−(L−1)

∑

k

∑

l′
Wni(l′+u)Wnkl′Hk(t+u)Hsmoothjt (48)

where in the above expression we have taken u = l − l′ to extend over the full
range from −(L− 1) to (L− 1) under the implicit assumption thatW and H are zero
padded such that values ofW for lag indices outside the range 0 to L−1 and values
of H for time indices outside the range 1 to T are taken to be zero.
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Relabeling l′ as l and gathering terms together yields

Rij ≈
∑

k

L−1
∑

u=−(L−1)

(

∑

n

∑

l

Wni(l+u)Wnkl

)(

∑

t
Hk(t+u)Hsmoothjt

)

(49)

We note that the above expression contains terms that resemble penalties on

orthogonality between two W factors (first parenthetical) or two H factors (one of

which is smoothed, second parenthetical), but in this case allowing for different

time lags u between the factors. To understand this formula better, we decompose
the above sum over k into 3 contributions corresponding to k = i, k = j, and k ≠ i, j

Rij ≈
L−1
∑

u=−(L−1)

(

∑

n

∑

l

Wni(l+u)Wnil

)(

∑

t
Hi(t+u)Hsmoothjt

)

+

L−1
∑

u=−(L−1)

(

∑

n

∑

l

Wni(l+u)Wnjl

)(

∑

t
Hj(t+u)Hsmoothjt

)

+

∑

k≠i,j

L−1
∑

u=−(L−1)

(

∑

n

∑

l

Wni(l+u)Wnkl

)(

∑

t
Hk(t+u)Hsmoothjt

)

(50)

The first term above contains, for u = 0, a simple extension of the (i, j)tℎ element
of the H orthogonality condition HSH⊤. The extension is that the orthogonality is

weighted by the power, i.e. the sum of squared elements, in the itℎ factor of W
(the apparent lack of symmetry in weighing by the itℎ rather than the jtℎ factor can
be removed by simultaneously considering the term Rji, as shown in the Fourier
representation of the following section). This weighting has the benefit of applying

the penalty onH orthogonality most strongly to those factors whose corresponding
W components contain the most power. For u ≠ 0, this orthogonality condition is
extended to allow for overlap of time-shifted H’s, with weighting at each time shift
by the autocorrelation of the correspondingW factor. Qualitatively, this enforces

that (even in the absence of the smoothing matrix S), H’s that are offset by less than
the width of the autocorrelation of the correspondingW’s will have overlapping
convolutions with theseW’s due to the temporal smoothing associated with the
convolution operation. We note that, for sparse sequences as in the examples of

Figure 1, there is no time-lagged component to the autocorrelation, so this term

corresponds simply to a smoothed H orthogonality regularization, weighted by the
strength of the correspondingW factors.

The second term above represents a complementary orthogonality condition

on the W components, in which orthogonality in the itℎ and jtℎ W factors are

weighted by the (smoothed) autocorrelation of the H factors. For the case in which
the H factors have no time-lagged autocorrelations, this corresponds to a simple
weighting ofW orthogonality by the strength of the corresponding H factors.
Finally, we consider the remaining terms of the cost function, for which k ≠ i, j.

We note that these terms are only relevant when the factorization contains at least

3 factors, and thus their role cannot be visualized from the simple Type 1 to Type 3
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examples of Figure 1. These terms have the form:

∑

k≠i,j

L−1
∑

u=−(L−1)

(

∑

n

∑

l

Wni(l+u)Wnkl

)(

∑

t
Hk(t+u)Hsmoothjt

)

(51)

To understand how this term contributes, we consider each of the expressions

in parentheses. The first expression corresponds, as described above, to the time-

lagged cross correlation of the itℎ and ktℎ W components. Likewise, the second

expression corresponds to the time-lagged correlation of the (smoothed) jtℎ and
ktℎ H components. Thus, this term of Rij contributes whenever there is a factor
(W⋅k⋅,Hk⋅) that overlaps, at the same time lags, with the itℎ factor’sW component
and the jtℎ factor’s H component. Thus, this term penalizes cases where, rather
than (or in addition to) two factors i and j directly overlapping one another, they
have a common factor k with which they overlap.
An example of the contribution of a triplet penalty term, as well as of the paired

terms of equation 50, is shown in Figure 1 of this Appendix. By inspection, there is

a penalty R23 due to the overlapping values of the pair (h2,h3). Likewise, there is a
penalty R13 due to the overlapping values of the pair (w1,w3). The triplet penalty

term contributes to R12 and derives from the fact that w1 overlaps with w3 at the

same time (and with the same, zero time lag) as h2 overlaps with h3.
In summary, the above analysis shows that for good reconstructions of the

data where X ≈ W ⊛ H, the x-ortho penalty can be well-approximated by the
sum of three contributions. The first corresponds to a penalty on time-lagged

(smoothed) H orthogonality weighted at each time lag by the autocorrelation of
the correspondingW factors. The second similarly corresponds to a penalty on

time-laggedW orthogonality weighted at each time lag by the (smoothed) auto-

correlation of the corresponding H factors. For simple cases of sparse sequences,
these contributions reduce to orthogonality inH orW weighted by the power in the

correspondingW or H, respectively, thus focusing the penalties most heavily on
those factors which contribute most heavily to the data reconstruction. The third,

triplet contribution corresponds to the case in which a factor inW and a different

factor inH both overlap (at the same time lag) with a third common factor, and may
occur even when the factorsW and H themselves are orthogonal. Further work
is needed to determine whether this third contribution is critical to the x-ortho

penalty or is simply a by-product of the x-ortho penalty procedure’s direct use of

the data X.
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Appendix 2 Figure 1. Example of redundancy with three factors. In addition to the direct

overlap of h2 and h3, and of w1 and w3, there is a “triplet” penalty R12 on factors 1 and 2 that

occurs because each has an overlap (in eitherW or H) with the 3rd factor (w3,h3). This
occurs even though neither w1 and w2, nor h1 and h2, are themselves overlapping.

Frequency domain analysis

Additional insight may be obtained by analyzing these three components of R
in the Fourier domain. Before doing so, we below derive the Fourier domain

representation of R, and provide insights suggested by this perspective.

Fourier representation of the x-ortho penalty
As in the time domain analysis, we start with defining:

Rij =
∑

t

∑

n

∑

l

WnilXn(t+l)
∑

�
St�Hj� (52)

Unpacking the notation above, we note that:

Rij =
[ N
∑

n=1
Corr(⃖⃖⃖⃗W(n)

i , ⃖⃖⃗X
(n))

]

⋅ Conv(⃖⃖⃗Hj , s⃗) (53)

where ⃖⃖⃖⃗W(n)
i is the n

tℎ row ofW⋅i⋅, ⃖⃖⃗X(n) is the ntℎ row of X, ⃖⃖⃗Hj is Hj⋅, s⃗ is a smoothing
vector corresponding to the entries of each row of the smoothing matrix S, and “⋅”
is a dot product. For ease of mathematical presentation, in the following, we work

with continuous time rather than the discretely sampled data and extend theW
factors, H factors, and data matrix X through zero-padding on both ends so that:

Corr(⃖⃖⃖⃗W(n)
i , ⃖⃖⃗X

(n))(t) = ∫

∞

−∞
⃖⃖⃖⃗W(n)
il
⃖⃖⃗X(n)l+tdl (54)

and

Conv(⃖⃖⃗Hj , s⃗) = ∫

∞

−∞
⃖⃖⃗Hj� s⃗t−�d� (55)

Recall that the Fourier transform is defined as:

f̂ (!) ≡  (f (t)) ≡ ∫

∞

−∞
f (t)e−i!tdt (56)
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with inverse Fourier transform:

f (t) = −1(f̂ (!)) ≡ 1
2� ∫

∞

−∞
f̂ (!)e+i!td! (57)

Now recall some basic features of Fourier transforms of correlation and convolution

integrals:

 (Conv(f (t), g(t))) = f̂ (!)ĝ(!) (58)

 (Corr(f (t), g(t))) = f̂ (−!)ĝ(!) (59)

f (t) ⋅ g(t) = ∫

∞

−∞
f (t)g(t)dt = Corrt=0(f, g) =−1

[

f̂ (−!)ĝ(!)d!
]

t=0

f (t) ⋅ g(t) = 1
2� ∫

∞

−∞
f̂ (−!)ĝ(!)d!

(60)

This final identity, known as Parseval’s theorem, says that the inner product (dot

product) between two functions evaluated in the time and frequency domain are

equivalent up to a proportionality constant of 1∕(2�). With the above identities, we
can calculate our quantity of interest:

Rij =
[ N
∑

n=1
Corr(⃖⃖⃖⃗W(n)

i , ⃖⃖⃗X
(n))

]

⋅ Conv(⃖⃖⃗Hj , s⃗) (61)

First, define:

A(t) =

[ N
∑

n=1
Corr(⃖⃖⃖⃗W(n)

i , ⃖⃖⃗X
(n))

]

(62)

B(t) = Conv(⃖⃖⃗Hj , s⃗) (63)

From Equation 60 (Parseval’s theorem):

Rij =
1
2� ∫

∞

−∞
Â(−!)B̂(!)d! (64)

Then, from equations 58 and 59, we have:

Rij =
1
2�

N
∑

n=1
∫

∞

−∞
d!Ŵ(n)

i (!)X̂
(n)(−!)Ĥj(!)ŝ(!) (65)

The above formula shows that:

1. Viewed in the frequency domain, the x-ortho penalty reduces to a (sum over

neurons and frequencies of a) simple product of Fourier transforms of the 4

matrices involved in the penalty.

2. The smoothing can equally well be applied to H orW or X. (For X, note that
for symmetric smoothing function s(t) = s(−t), we also have ŝ(!) = ŝ(−!).)

3. One can view this operation as either of the below:
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(a) First correlateW and X by summing correlations of each row, and then
calculate the overlap with the smoothed H, as described in the main text:

Rij =
1
2�

N
∑

n=1
∫

∞

−∞
d!

[

Ŵ(n)
i (!)X̂

(n)(−!)
] [

Ĥj(!)ŝ(!)
]

(b) Correlate H with each row of X and then calculate the overlap of this
correlation with the corresponding smoothed row ofW. Then sum over
all rows:

Rij =
1
2�

N
∑

n=1
∫

∞

−∞
d!

[

Ĥj(!)X̂(n)(−!)
] [

Ŵ(n)
i (!)ŝ(!)

]

Fourier representation of the traditional regularization approximation of
the x-ortho penalty
We now proceed to show how the x-ortho penalty can be approximated by a tradi-

tional (data-free) regularization, expressing the results in the frequency domain. As

in the time domain analysis, we consider the approximation in which the data X
are nearly perfectly reconstructed by the convNMF decomposition (X ≈W⊛H).
Noting that this decomposition is a sum over factors of row-by-row ordinary

convolutions, we can write the Fourier analog for each row of X as:

X̂(n)(!) ≈
∑

k
Ŵ(n)

k (!)Ĥk(!) (66)

Thus, substituting X with the reconstruction,W⊛H in Equation 65, we have:

Rij ≈
1
2�

∑

k
∫

∞

−∞
d!

[ N
∑

n=1
Ŵ(n)

i (!)Ŵ
(n)
k (−!)

]

[

Ĥk(−!)Ĥj(!)ŝ(!)
]

(67)

As in the time domain analysis, we separate the sum over k into three cases: k =
i, k = j, and k ≠ i, j. Recall that for real numbers, f̂ (−!) = f̂ ∗(!), and f̂ (!)f̂ ∗(!) =
|f̂ (!)|2. Thus, separating the sum over k into the three cases, we have:

Rij =
1
2� ∫

∞

−∞
d!

[ N
∑

n=1

|

|

|

Ŵ(n)
i (!)

|

|

|

2
]

[

Ĥi(−!)Ĥj(!)ŝ(!)
]

+

1
2� ∫

∞

−∞

|

|

|

Ĥj(!)
|

|

|

2
[ N
∑

n=1
Ŵ(n)

i (!)Ŵ
(n)
j (−!)ŝ(!)

]

+ Y

(68)

where Y represents the remaining terms for which k ≠ i, j.
We can obtain a more symmetric form of this equation by summing the contri-

butions of factors i and j, Rij + Rji. For symmetric smoothing functions s(t) = s(−t),
for which ŝ(!) = ŝ(−!), we obtain:

47 of 48

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 23, 2018. ; https://doi.org/10.1101/273128doi: bioRxiv preprint 

https://doi.org/10.1101/273128


Manuscript submitted to eLife

Rij + Rji =
1
2� ∫

∞

−∞
d!

[ N
∑

n=1

|

|

|

Ŵ(n)
i (!)

|

|

|

2
+ |

|

|

Ŵ(n)
j (!)

|

|

|

2
]

[

Ĥi(−!)Ĥj(!)ŝ(!)
]

+

1
2� ∫

∞

−∞

[

|

|

|

Ĥi(!)
|

|

|

2
+ |

|

|

Ĥj(!)
|

|

|

2
]

[ N
∑

n=1
Ŵ(n)

i (!)Ŵ
(n)
j (−!)ŝ(!)

]

+ Y

(69)

As in the time domain analysis, the first two terms above have a simple inter-

pretation in comparison to traditional orthogonality regularizations: The first term

resembles a traditional regularization of orthogonality in (smoothed) H, but now
weighted frequency-by-frequency by the summed power at that frequency in the

correspondingW factors. For sparse (delta-function-like) sequences, the power

in W at each frequency is a constant and can be taken outside the integral. In

this case, the regularization corresponds precisely to orthogonality in (smoothed)

H, weighted by the summed power in the correspondingW’s. Likewise, the sec-
ond term above corresponds to a traditional regularization of orthogonality in

(smoothed)W, weighted by the summed power at each component frequency in
the corresponding H factors.
Altogether, we see that these terms represent a Fourier-power weighted ex-

tension of (smoothed) traditional orthogonality regularizations inW and H. This
weighting may be beneficial relative to traditional orthogonality penalties, since it

makes the regularization focus most heavily on the factors and frequencies that

contribute most to the data reconstruction.

Finally, we consider the remaining terms in the cost function, for which k ≠ i, j.
As noted previously, these terms are only relevant when the factorization contains

at least three terms, so cannot be seen in the simple Type 1, 2 and 3 cases illustrated

in Figure 1. These terms have the form:

1
2�

∑

k≠i,j
∫

∞

−∞
d!

[ N
∑

n=1
Ŵ(n)

i (!)Ŵ
(n)
k (−!)

]

[

Ĥk(−!)Ĥj(!)ŝ(!)
]

(70)

To understand how this term contributes, we consider each of the expressions

in parentheses. The first expression contains each frequency component of the

correlation of the itℎ and ktℎ factors’W’s. The second expression likewise contains
each frequency component of the correlation of the jtℎ and ktℎ factors’ H’s. Thus,
analogous to the time domain analysis, this term of Rij contributes whenever
there is a factor (W⋅k⋅,Hk⋅) that overlaps at any frequency with the itℎ factor’s W
component and the jtℎ factor’s H component. In this manner, this three-factor
interaction term effectively enforces competition between factors i and j even if
they are not correlated themselves, as demonstrated in Figure 1 of this Appendix.
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Figure 1–Figure supplement 1. Quantifying the effect of different penalties on convNMF.

(A), Example factorizations of a synthetic data set for convolutional NMF, and for convo-

lutional NMF with three different penalties designed to eliminate correlations in H or in

both H and W. Notice that different penalties lead to different types of redundancies in

the corresponding factorizations. (B), Quantification of correlations in H and W for each

different penalty. H correlations are measured using ‖HSH⊤
‖1,i≠j and W correlations are

measured using ‖WflatW⊤
flat‖1,i≠j , whereWflat =

∑

l (W⋅⋅l).
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Figure 2–Figure supplement 1. Outline of the procedure used to assess factor signifi-

cance. (A) Distribution of overlap values between an extracted factor and the held-out

data. (B) A null factor was constructed by randomly circularly shifting each row of a factor

independently. Many null factors were constructed and the distribution of overlap values

(W
⊤
⊛ X) was measured between each null factor and the held-out data. (C) A comparison

of the skewness values for each null factor and the skewness of the overlaps of the

original extracted factor. A factor is deemed significant if its skewness is significantly

greater than the distribution of skewness values for the null factor overlaps.
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Figure 2–Figure supplement 2. Number of significant factors as a function of � for data
sets containing between 1 and 10 sequences. The number of significant factors obtained

by fitting data containing between 1 and 10 ground truth sequences using the x-ortho

penalty (K = 20, L = 50) for a large range of values of �. For each value of �, 20 fits
are shown and the mean is shown as a solid line. Each color corresponds to a ground-

truth data set containing a different number of sequences and no added noise. Values

of � ranging between 0.001 and 0.1 tended to return the correct number of significant
sequences at least 90% of the time.
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Figure 3–Figure supplement 1. Robustness to noise at different values of �. Perfor-
mance of the x-ortho penalty was tested under 4 different noise conditions, at different

values of � than in Figure 3 (where � = 2�0): (A) probabilistic participation, � = 5�0, (B)
additive noise, � = �0 (C) timing jitter, � = 5�0 and (D) sequence warping, � = 5�0. For
each noise type, we show: (top) examples of synthetic data at 3 different noise levels;

(middle) similarity of x-ortho factors to ground-truth factors across a range of noise levels

(20 fits for each level); and (bottom) example of one of theW’s extracted at 3 different
noise levels (same conditions as data shown above). The algorithm was run with K = 20,
L = 50.
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Figure 3–Figure supplement 2. Robustness to small data set size when using the x-

ortho penalty. (A) A short (400 timestep) data set containing one example each of three

ground-truth sequences, as well as additive noise. (B) As a function of data set size,

similarity of extracted factors to noiseless, ground-truth factors. At each data set size, 20

independent fits of penalized convNMF are shown. Median shown in red. Three examples

of each sequence were sufficient to acheive similiarty scores within 10% of asymptotic

performance. (C) Example factors fit on data containing 2, 3, 4 or 20 examples of each

sequence. Extracted factors were significant on held-out data compared to null (shuffled)

factors even when training and test data sets each contained only 2 examples of each

sequence.
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Figure 3–Figure supplement 3. Robustness to different types of sequences. Charac-

terization of the x-ortho penalty for additional types of noise. (A) An example of a

factorization for a sequence with large gaps between members of the sequence. (B-D)

Example factorizations of sequences with neuronal activations that are highly overlapped

in time. (B) An example of an x-ortho penalized factorization that reconstructs the data

using complex patterns in H and W. (C) An example of an x-ortho penalized factorization

with the addition of an L1 penalty on H models the data as an overlapping pattern with

sparse activations. (D) An example of an x-ortho penalized factorization with the addition

of an L1 penalty on W models the data as a non-overlapping pattern with dense activa-

tions. (E) An example of an x-ortho penalized factorization for data in which neurons have

varying durations of activation which form two patterns. (F) An example of an x-ortho

penalized factorization for data in which neurons have varying durations of activation

which are random. (G-I) Examples factorizations of sequences with statistics that vary

systematically. (G) An example of an x-ortho penalized factorization for data in which

neurons have systematically varying changes in duration of activity. (H) An example of

an x-ortho penalized factorization for data in which neurons have systematically varying

changes in the gaps between members of the sequence. (I) An example of an x-ortho

penalized factorization for data in which neurons have systematically varying changes in

the amount of jitter.
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Figure 4–Figure supplement 1. Analysis of the best range of �. Here we quantify the
full width at the half maximum for the composite performance scores in different noise

conditions. For each condition a box and whisker-plot quantifies the number of orders of

magnitude over which a good factorization is returned (median denoted by a white circle).

Next to each box plot individual points are shown, corresponding to different noise level.

Color saturation reflects noise level as in Figure 4.
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Figure 4–Figure supplement 2. Procedure for choosing � applied to data with shared
neurons. (A) Simulated data containing two patterns which share 50% of their neurons,

in the presence of participation noise (70% participation probability). (B) Normalized

reconstruction cost (||X̃ − X||2F ) and cross-orthogonality cost (||(W
⊤
⊛ X)SH⊤

||1,i≠j ) as a

function of � for these data. The cross-over point �0 is marked with a black circle. (C)
The number of significant factors obtained from 20 fits of these data as a function of �
(mean number plotted in orange). The correct number of factors (two) is marked by a red

triangle. (D) The fraction of fits returning the correct number of significant factors as a

function of �. (E) Similarity of the top two factors to ground-truth (noiseless) factors as a
function of �. (F) Composite performance measured as the product of the curves shown
in (D) and (E), (smoothed curve plotted in orange with a circle marking the peak). Shaded

region indicates the range of � that works well (± half height of composite performance).
For this data set, the best performance occurs at � = 5�0, while a range of � between 2 �0
and 10 �0 performs well.
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Figure 4–Figure supplement 3. Using cross-validation on held-out (masked) data to

choose �. A method for choosing a reasonable value of � based on cross validation is
shown for five different noise types (each column shows a different noise type; from left

to right: (I) participation noise, (II) additive noise, (III) jitter, (IV) temporal warping), and

(V) a lower level of participation noise. The cross-validated test error is calculated by

fitting x-ortho penalized factorizations while randomly holding out 10% of the elements in

the data matrix as a test set [69, 3]. In many of our test data sets, there was a minimum

or a divergence point in the difference between the test and training error, that agreed

with the procedure described in Figure 4, based on �0. (A) Examples of each data set.
(B) Test error (blue) and training error (red) as a function of � for each of the different
noise conditions. (C) The difference between the test error and training error values

shown above. (D) Normalized reconstruction cost (||X̃ − X||2F ) and cross-orthogonality

cost (||(W
⊤
⊛ X)SH⊤

||1,i) as a function of � for each of the different noise conditions. (E)
Composite performance as a function of �. Panels D and E are identical to those in
Figure 4, and are included here for comparison. (V) These data have a lower amount of

participation noise than (I). Note that in low-noise conditions, test error may not exhibit a

minima within the range of � that produces the ground truth number of factors.
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Figure 4–Figure supplement 4. Quantifying the effect of L1 sparsity penalties on W and

H. (A) An example window of simulated data with three sequences and 40% dropout. (B)

The fraction of fits to data with the noise level in (A) that yielded 3 significant factors, as a

function of two L1 sparsity regularization parameters on W and H. Each bin represents

20 fits of sparsity penalized convNMF with K = 20 and L = 50. (C) The mean similarity

to ground-truth for the same 20 factorizations as in (B). (D-F) same as panels A-C but

with additional noise events in 2.5% of the bins. (H-J) same as panels A-C but with a jitter

standard deviation of 20 bins. (K-M) same as panels A-C but for warping noise with a

maximum of 260% warping.
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Figure 4–Figure supplement 5. Comparing the performance of convNMF with an x-

ortho or a sparsity penalty. (A) The fraction of 20 x-ortho penalized fits which had the

same number of significant factors as the ground-truth for all noise conditions shown

in Figure 3 at the lambda with the best performance. (B) The similarity to ground-truth

for 20 x-ortho penalized fits to all noise conditions shown in Figure 3 at the lambda with

the best performance. (C) The number of significant factors for 100 fits with an x-ortho

penalty (black) and with sparsity penalties on W and H (Red) of 4 different noise conditions

at the level indicated in (A) and (B). Penalty parameters used in (C-E) were selected by

performing a parameter sweep and selecting the parameters which gave the maximum

composite score as described above. (D) The fraction of 20 x-ortho or sparsity penalized

fits with the ground truth number of significant sequences. Noise conditions are the same

as in (C). Values for � were selected as those that give the highest composite performance
(see 4F). (E) Similarity to ground-truth for the fits shown in (C-D). Median is shown with

black dot and bottom and top edges of boxes indicate the 25th and 75th percentiles.
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Figure 5–Figure supplement 1. Direct selection of K using the dissmetric for all noise
conditions. (A), Participation noise, (B), additive noise, (C), jitter and (D), warping. For

each panel the top shows an example of data with three sequences and each noise type.

The bottom panel shows the dissimilarity of factorizations in different levels of noise, as

a function of K. A condition with no noise is shown in blue and dark red represents the

highest noise condition with the color gradient spanning the levels between. Noise levels

are the same as in Figure 3 and Figure 4.Notice that there is often either a minimum or a

distinct feature at K = 3, corresponding to the ground-truth number of sequences in the

data.
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Figure 5–Figure supplement 2. Estimating the number of sequences in a data set using

cross-validation on randomly masked held-out datapoints. (A) Reconstruction error

(RMSE) for test data (red) and training data (blue) plotted as a function of the number of

components (K) used in convNMF. Twenty independent convNMF fits are shown for each

value of K. This panel shows results for 10% participation noise. For synthetic data fits,

10% of the data was held out as the test set. For neural data 5% of the data was held out.

Other noise conditions are shown as follows: (B) jitter noise (10 timestep SD); (C) warping

(13%); (D) higher additive noise (2.5%); (E) higher jitter noise (25 timestep SD); (F) higher

warping (33%) (G) Reconstruction error vs. K for neuronal data collected from premotor

cortex (area HVC) of a singing bird (Figure 9) and (H) hippocampus of rat 2 performing a

left-right alternation task (Figure 8).
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Figure 6–Figure supplement 1. Biasing factorizations between sparsity inW or H. Two
different factorizations of the same simulated data, where a sequence is always repeated

precisely three times. Both yield perfect reconstructions, and no cross-factor correlations.

The factorizations differ in the amount of features placed inW versus H. Both use K = 3
and � = 0.001. (A) Factorization achieved using a sparsity penalty on H, with �L1H = 1. (B)
Factorization achieved using a sparsity penalty onW, with �L1W = 1.

1044

Figure 9–Figure supplement 1. Further analysis of sequences. (A) For each of the three

extracted sequences, examples of song spectrograms triggered at moments where there

is a peak in H. Different examples are separated by a red line. Note that each sequence

factor corresponds to a particular syllable type. (B) As a function of K , diss measure
across all combinations of 10 fits of convNMF. Note the local minima at K=3. (C) Percent

power explained (for convNMF with K=3 and � = 0) as a function of L. Note the bend that
truncates at approximately 0.25 seconds, corresponding to a typical syllable duration.
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Figure 9–Figure supplement 2. Events-based and parts-based factorizations of songbird

data. Illustration of a trade-off between parts-based (W is more strictly orthogonal) and

events-based (H is more strictly orthogonal) factorizations in a data set where some
neurons are shared between different sequences. The same data as in Figure 9 is

factorized with an orthogonality cost just on H (A, events-based), or just onW (B, parts-
based). Below each motivating cartoon factorization, we show x-ortho penalized convNMF

fits (W and H together with the reconstruction) of the data in Figure 9. The right panels
contain the raw data sorted according to these factorizations. Favoring events-based

or parts-based factorizations is a matter of preference. Parts-based factorizations are

particularly useful for separating neurons into ensembles. Events-based factorizations

are particularly useful for identifying what neural events occur when.
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