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Abstract

Three-dimensional microscopy is increasingly prevalent in biology due to the 1

development of techniques such as multiphoton, spinning disk confocal, and light sheet 2

fluorescence microscopies. These methods enable unprecedented studies of life at the 3

microscale, but bring with them larger and more complex datasets. New image 4

processing techniques are therefore called for to analyze the resulting images in an 5

accurate and efficient manner. Convolutional neural networks are becoming the 6

standard for classification of objects within images due to their accuracy and 7

generalizability compared to traditional techniques. Their application to data derived 8

from 3D imaging, however, is relatively new and has mostly been in areas of magnetic 9

resonance imaging and computer tomography. It remains unclear, for images of discrete 10

cells in variable backgrounds as are commonly encountered in fluorescence microscopy, 11

whether convolutional neural networks provide sufficient performance to warrant their 12

adoption, especially given the challenges of human comprehension of their classification 13

criteria and their requirements of large training datasets. We therefore applied a 3D 14

convolutional neural network to distinguish bacteria and non-bacterial objects in 3D 15

light sheet fluorescence microscopy images of larval zebrafish intestines. We find that 16

the neural network is as accurate as human experts, outperforms random forest and 17

support vector machine classifiers, and generalizes well to a different bacterial species. 18

We also discuss network design considerations, and describe the dependence of accuracy 19

on dataset size and data augmentation. We provide source code and descriptions of our 20

analysis pipeline to facilitate adoption of convolutional neural network analysis for 21

three-dimensional microscopy data. 22

Introduction 23

The continued development and widespread adoption of three-dimensional microscopy 24

methods enables insightful observations into the structure and time-evolution of living 25

systems. Techniques such as confocal microscopy [1, 2], two-photon excitation 26

microscopy [3–6], and light sheet fluorescence microscopy [6–12] have provided insights 27

into neural activity, embryonic morphogenesis, plant root growth, gut bacterial 28

competition, and more. Extracting quantitative information from biological image data 29

often calls for identification of objects such as cells, organs, or organelles in an array of 30

pixels, a task that can especially challenging for three-dimensional datasets from live 31

imaging due to their large size and potentially complex backgrounds. Aberrations and 32
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scattering in deep tissue can, for example, introduce noise and distortions, and live 33

animals often contain autofluorescent biomaterials that complicate the discrimination of 34

labeled features of interest. Moreover, traditional image processing techniques tend to 35

require considerable manual curation, as well as user input regarding which features, 36

such as cell size, homogeneity, or aspect ratio, should guide and parameterize analysis 37

algorithms. These features may be difficult to know a priori, and need not be the 38

optimal features for a particular data set. As data grow in both size and complexity, 39

and as imaging methods are applied to an ever-greater variety of systems, standard 40

approaches become increasingly unwieldy, motivating work on better computational 41

methods. 42

Machine learning methods, in particular convolutional neural networks (ConvNets), 43

are increasingly widely used in many fields and have achieved unprecedented accuracies 44

in image classification tasks [13–16]. The objective of machine learning is to use a 45

labeled dataset to train a computer algorithm to make classifications or predictions 46

given new, unlabeled data. Traditional feature-based machine learning algorithms, such 47

as support vector machines and random forests, make use of manually determined 48

characteristics, which in the context of image data could be the eccentricity of objects, 49

their size, their median pixel intensity, etc. The first stages in the implementation of 50

these algorithms, therefore, are the identification of objects by image segmentation 51

methods and the calculation of the desired feature values. In contrast, convolutional 52

neural networks use the raw pixel values as inputs, eliminating the need for 53

determination of object features by the user. Convolutional neural networks use layers 54

consisting of multiple kernels, numerical arrays acting as filters, which are convolved 55

across the input taking advantage of locally correlated information. These kernels are 56

associated with weights that are updated as the algorithm is fed labeled data, 57

converging by numerical optimization methods on the weights that best match the 58

training data. ConvNets can contain hundreds of kernels over tens or hundreds of layers 59

which leads to hundreds of thousands of parameters to be learned, requiring considerable 60

computation and, importantly, large labeled datasets to constrain the parameters. Over 61

the past decade, the use of ConvNets has been enabled by advances in GPU technology, 62

the availability of large labeled datasets in many fields, and user-friendly deep learning 63

software such as TensorFlow [17], Theano [18], Keras [19], and Torch [20]. In addition 64

to high accuracy, ConvNets tend to have fast classification speeds compared to 65

traditional image processing methods. There are drawbacks, however, to neural network 66

approaches. As noted, they require large amounts of manually labeled data for training 67

the network. Furthermore, their selection criteria, in other words the meanings of the 68

kernels’ parameters, are not easily understandable by humans [21]. 69

There are a handful of recent examples of machine learning methods applied to 70

biological optical microscopy data [22,23], including bacterial identification from 2D 71

images using deep learning [24], pixel-level embryonic classification using deep 72

learning [25], and detection of structures within C. elegans from 2D projections of 3D 73

image stacks using support vector machines [26]. Nonetheless, it is unclear whether 74

ConvNet approaches are successful for thick, three-dimensional microscopy datasets, 75

whether their potentially greater accuracy outweighs the drawbacks noted above, and 76

what design principles should guide the implementation of ConvNets for 3D microscopy 77

data. 78

To address these issues, we applied a deep convolutional neural network to analyze 79

three-dimensional light sheet fluorescence microscopy datasets of gut bacteria in larval 80

zebrafish (Fig 1 a,b) and compared its performance to that of other methods. These 81

image sets, in addition to representing a major research focus of our lab related to the 82

aim of understanding the structure and dynamics of gut microbial 83

communities [10,27–29], serve as exemplars of the large, complex data types 84
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increasingly enabled by new imaging methods. Each 3D image occupies roughly 5 GB of 85

storage space and consists of approximately 300 slices separated by 1 micron, each slice 86

consisting of 6000 x 2000 pixel 2D images (975x325 microns). These images include 87

discrete bacterial cells, strong and variable autofluorescence from the mucus-rich 88

intestinal interior [30], autofluorescent zebrafish cells, inhomogeneous illumination due 89

to shadowing of the light sheet by pigment cells, and noise of various sorts. The goal of 90

the analysis is to correctly classify regions of high intensity as bacteria or as 91

non-bacterial objects. 92

Using multiple testing image sets, we compared the performance of the convolutional 93

neural network to that of humans as well as random forest and support vector machine 94

classifiers. In brief, the ConvNet’s accuracy is similar to that of humans, and it 95

outperforms the other machine classifiers in both accuracy and speed across all tested 96

datasets. In addition, the ConvNet performs well when applied to a planktonic bacterial 97

species of a different genus than that on which it was trained. We explored the impacts 98

on the ConvNet’s performance of network structure, the degree of data augmentation 99

using rotations and reflections of the input data, and the size of the training data set, 100

providing insights that will facilitate the use of ConvNets in other biological imaging 101

contexts. 102

Results 103

Data 104

The image data we sought to classify consist of three-dimensional arrays of pixels 105

obtained from light sheet fluorescence microscopy of bacteria in the intestines of larval 106

zebrafish [10,27–29]. Fig 1B shows a typical optical section from an initially germ-free 107

larval zebrafish, colonized by a single labeled bacterial species made up of discrete, 108

planktonic individuals expressing green fluorescent protein; a three-dimensional scan is 109

provided as Supplementary Movie 1. All the data assessed here were derived from fish 110

that were reared germ free (devoid of any microbes) [31] and then either 111

mono-associated with a commensal bacterial species or left germ free. Nine scans are of 112

fish mono-associated with the commensal species ZWU0020 of the genus 113

Vibrio [10,32,33] , two scans are of fish in which the zebrafish remained germ-free, and 114

a single scan is from a fish mono-associated with Pseudomonas ZWU0006 [28] . For 115

each 3D scan, we first determined the intestinal space of the zebrafish using simple 116

thresholding and detected bright objects (“blobs”) using a difference of Gaussians 117

method described further in Methods. From each blob, we extracted 28x28x8 pixel 118

arrays (4.5x4.5x8 microns), which served as the input data to the neural network, to be 119

classified as bacterial or non-bacterial. 120

Since there is no way to obtain ground truth values for bacterial identity in images, 121

we manually classified blobs to serve as the training data for the neural network, using 122

our expertise derived from considerable prior work on three dimensional bacterial 123

imaging. Notably, in prior work we showed that the total bacterial abundance 124

determined by manually corroborated feature-based bacterial identification from light 125

sheet data corresponds well with the total bacterial abundance as measured through gut 126

dissection and serial plating assays [27]. In Fig 1C-F we show representative images of 127

blobs corresponding to bacteria and noise. 128

In order to estimate an upper bound on the classification accuracy we can expect 129

from the learning algorithms, we chose a single image scan which we judged to be 130

typical of a noisy, complex 3D image of the intestine of a larval zebrafish colonized by 131

bacteria. We then had six lab members with considerable light sheet microscopy 132

experience individually label each of the detected potential objects as either a bacterium 133
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Figure 1. Images of bacteria in the intestine of larval zebrafish. a) Schematic
illustration of a larval zebrafish with the intestine highlighted in red. Scale bar: 0.5 mm.
b) Single optical section from light sheet fluorescence microscopy of the anterior intestine
of a larval zebrafish colonized by GFP expressing bacteria of the commensal Vibrio
species ZWU0020. Scale bar: 50 microns. c) z, y and x projections from 28x28x8 pixel
regions of representative individual Vibrio bacteria, d) non-bacterial noise, e) individual
bacteria of the genus Pseudomonas, species ZWU0006, and f) autofluorescent zebrafish
cells.
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or not. We show in Fig 2A the agreement between lab members. Excluding human 3 134

the agreement between any pair of humans is always above 0.87. The outlier, human 3, 135

is the person with the least experience with the imaging data, namely the principal 136

investigator. 137

We next created a set of labeled data by manual classification of blobs from the 9 138

Vibrio scans and 2 scans of germ-free fish, consisting in total of over 20,000 objects. 139

Including scans from germ-free fish is particularly important to enable accurate 140

counting of low numbers of bacteria, which arise naturally due to extinction events [10] 141

and population bottlenecks [32]. 142

Network Architecture 143

As detailed in Methods, we used Google’s open-source Tensorflow framework [2016, 144

Abadi] to create, test, and implement 3D convolutional neural networks. Such networks 145

have many design parameters and options, including the number, size, and type of 146

layers, the kernel size, the downsizing of convolution output by pooling, and parameter 147

regularization. In general, overly small networks can lack the complexity to characterize 148

image data, though their limited parameter space is less likely to lead to overfitting. 149

Conversely, larger networks can tackle more complex classification schemes, but demand 150

more training data to constrain the large number of parameters, and also carry a 151

greater computational load. In between these extremes, many design variations will 152

typically give similar classification accuracy. We chose a simple architecture consisting 153

of two convolutional layers followed by a fully connected layer. The first and second 154

convolutional layers contain 16 and 32 5x5x2 kernels, respectively. Each layer is followed 155

by 2x2x2 max pooling as further described in Methods. The final layer is a fully 156

connected layer consisting of 1024 neurons with a dropout rate of 0.5 during training. 157

After this, softmax regression is used for binary classification. 158

We explored various alterations of our network architecture, and illustrate here the 159

effect of simply varying the number of kernels per convolutional layer. We assessed the 160

classification accuracy using cross validation as a function of the number of kernels in 161

layer 1, with the number of kernels in layer 2 being double this. The network accuracy 162

initially increases with kernel number and plateaus at roughly 16 kernels (Fig 2B). 163

Therefore, increasing the number of kernels beyond this yields little or no improvement 164

in accuracy at the expense of model complexity. 165

Network Accuracy Across Image Scans 166

We trained the ConvNet using manually labeled data from eight of the Vibrio image 167

scans and the two scans that were devoid of gut bacteria, and then tested it on the 168

remaining manually labeled Vibrio image scan that was used to assess inter-human 169

variability, described above. The agreement between the neural network and humans 170

(mean std. dev. 0.89 0.01) was indistinguishable from the inter-human agreement 171

(mean std. dev. 0.90 0.02), again excluding human 3, indicating that the ConvNet 172

achieves the practical maximum of bacterial classification accuracy (Fig 2A). 173

To further test the network’s consistency across different imaging conditions we 174

applied it separately to each of the 3D scans of larval zebrafish intestines. We also 175

tested, with the same procedure and data, random forest and support vector machine 176

classifiers to address the question of whether or not the ConvNet outperforms typical 177

feature based learning algorithms. We consider three experiment types: zebrafish 178

intestines mono-associated with Vibrio ZWU0020 (9 image scans), germ-free (2 image 179

scans), and mono-associated with Pseudomonas ZWU0006 (1 image scan). Classifier 180

accuracy for each Vibrio-colonized or empty-gut image scan was determined by training 181

the network using all of the images from all the other image scans, excluding that of 182
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Figure 2. Creation of the 3-D convolutional neural network. a) Agreement
matrix between six individuals (members of the authors’ research group), evaluated
on a single dataset of images of Vibrio bacteria, and between those humans and the
convolutional neural network. b) Accuracy vs number of kernels per layer using cross
validation across the various imaging datasets, where the x-axis denotes the number of
kernels in the first convolutional layer. The second convolutional layer for each plotted
point has twice as many kernels as the first.
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Pseudomonas. Accuracy for the Pseudomonas-colonized image scan was determined by 183

training the network using all of the images from all the Vibrio-colonized image scans as 184

well as the empty-gut image scans. We found that the neural network outperforms the 185

feature based algorithms on every image scan (Fig 3), and also shows less variation in 186

accuracy between image scans. The enhanced accuracy from the neural network is 187

especially dramatic for germ-free datasets, for which it achieves over 90% accuracy, in 188

contrast to less than 75% for feature based methods. The random forest, support vector 189

machine, and neural network classifiers process roughly 300, 400, and 950 images per 190

second, respectively; i.e. the neural network runs 2-3 times faster than the feature based 191

learning algorithms on the same data. 192

Training Size and Data Augmentation 193

Convolutional Neural Networks famously require large amounts of training data which 194

must often, as is the case here, be evaluated and curated by hand. To assess the scale of 195

manual classification required for good algorithm performance, which is a key issue for 196

future adoption of neural networks in biological image analysis, we explored the effect 197

on the network’s accuracy of varying the amount of training data. We set aside 25% of 198

the images from each of the Vibrio and germ-free fish image scans and trained the 199

network using an increasing number of images from the remaining data. We increased 200

the amount of training data in two different ways. First, we consecutively added to the 201

training set all images from one of the datasets excluding the images previously reserved 202

for testing (labeled “datasets” in Fig 4A). Second, we randomly shuffled the training 203

images from all the image scans, adding 1500 images to the training set over each 204

iteration (labeled “TTsplit” in Fig 4A). For the first method, enlargement of the 205

training set corresponds to a greater amount of data as well as data from more diverse 206

biological sources. For the second, data size increases but the biological variation 207

sampled is held constant. In both cases, accuracy plateaus at a number of images on the 208

order of 10,000 (Fig 4A). The rise in accuracy with increasing training data size is only 209

slightly more shallow with the first method, surprisingly, demonstrating that 210

within-sample variation is sufficient to train the network. 211

Data augmentation, the alteration of input images through mirror reflections, 212

rotations, cropping, and the addition of noise, etc., is commonly used in machine 213

learning to enhance training dataset size and enable robust training of neural networks. 214

To characterize the utility of data augmentation for 3D bacterial images, we focused in 215

particular on image rotations and reflections, because the bacteria have no preferred 216

orientation and hence augmentation by these methods creates realistic training images. 217

We note that data augmentation is not necessary for feature based learning methods in 218

which parity and rotational invariance can be built into the features used for 219

classification. Obviously, augmented data is not independent of the actual training data, 220

and so does not supply wholly new information. We were curious as to how including 221

rotated and reflected versions of previously seen data compares, in terms of network 222

performance, to adding entirely new data, a comparison that is useful if evaluating the 223

necessity of performing additional imaging experiments. To test this, we compared the 224

accuracies of the network when adding new data to that when adding rotated and 225

reflected versions of existing data. We started with a fixed number of 1500 total objects 226

randomly sampled from the entire set and, in the case of including new data, added 227

another random 1500 objects at each iteration. For the augmented data, we applied 228

random rotations and reflections to the original 1500 objects to iteratively increase the 229

training size by 1500 objects. Each trained network was tested on the same test set of 230

objects as that of Fig 4A. As shown in Fig 4B, the addition of new data leads to a 231

plateau in accuracy of roughly 90% while for augmented data the plateau value is 232

around 88%. This surprising result demonstrates that, in the context of our network, 233
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Figure 3. Comparison of Convnet and feature based learning algorithms
across all datasets. Comparison of accuracies for the various learning algorithms
(convolutional neural network, support vector classifier, and random forest) across
different Vibrio datasets, as well as two sets from fish devoid of gut bacteria and one
from a fish colonized by a different bacterial species, Pseudomonas ZWU0006. The
accuracy of a given Vibrio dataset was obtained by training the learning algorithms using
the data from all of the other datasets minus that of Pseudomonas. The Pseudomonas
classification was performed after training on all of the Vibrio image data.

Figure 4. Data augmentation. Examining the accuracy of the CNN as a function
of transformation of the data by a) image rotations and reflections and b) varying the
training data size. Note in part b) the two empty circles represent the inclusion of the
datasets from empty (germ-free) zebrafish intestines.
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simply augmenting existing data can raise classification accuracy to nearly the optimal 234

level achieved by new, independent data. 235

Discussion 236

We find that a 3D convolutional neural network for binary classification of bacteria and 237

non-bacterial objects in 3D microscopy data of the larval zebrafish gut yields high 238

accuracy without unreasonably large demands on the amount of manually curated 239

training data. Specifically, the convolutional neural network obtains human-expert-level 240

accuracy, runs 2-3 times faster than other standard machine learning methods, and is 241

consistent across different datasets and across planktonic bacteria from two different 242

genera. It reaches these performance metrics after training on fewer than 10,000 243

human-classified images, which require approximately 20 person-hours of manual 244

curation to generate. Moreover, augmented data in the form of rotations and reflections 245

of real data contributes surprisingly effectively to network training, further reducing the 246

required manual labor. Experiments of the sort presented here typically involve many 247

weeks of laboratory work. Neural network training, therefore, is a relatively small 248

fraction of the total required time. 249

Though the data presented here came from a particular experimental system, 250

consisting of fluorescently labeled bacterial species within a larval zebrafish intestine 251

imaged with light sheet fluorescence microscopy, they exemplify general features of many 252

contemporary three-dimensional live imaging applications, including large data size, 253

high and variable backgrounds, optical aberrations, and morphological heterogeneity. 254

As such, we suggest that the lessons and analysis tools provided here should be widely 255

applicable to microbial communities [34] as well as eukaryotic multicellular organisms. 256

It is interesting to speculate on whether this broader applicability will simply be 257

methodological, or whether aspects of the neural networks themselves can be broadly 258

deployed to a variety of cell types through transfer learning techniques [35,36]. 259

We expect the use of convolutional neural networks in biological image analysis to 260

become increasingly widespread due to the combination of efficacy, as illustrated here, 261

and the existence of user-friendly tools, such as TensorFlow, that make their 262

implementation straightforward. We can imagine several extensions of the work we have 263

described. Considering gut bacteria in particular, extending neural network methods to 264

handle bacterial aggregates is called for by observations of a continuum of planktonic 265

and aggregated morphologies [28]. Considering 3D images more generally, we note that 266

the approach illustrated has as its first step detection of candidate objects (“blobs”), 267

which requires choices of thresholding and filtering parameters. Alternatively, 268

pixel-by-pixel segmentation is in principle possible using recently developed network 269

architectures [13,37], which could enable completely automated processing of 3D 270

fluorescence images. In addition, pixel-based identification of overall morphology (for 271

example, the location of the zebrafish gut) could further enhance classification accuracy, 272

by incorporating anatomical information that constrains the possible locations of 273

particular cell types. 274

Methods 275

Light Sheet Microscopy Image Data 276

Three-dimensional scans of the intestines of larval zebrafish, derived germ-free and 277

colonized by fluorescently labeled bacteria prior to imaging, were obtained using light 278

sheet fluorescence microscopy as described in Refs. [10,27,28].The microscope was based 279

on the design from Keller et al [6], and has been described elsewhere [27, 34]. In brief: a 280
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laser is rapidly oscillated creating a thin sheet of light used to illuminate a section of the 281

specimen, in this case, a larval zebrafish. An objective lens is seated perpendicular to 282

the laser sheet, focusing two-dimensional images onto a sCMOS camera. The specimen 283

is scanned through the sheet along the detection axis, thereby constructing a 3D image. 284

The camera exposure time was 30 ms, and the laser power of the laser was 5 mW as 285

measured between the theta-lens and excitation objective. 286

Of the twelve datasets used for this work, nine were of the zebrafish commensal 287

bacterium Vibrio sp. ZWU0020, one was of a Pseudomonas commensal sp. ZWU0006, 288

and two were from germ free fish, devoid of any bacteria. All experiments involving 289

zebrafish were carried out in accordance with protocols approved by the University of 290

Oregon Institutional Animal Care and Use Committee. 291

Segmentation and Blob Detection 292

Rough segmentation of the intestine was performed using histogram equalization of each 293

individual z-stack followed by a moving average over 30 consecutive images in the 294

z-stack followed by hard thresholding to create a binary mask that overestimated the 295

intestine. While extremely rough, this technique requires no manual editing or outlining. 296

After this, blob detection was performed using the difference of Gaussians technique 297

from the scikit-image library on each two-dimensional image, and the blobs were linked 298

together across consecutive images in each stack. Images of dimensions 28x28x8 located 299

at the center of each detected blob were then saved to be labeled by hand as either a 300

bacterium or noise. 301

From the 12 datasets, 20,929 images were hand labeled of which 38% were bacteria 302

and 62% were noise. Hand labeling took roughly 1-2 hours per scan. All code for the 303

project was written in Python. 304

Random Forest and Support Vector Machine Classifiers 305

Over sixty features were created initially. Then, the number was reduced to thirty one 306

using scikit-learn’s feature importances to decrease run time and remove unhelpful 307

features. The data was tested using both a random forest and support vector classifier 308

from the scikit-learn library. The random forest used 500 estimators. The support 309

vector classifier was tested over a range of parameters and kernels using scikit-learn’s 310

GridSearchCV which yielded highest accuracy when using a radial basis function kernel 311

with penalty C=1. 312

Convolutional Neural Network 313

The 3D convolutional neural network was created using Google’s TensorFlow. Each 314

input image was 28x28x8 pixels. The network consisted of two convolutional layers 315

followed by a fully connected layer. The first layer was composed of 16, 5x5x2 kernels of 316

stride 2 and same padding followed by 2x2x2 max pooling, the second layer contained 317

32 5x5x2 kernels of the same stride and padding and was also followed by 2x2x2 max 318

pooling. We chose to double the number of kernels after max pooling as in [38]. After 319

the final convolutional layer we employed a fully connected layer consisting of 1024 320

neurons. The classes were then determined using a softmax layer. The network had a 321

dropout of 0.5, a learning rate of 0.0001 and the data was trained over 120 epochs 322

randomly rotating and reflecting each image over each epoch unless otherwise specified. 323

The weights were updated using the Adam optimization method and we use leaky-ReLu 324

activation functions. During each epoch of training, each input image has a fifty percent 325

probability of receiving a reflection in x, y and z followed by a fifty percent probability 326

of subsequently being transposed. This particular scheme was chosen due to its low 327
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computational load. The code for this convolutional neural netwrk is publicly available 328

on Github https://github.com/teddyhay/bacterial-identification. 329

Computer Specs and Timing 330

The code was implemented on using python 3.5 on Ubuntu 16.04, with a Intel Core 331

i7-4790 CPU with an Nvidia GeForce GTX 1060 graphics card using 32 GB of RAM. 332

With this hardware it took roughly 30 seconds to train the RF and SVC using about 333

17,000 images while it took roughly one hour to train the 3D ConvNet on the same 334

number of images. 335
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