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Abstract

Three-dimensional microscopy is increasingly prevalent in biology due to the

development of techniques such as multiphoton, spinning disk confocal, and light sheet

fluorescence microscopies. These methods enable unprecedented studies of life at the

microscale, but bring with them larger and more complex datasets. New image

processing techniques are therefore called for to analyze the resulting images in an

accurate and efficient manner. Convolutional neural networks are becoming the

standard for classification of objects within images due to their accuracy and

generalizability compared to traditional techniques. Their application to data derived

from 3D imaging, however, is relatively new and has mostly been in areas of magnetic

resonance imaging and computer tomography. It remains unclear, for images of discrete

cells in variable backgrounds as are commonly encountered in fluorescence microscopy,

whether convolutional neural networks provide sufficient performance to warrant their

adoption, especially given the challenges of human comprehension of their classification

criteria and their requirements of large training datasets. We therefore applied a 3D

convolutional neural network to distinguish bacteria and non-bacterial objects in 3D

light sheet fluorescence microscopy images of larval zebrafish intestines. We find that

the neural network is as accurate as human experts, outperforms random forest and
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support vector machine classifiers, and generalizes well to a different bacterial species

through the use of transfer learning. We also discuss network design considerations, and

describe the dependence of accuracy on dataset size and data augmentation. We provide

source code, labeled data, and descriptions of our analysis pipeline to facilitate adoption

of convolutional neural network analysis for three-dimensional microscopy data.

Author summary

The abundance of complex, three dimensional image datasets in biology calls for new

image processing techniques that are both accurate and fast. Deep learning techniques,

in particular convolutional neural networks, have achieved unprecedented accuracies and

speeds across a large variety of image classification tasks. However, it is unclear whether

or not their use is warranted in noisy, heterogeneous 3D microscopy datasets, especially

considering their requirements of large, labeled datasets and their lack of

comprehensible features. To asses this, we provide a case study, applying convolutional

neural networks as well as feature-based methods to light sheet fluorescence microscopy

datasets of bacteria in the intestines of larval zebrafish. We find that the neural network

is as accurate as human experts, outperforms the feature-based methods, and

generalizes well to a different bacterial species through the use of transfer learning.

Introduction 1

The continued development and widespread adoption of three-dimensional microscopy 2

methods enables insightful observations into the structure and time-evolution of living 3

systems. Techniques such as confocal microscopy [1, 2], two-photon excitation 4

microscopy [3–6], and light sheet fluorescence microscopy [6–12] have provided insights 5

into neural activity, embryonic morphogenesis, plant root growth, gut bacterial 6

competition, and more. Extracting quantitative information from biological image data 7

often calls for identification of objects such as cells, organs, or organelles in an array of 8

pixels, a task that can especially challenging for three-dimensional datasets from live 9

imaging due to their large size and potentially complex backgrounds. Aberrations and 10

scattering in deep tissue can, for example, introduce noise and distortions, and live 11
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animals often contain autofluorescent biomaterials that complicate the discrimination of 12

labeled features of interest. Moreover, traditional image processing techniques tend to 13

require considerable manual curation, as well as user input regarding which features, 14

such as cell size, homogeneity, or aspect ratio, should guide and parameterize analysis 15

algorithms. These features may be difficult to know a priori, and need not be the 16

features that lead to the greatest classification accuracy. As data grow in both size and 17

complexity, and as imaging methods are applied to an ever-greater variety of systems, 18

standard approaches become increasingly unwieldy, motivating work on better 19

computational methods. 20

Machine learning methods, in particular convolutional neural networks (ConvNets), 21

are increasingly used in many fields and have achieved unprecedented accuracies in 22

image classification tasks [13–16]. The objective of machine learning is to use a labeled 23

dataset to train a computer algorithm to make classifications or predictions given new, 24

unlabeled data. Traditional feature-based machine learning algorithms, such as support 25

vector machines and random forests, make use of manually determined characteristics, 26

which in the context of image data could be the eccentricity of objects, their size, their 27

median pixel intensity, etc. The first stages in the implementation of these algorithms, 28

therefore, are the identification of objects by image segmentation methods and the 29

calculation of the desired feature values. In contrast, convolutional neural networks use 30

the raw pixel values as inputs, eliminating the need for determination of object features 31

by the user. Convolutional neural networks use layers consisting of multiple kernels, 32

numerical arrays acting as filters, which are convolved across the input taking advantage 33

of locally correlated information. These kernels are updated as the algorithm is fed 34

labeled data, converging by numerical optimization methods on the weights that best 35

match the training data. ConvNets can contain hundreds of kernels over tens or 36

hundreds of layers which leads to hundreds of thousands of parameters to be learned, 37

requiring considerable computation and, importantly, large labeled datasets to constrain 38

the parameters. Over the past decade, the use of ConvNets has been enabled by 39

advances in GPU technology, the availability of large labeled datasets in many fields, 40

and user-friendly deep learning software such as TensorFlow [17], Theano [18], 41

Keras [19], and Torch [20]. In addition to high accuracy, ConvNets tend to have fast 42

classification speeds compared to traditional image processing methods. There are 43
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drawbacks, however, to neural network approaches. As noted, they require large 44

amounts of manually labeled data for training the network. Furthermore, their selection 45

criteria, in other words the meanings of the kernels’ parameters, are not easily 46

understandable by humans [21]. 47

There have been several notable examples of machine learning methods applied to 48

biological optical microscopy data [22,23], including bacterial identification from 2D 49

images using deep learning [24],pixel-level image segmentation using deep 50

learning [25–27], subcellular protein classification [28], and detection of structures 51

within C. elegans from 2D projections of 3D image stacks using support vector 52

machines [29]. Nonetheless, it is unclear whether ConvNet approaches are successful for 53

thick, three-dimensional microscopy datasets, whether their potentially greater accuracy 54

outweighs the drawbacks noted above, and what design principles should guide the 55

implementation of ConvNets for 3D microscopy data. 56

To address these issues, we applied a deep convolutional neural network to analyze 57

three-dimensional light sheet fluorescence microscopy datasets of gut bacteria in larval 58

zebrafish (Fig 1 a,b) and compared its performance to that of other methods. These 59

image sets, in addition to representing a major research focus of our lab related to the 60

aim of understanding the structure and dynamics of gut microbial 61

communities [10,30–32], serve as exemplars of the large, complex data types 62

increasingly enabled by new imaging methods. Each 3D image occupies roughly 5 GB of 63

storage space and consists of approximately 300 slices separated by 1 micron, each slice 64

consisting of 6000 x 2000 pixel 2D images (975x325 microns). These images include 65

discrete bacterial cells, strong and variable autofluorescence from the mucus-rich 66

intestinal interior [33], autofluorescent zebrafish cells, inhomogeneous illumination due 67

to shadowing of the light sheet by pigment cells, and noise of various sorts. The bacteria 68

examined here exist predominantly as discrete, planktonic individuals. Other species in 69

the zebrafish gut exhibit pronounced aggregation; identification of aggregates is outside 70

the scope of this work, though we note that the segmentation of aggregates is much less 71

challenging than identification of discrete bacterial cells, due to their overall brightness 72

and size. The goal of the analysis described here is to correctly classify regions of high 73

intensity as bacteria or as non-bacterial objects. 74

Using multiple testing image sets, we compared the performance of the convolutional 75
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neural network to that of humans as well as random forest and support vector machine 76

classifiers. In brief, the ConvNet’s accuracy is similar to that of humans, and it 77

outperforms the other machine classifiers in both accuracy and speed across all tested 78

datasets. In addition, the ConvNet performs well when applied to planktonic bacteria of 79

a different genus through the use of transfer learning, in which partial transference of 80

network weights dramatically lowers the amount of new labeled data that is required. 81

We explored the impacts on the ConvNet’s performance of network structure, the 82

degree of data augmentation using rotations and reflections of the input data, and the 83

size of the training data set, providing insights that will facilitate the use of ConvNets 84

in other biological imaging contexts. 85

Analysis code as well as all ∼ 21, 000 manually labeled 3D image regions-of-interest 86

are provided; see Methods for details and urls to data locations. 87

Results 88

Data 89

The image data we sought to classify consist of three-dimensional arrays of pixels 90

obtained from light sheet fluorescence microscopy of bacteria in the intestines of larval 91

zebrafish [10,30–32]. Fig 1B shows a typical optical section from an initially germ-free 92

larval zebrafish, colonized by a single labeled bacterial species made up of discrete, 93

planktonic individuals expressing green fluorescent protein; a three-dimensional scan is 94

provided as Supplementary Movie 1. All the data assessed here were derived from fish 95

that were reared germ free (devoid of any microbes) [34] and then either 96

mono-associated with a commensal bacterial species or left germ free. Nine scans are of 97

fish mono-associated with the commensal species ZWU0020 of the genus 98

Vibrio [10, 35, 36], two scans are of fish in which the zebrafish remained germ-free, and a 99

single scan is from a fish mono-associated with Pseudomonas ZWU0006 [31] . For each 100

3D scan, we first determined the intestinal space of the zebrafish using simple 101

thresholding and detected bright objects (“blobs”) using a difference of Gaussians 102

method described further in Methods. From each blob, we extracted 28x28x8 pixel 103

arrays (4.5x4.5x8 microns), which served as the input data to the neural network, to be 104

for bioRxiv 5/24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/273318doi: bioRxiv preprint 

https://doi.org/10.1101/273318
http://creativecommons.org/licenses/by-nc-nd/4.0/


classified as bacterial or non-bacterial. 105

Since there is no way to obtain ground truth values for bacterial identity in images, 106

we manually classified blobs to serve as the training data for the neural network, using 107

our expertise derived from considerable prior work on three dimensional bacterial 108

imaging. Notably, in prior work we showed that the total bacterial abundance 109

determined by manually corroborated feature-based bacterial identification from light 110

sheet data corresponds well with the total bacterial abundance as measured through gut 111

dissection and serial plating assays [30]. In Fig 1C-F we show representative images of 112

blobs corresponding to bacteria and noise. 113

In order to estimate an upper bound on the classification accuracy we can expect 114

from the learning algorithms, we chose a single image scan which we judged to be 115

typical of a noisy, complex 3D image of the intestine of a larval zebrafish colonized by 116

bacteria. We then had six lab members with considerable light sheet microscopy 117

experience individually label each of the detected potential objects as either a bacterium 118

or not. We show in Fig 2A the agreement between lab members. Excluding human 3 119

the agreement between any pair of humans is always above 0.87. The outlier, human 3, 120

is the person with the least experience with the imaging data, namely the principal 121

investigator. 122

We next created a set of labeled data by manual classification of blobs from the 9 123

Vibrio scans and 2 scans of germ-free fish, consisting in total of over 20,000 objects. 124

Including scans from germ-free fish is particularly important to enable accurate 125

counting of low numbers of bacteria, which arise naturally due to extinction events [10] 126

and population bottlenecks [35]. 127

Network Architecture 128

As detailed in Methods, we used Google’s open-source Tensorflow framework [2016, 129

Abadi] to create, test, and implement 3D convolutional neural networks. Such networks 130

have many design parameters and options, including the number, size, and type of 131

layers, the kernel size, the downsizing of convolution output by pooling, and parameter 132

regularization. In general, overly small networks can lack the complexity to characterize 133

image data, though their limited parameter space is less likely to lead to overfitting. 134
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Conversely, larger networks can tackle more complex classification schemes, but demand 135

more training data to constrain the large number of parameters, and also carry a 136

greater computational load. In between these extremes, many design variations will 137

typically give similar classification accuracy. We chose a simple architecture consisting 138

of two convolutional layers followed by a fully connected layer. The first and second 139

convolutional layers contain 16 and 32 5x5x2 kernels, respectively. Each layer is followed 140

by 2x2x2 max pooling as further described in Methods. The final layer is a fully 141

connected layer consisting of 1024 neurons with a dropout rate of 0.5 during training. 142

After this, softmax regression is used for binary classification. 143

We explored various alterations of our network architecture, and illustrate here the 144

effect of simply varying the number of kernels per convolutional layer. We assessed the 145

classification accuracy as a function of the number of kernels in layer 1, with the 146

number of kernels in layer 2 being double this. Accuracy was calculated using cross 147

validation, training on all but one image dataset (where an image dataset is a complete 148

three-dimensional scan of the gut of one zebrafish), testing on the remaining image 149

dataset, and repeating with different train/test combinations. The network accuracy 150

initially increases with kernel number and plateaus at roughly 16 kernels, beyond which 151

the variance in accuracy increases (Fig 2B). Therefore, increasing the number of kernels 152

beyond approximately 16 gives little or no improvement in accuracy at the expense of 153

model complexity and increased variability. 154

Network Accuracy Across Image Datasets 155

We trained the ConvNet using manually labeled data from eight of the Vibrio image 156

datasets and the two datasets from germ-free fish (devoid of gut bacteria) and then 157

tested it on the remaining manually labeled Vibrio image dataset that was used to 158

assess inter-human variability, described above. The agreement between the neural 159

network and humans (mean ± std. dev. 0.89 ± 0.01) was indistinguishable from the 160

inter-human agreement (mean ± std. dev. 0.90 ± 0.02), again excluding human 3, 161

indicating that the ConvNet achieves the practical maximum of bacterial classification 162

accuracy (Fig 2A). Examples of images for which all humans agreed on the classification, 163

and in which there was disagreement, are provided in the Supplementary Text. 164
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To further test the network’s consistency across different imaging conditions we 165

applied it separately to each of the 3D image datasets of larval zebrafish intestines. We 166

also tested, with the same procedure and data, random forest and support vector 167

machine classifiers to address the question of whether or not the ConvNet outperforms 168

typical feature based learning algorithms. We first consider two experiment types: 169

zebrafish intestines mono-associated with Vibrio ZWU0020 (9 image datasets, i.e. 9 170

complete three-dimensional scans from of different zebrafish) and germ-free zebrafish (2 171

image datasets). Classifier accuracy for each Vibrio-colonized or empty-gut image scan 172

was determined by cross-validation, training the network using all of the other image 173

datasets, and testing on the dataset of interest. To test the variance in accuracy due to 174

the training process, we performed three repetitions of each train/test combination 175

using the same data. We found that the neural network outperforms the feature based 176

algorithms on every image dataset (Fig 3), and also shows less variation in accuracy 177

between the different datasets. The enhanced accuracy from the neural network is 178

especially dramatic for germ-free datasets, for which it achieves over 90% accuracy, in 179

contrast to less than 75% for feature based methods. For a given test dataset, the 180

training variance for the convolutional neural network is small but nonzero, indicating 181

that the network training algorithm finds similar, but not identical, minima with 182

different (random) initializations on the same training data. It is also small for the 183

random forest classifier. Interestingly, it is zero for the SVM classifier, indicating that 184

given the same dataset, the algorithm is finding the same minimum. 185

The random forest, support vector machine, and neural network classifiers process 186

roughly 300, 400, and 950 images per second, respectively; i.e. the neural network runs 187

2-3 times faster than the feature based learning algorithms on the same data. 188

Training Size and Data Augmentation 189

Convolutional Neural Networks famously require large amounts of training data which 190

must often, as is the case here, be evaluated and curated by hand. To assess the scale of 191

manual classification required for good algorithm performance, which is a key issue for 192

future adoption of neural networks in biological image analysis, we explored the effect 193

on the network’s accuracy of varying the amount of training data. We set aside 25% of 194
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the images from each of the Vibrio and germ-free fish image scans and trained the 195

network using an increasing number of images from the remaining data. We increased 196

the amount of training data in two different ways. First, we consecutively added to the 197

training set all images from each image dataset excluding a subset of the images 198

previously reserved for testing (labeled Test: new datasets in Fig 4A). Second, we 199

randomly shuffled the training images from all the image scans, adding 1500 images to 200

the training set over each iteration (labeled Train/test split in Fig 4A). For the first 201

method, enlargement of the training set corresponds to a greater amount of data as well 202

as data from more diverse biological sources. For the second, data size increases but the 203

biological variation sampled is held constant. In both cases, accuracy plateaus at a 204

number of images on the order of 10,000 (Fig 4A). The rise in accuracy with increasing 205

training data size is only slightly more shallow with the first method, surprisingly, 206

demonstrating that within-sample variation is sufficient to train the network. 207

Data augmentation, the alteration of input images through mirror reflections, 208

rotations, cropping, and the addition of noise, etc., is commonly used in machine 209

learning to enhance training dataset size and enable robust training of neural networks. 210

To characterize the utility of data augmentation for 3D bacterial images, we focused in 211

particular on image rotations and reflections, because the bacteria have no preferred 212

orientation and hence augmentation by these methods creates realistic training images. 213

We note that data augmentation is not necessary for feature based learning methods in 214

which parity and rotational invariance can be built into the features used for 215

classification. Obviously, augmented data is not independent of the actual training data, 216

and so does not supply wholly new information. We were curious as to how including 217

rotated and reflected versions of previously seen data compares, in terms of network 218

performance, to adding entirely new data, a comparison that is useful if evaluating the 219

necessity of performing additional imaging experiments. To test this, we compared the 220

accuracies of the network when adding new data to that when adding rotated and 221

reflected versions of existing data. We started with a fixed number of 1500 total objects 222

randomly sampled from the entire set and, in the case of including new data, added 223

another random 1500 objects at each iteration. For the augmented data, we applied 224

random rotations and reflections to the original 1500 objects to iteratively increase the 225

training size by 1500 objects. Each trained network was tested on the same test set of 226
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objects as that of Fig 4A. As shown in Fig 4B, the addition of new data leads to a 227

plateau in accuracy of roughly 90% while for augmented data the plateau value is 228

around 88%. This result demonstrates that, in the context of our network, simply 229

augmenting existing data can raise classification accuracy to nearly the optimal level 230

achieved by new, independent data. 231

Transfer Learning 232

We assessed the accuracy of the convolutional neural network on images of discrete gut 233

bacteria of another species, of the genus Pseudomonas. Training solely on the Vibrio 234

images and testing on Pseudomonas gives ∼ 75% accuracy (Fig 5). However, this is 235

much lower than the ∼ 85− 95% accuracy obtained on Vibrio images (Fig 4); the 236

Pseudomonas species is not an exact morphological mimic of the Vibrio species. The 237

Pseudomonas dataset is small (1190 images); using 80% of its images for de novo neural 238

network training gives ∼ 72% accuracy in identifying Pseudomonas in test datasets (Fig 239

5). We suspected that the general similarity of each species as rod-like, few-micron-long 240

cells would allow transfer learning, in which a model trained for one task is used as the 241

starting point for training for another task [37,38]. Using the network weights from 242

training on Vibrio image datasets, as before, as the starting values for training on the 243

small Pseudomonas dataset gives over 85% accuracy in classifying Pseudomonas (Fig 5). 244

Discussion 245

We find that a 3D convolutional neural network for binary classification of bacteria and 246

non-bacterial objects in 3D microscopy data of the larval zebrafish gut yields high 247

accuracy without unreasonably large demands on the amount of manually curated 248

training data. Specifically, the convolutional neural network obtains human-expert-level 249

accuracy, runs 2-3 times faster than other standard machine learning methods, and is 250

consistent across different datasets and across planktonic bacteria from two different 251

genera through the use of transfer learning. It reaches these performance metrics after 252

training on fewer than 10,000 human-classified images, which require approximately 20 253

person-hours of manual curation to generate. Moreover, augmented data in the form of 254

rotations and reflections of real data contributes effectively to network training, further 255
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reducing the required manual labor. Experiments of the sort presented here typically 256

involve many weeks of laboratory work. Neural network training, therefore, is a 257

relatively small fraction of the total required time. 258

In many biological imaging experiments, including our own, variety and similarity 259

are both present. Multiple distinct species or cell types may exist, each different, but 260

with some morphological similarities. It is therefore useful to ask whether such 261

similarities can be exploited to constrain the demands of neural network training. The 262

concept of transfer learning addresses this issue, and we find that applying it to our 263

bacterial images achieves high accuracy despite small labeled datasets, an observation 264

that we suspect will apply to many image-based studies. 265

Though the data presented here came from a particular experimental system, 266

consisting of fluorescently labeled bacterial species within a larval zebrafish intestine 267

imaged with light sheet fluorescence microscopy, they exemplify general features of many 268

contemporary three-dimensional live imaging applications, including large data size, 269

high and variable backgrounds, optical aberrations, and morphological heterogeneity. 270

As such, we suggest that the lessons and analysis tools provided here should be widely 271

applicable to microbial communities [39] as well as eukaryotic multicellular organisms. 272

We expect the use of convolutional neural networks in biological image analysis to 273

become increasingly widespread due to the combination of efficacy, as illustrated here, 274

and the existence of user-friendly tools, such as TensorFlow, that make their 275

implementation straightforward. We can imagine several extensions of the work we have 276

described. Considering gut bacteria in particular, extending neural network methods to 277

handle bacterial aggregates is called for by observations of a continuum of planktonic 278

and aggregated morphologies [31]. Considering 3D images more generally, we note that 279

the approach illustrated has as its first step detection of candidate objects (“blobs”), 280

which requires choices of thresholding and filtering parameters. Alternatively, 281

pixel-by-pixel segmentation is in principle possible using recently developed network 282

architectures [13,40], which could enable completely automated processing of 3D 283

fluorescence images. In addition, pixel-based identification of overall morphology (for 284

example, the location of the zebrafish gut) could further enhance classification accuracy, 285

by incorporating anatomical information that constrains the possible locations of 286

particular cell types. 287
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Methods 288

Light Sheet Microscopy Image Data 289

Three-dimensional scans of the intestines of larval zebrafish, derived germ-free and 290

colonized by fluorescently labeled bacteria prior to imaging, were obtained using light 291

sheet fluorescence microscopy as described in Refs. [10,30,31]. All experiments involving 292

zebrafish were carried out in accordance with protocols approved by the University of 293

Oregon Institutional Animal Care and Use Committee. 294

The microscope was based on the design from Keller et al [6], and has been 295

described elsewhere [30,39]. In brief: a laser is rapidly oscillated creating a thin sheet of 296

light used to illuminate a section of the specimen, in this case, a larval zebrafish. An 297

objective lens is seated perpendicular to the laser sheet, focusing two-dimensional 298

images onto a sCMOS camera. The specimen is scanned through the sheet along the 299

detection axis, thereby constructing a 3D image. The camera exposure time was 30 ms, 300

and the laser power of the laser was 5 mW as measured between the theta-lens and 301

excitation objective. 302

Of the twelve image datasets used for this work, nine were of the zebrafish 303

commensal bacterium Vibrio sp. ZWU0020, one was of a Pseudomonas commensal sp. 304

ZWU0006, and two were from germ-free fish, devoid of any bacteria. 305

An example 3D image dataset of the anterior “bulb” of one larval zebrafish gut is 306

available at the link noted in the README.md file at github: 307

https://github.com/rplab/Bacterial-Identification, together with the 6 lab members’ 308

labels for each detected object in the volume, the convolutional neural network’s 309

classification, and each of the extracted region-of-interest voxels. Other image sets are 310

available upon request; for each zebrafish gut, the full image dataset is roughly 1 GB in 311

size. 312

Segmentation and Blob Detection 313

Rough segmentation of the intestine was performed using histogram equalization of each 314

individual z-stack followed by a moving average over 30 consecutive images in the 315

z-stack followed by hard thresholding to create a binary mask that overestimated the 316
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size of the intestine. While extremely rough, this technique requires no manual editing 317

or outlining. After this, blob detection was performed using the difference of Gaussians 318

technique from the scikit-image library on each two-dimensional image, and the blobs 319

were linked together across consecutive images in each stack. Regions 28x28x8 pixels in 320

size centered at each detected blob were then saved to be labeled by hand as either a 321

bacterium or noise. The code for extracting the regions of interest is publicly available 322

on Github at https://github.com/rplab/Bacterial-Identification. 323

From the 12 datasets, 20,929 images were hand labeled of which 38% were bacteria 324

and 62% were noise. Hand labeling took roughly 1-2 hours per scan. All of the 28x28x8 325

pixel images and the corresponding labels are available from links in the README.md 326

file at the Github repository https://github.com/rplab/Bacterial-Identification. 327

All code for the project was written in Python. 328

Random Forest and Support Vector Machine Classifiers 329

Over sixty features were created initially. These were assessed using scikit-learn’s 330

feature importances , from which the thirty one most helpful features were retained. 331

The features used included geometric properties obtained by ellipse-fitting and 332

texture-based characteristics; a detailed list is provided in the python code features.py 333

provided on Github: https://github.com/rplab/Bacterial-Identification. The data were 334

tested using both a random forest and support vector classifier from the scikit-learn 335

library. The random forest used 500 estimators. The support vector classifier from 336

sci-kit learn, sklearn.svm.SVC(), was tested over a range of parameters and kernels 337

using scikit-learn’s GridSearchCV which yielded highest accuracy when using a radial 338

basis function kernel with penalty C=1. 339

Convolutional Neural Network 340

The 3D convolutional neural network was created using Google’s TensorFlow. Each 341

input image was 28x28x8 pixels. The network consisted of two convolutional layers 342

followed by a fully connected layer. The first layer was composed of 16, 5x5x2 kernels of 343

stride 2 and same padding followed by 2x2x2 max pooling, the second layer contained 344

32 5x5x2 kernels of the same stride and padding and was also followed by 2x2x2 max 345
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pooling. We chose to double the number of kernels after max pooling as in [41]. After 346

the final convolutional layer we employed a fully connected layer consisting of 1024 347

neurons. The classes were then determined using a softmax layer. The network had a 348

dropout of 0.5, a learning rate of 0.0001 and the data was trained over 120 epochs 349

randomly rotating and reflecting each image over each epoch unless otherwise specified. 350

The weights were updated using the Adam optimization method and we use leaky-ReLu 351

activation functions. During each epoch of training, each input image has a fifty percent 352

probability of receiving a reflection in x, y and z followed by a fifty percent probability 353

of subsequently being transposed. This particular scheme was chosen due to its low 354

computational load. We have made the code for this convolutional neural network is 355

available on Github at https://github.com/rplab/Bacterial-Identification. 356

Computer Specs and Timing 357

The code was implemented on using python 3.5 on Ubuntu 16.04, with a Intel Core 358

i7-4790 CPU with an Nvidia GeForce GTX 1060 graphics card on a computer with 32 359

GB of RAM. With this hardware it took roughly one minute to train and create the 360

features for the RF and SVC using about 17,000 images, and roughly one hour to train 361

the 3D ConvNet on the same number of images. 362
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Fig 1. Images of bacteria in the intestine of larval zebrafish. a) Schematic
illustration of a larval zebrafish with the intestine highlighted in red. Scale bar: 0.5 mm.
b) Single optical section from light sheet fluorescence microscopy of the anterior
intestine of a larval zebrafish colonized by GFP expressing bacteria of the commensal
Vibrio species ZWU0020. Scale bar: 50 microns. c) z, y and x projections from 28x28x8
pixel regions of representative individual Vibrio bacteria, d) non-bacterial noise, e)
individual bacteria of the genus Pseudomonas, species ZWU0006, and f) autofluorescent
zebrafish cells.
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Fig 2. Creation of the 3-D convolutional neural network. a) Agreement matrix
between six individuals (members of the authors’ research group), evaluated on a single
dataset of images of Vibrio bacteria, and between those humans and the convolutional
neural network. b) Accuracy vs number of kernels per layer using cross validation across
the various imaging datasets, where the x-axis denotes the number of kernels in the first
convolutional layer. The second convolutional layer for each plotted point has twice as
many kernels as the first.
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Fig 3. Comparison of Convnet and feature based learning algorithms
across all datasets. Comparison of accuracies for the various learning algorithms
(convolutional neural network, support vector classifier, and random forest) across
different Vibrio image datasets, as well as two image datasets from fish devoid of gut
bacteria. Each accuracy was determined by training on the data from all of the other
datasets, and testing on the dataset of interest.
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Fig 4. Data augmentation. Examining the accuracy of the CNN as a function of a)
varying the training data size by adding images from biologically distinct datasets (Test:
new datasets) or by adding images randomly from the full set of images (Train/test
split), and b) transformation of the data by image rotations and reflections. In (a), the
two empty circles represent the inclusion of the datasets from empty (germ-free)
zebrafish intestines.
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Fig 5. Transfer Learning on New Bacterial Species. The accuracy of
Pseudomonas classification with convolutional neural networks trained in different ways.
“Vibrio” indicates training on images of Vibrio bacteria, “Pseudomonas” indicates
training on the small Pseudomonas image dataset, and “Transfer” indicates using the
Vibrio-derived network weights as the starting point for training on Pseudomonas
images. For training only on Vibrio images, the different data points come from random
weight initialization, random data ordering, and random augmentation. For training
only on Pseudomonas images, and for transfer learning, the different data points are
from random train/test splits of the Pseudomonas data.
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