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Abstract

We present an axiomatic approach for multilocus informativeness measures for determining the
amount of information that a set of polymorphic genetic markers provides about individual ancestry.
We then reveal several surprising properties of a decision-theoretic based measure that is consistent
with the set of proposed criteria for multilocus informativeness. In particular, these properties
highlight the interplay between information originating from population priors and the information
extractable from the population genetic variants. This analysis then reveals a certain deficiency
of mutual information based multilocus informativeness measures when such population priors are
incorporated. Finally, we analyse and quantify the inevitable inherent decrease in informativeness
due to learning from finite population samples.

Keywords: classifiers; population structure; mutual information; ancestry informativeness; statistical
learning.

1 Introduction

“The investigations on the foundations of geometry suggest the problem: To treat in the same manner,
by means of axioms, those physical sciences in which mathematics plays an important part.”
– Hilbert 1902, p.454

The literature on inferring individual ancestry from genetic markers and the related measures of
ancestry informativeness is vast and involves multiple perspectives and mathematical approaches (e.g.
[Rosenberg et al., 2003]; [Ding et al., 2011]). The inferential task is conceptually linked to the uncer-
tainty inherent in any effective classification scheme given a target set of polymorphic genetic markers
from a number of source populations. However, informativeness is commonly interpreted a property
of the data independent of any particular classification heuristic; in that sense it is ideally meant to
capture only the relevant aspect of informational content – and this is why the formulation of a good
measure is hardly straightforward. In this paper we adopt an essentially axiomatic approach which
relies on first producing a set of appropriate and justifiable criteria that any measure should comply
with. This is in contrast to previous approaches that have considered measures of informativeness in
a more ad-hoc fashion, without anchoring them in any rigorous framework. Moreover, following the
successful approach of [Shannon, 1948] in formalizing the transfer of information it is commonly rec-
ognized that the justification for regarding a quantity an information measure resides in the associated
mathematical theorems demonstrating operational significance ([Csiszár, 2008]). Here we aim to abide
to this realization by deriving novel properties of ancestry informativeness that are also of potentially
practical significance.

This paper follows in the footsteps of the preliminary analysis laid out in [Tal, 2012b]. That
work focused on reviewing and comparing between multiple candidates for informativeness based on
simple distribution divergences (e.g. the class of f -divergences), distance metrics (the Mahalanobis
distance) and differentiation measures (the population-genetic FST ) measures, and illuminating the
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drawbacks of each in in the context of a particular set of criteria. Here, we both refine and extend
that set, and focus on information-theoretic and decision-theoretic informativeness measures, which
are frequently invoked in the literature and also utilized in practical inference applications. Existing
approaches for deriving measures for inferring ancestry have mostly focused on single-locus measures,
have not rigorously incorporated the diminishing effects on informativeness of noise resulting from finite
samples, and have not appropriately accounted for the effects of source-population size discrepancies.
Crucially, previous related work has not sought justification in a firm conceptual or mathematically
formal framework.

Our model highlights the important aspects of ancestry informativeness given simplifying assump-
tions on the nature of the genetic data. Theoretical work in population genetics often utilizes haploid
rather than diploid models for the sake of simplified analysis (e.g. [Carja and Feldman, 2012]). We
first consider a model of haploid populations given known allele frequencies from biallelic loci from two
subpopulations with known class priors. The priors represent the discrepancy in source populations
size, an aspect often incorporated in population models ([Rosenberg et al., 2003]; [Rosenberg, 2005]).
Subsequently, sampling considerations enter into the analysis, and we derive enhanced informativeness
measures that reflect more practical research studies.

2 The Population Model

We consider for simplicity a basic model of two haploid populations, denoted P and Q, a set of
biallelic variants from these populations (following [Tal, 2012b]). We denote by Cn an informativeness
measure for ancestry inference across a set of n loci, which captures the information given by a set
of polymorphisms and the knowledge of relative population sizes, and which crucially complies with a
given stipulated set of criteria.

More rigorously, Cn(α, P,Q) is a measure of ancestry informativeness given a set of n biallelic
markers (such as SNPs), where here P and Q are vectors of known allele frequencies (p1, . . . , pn) and
(q1, . . . , qn) from the respective populations, with 0 < pi < 1 and 0 < qi < 1. We (naturally) assume
that pi and qi are true population parameters of polymorphic loci, i.e., each locus in each population is
properly biallelic (the degrading effect of utilizing frequency estimates is introduced at a later section).
A genotype sample of length n from one of the populations is then defined by an ordered sequence of
n polymorphic alleles from the respective population, with a population frequency prescribed by the
corresponding allele frequencies. We conveniently signify complete informativeness by an upper bound
of 1, such that Cn(α, P,Q)→ 1 whenever asymptotically definite classification is inherently possible.

We differentiate between a trivial locus and an uninformative one. The former case involves allele
frequencies that exactly equal between the two populations pi = qi, while the latter case the differ-
entiation at that locus is below a threshold such that there is no contribution to Cn. We shall show
that there exist non-trivial but uninformative loci, i.e. that inclusion of loci with frequency differences
greater than zero does not always contribute to informativeness.

The model includes a population prior α, which is arbitrarily assigned to population P , such that
1−α is the prior of population Q. This prior is interpreted as the probability that a sample belongs to
population P when its genotype is unknown, and simply reflect the known discrepancy in population
sizes, treated from a Bayesian perspective, as in the model of [Rosenberg et al., 2003]. In effect, if
we denote by NX the size of population X, then α = N1/(N1 + N2). Although the full notation is
Cn(α, P,Q), we will interchangeably use Cn for simplicity in notation, where contextually sufficient.

Formally, let X = {0, 1} be a binary variable representing the source populations P and Q respec-
tively where, X ∼ Bernoulli(1− α). Now let Yi = {0, 1} be an allele at biallelic haploid locus i, with
pi = Pr(Yi = 1|X = 0) and qi = Pr(Yi = 1|X = 1) where,

(Yi|X = 0) ∼ Bernoulli(pi), (Yi|X = 1) ∼ Bernoulli(qi)

where the genotype frequencies assuming linkage equilibrium, hk for population P and gk for population
Q, are a simple product of allele frequencies (formulated in a closed-form as in [Tal, 2012b]),

hk =

n∏
i=1

|1− fn(k, i)− pi|, gk =

n∏
i=1

|1− fn(k, i)− qi| (2.1)
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where

fn(k, i) =

⌊
k

2i

⌋
mod 2 (i.e. the ith bit of k)

(e.g., for n = 3, h0 = (1− p1)(1− p2)(1− p3), h1 = p1(1− p2)(1− p3), . . . , h7 = p1p2p3).

2.1 The Criteria for Informativeness Measures

Here we specify a set of criteria for multilocus informativeness with justification stemming from es-
tablished empirical studies and theoretical results, and from basic intuitive reasoning (subsequently
elaborated on in the discussion). This set of criteria are an extended, corrected and refined reformulation
following the preliminary treatment in [Tal, 2012b].
[1] Zero: Cn = 0 if and only if the two populations are virtually the same population, i.e., across n
loci, pi = qi for all i and (implicitly) the prior α = 1

2 . Naturally, under a single class (population) the
classification task becomes void given any set of loci, while at the other hand, any level of population
structure captured by a set of loci should admit some potential for successful assignment.
[2] Performance: Cn should be a monotonic non-decreasing function of n. Informally, each additional
locus should potentially be informative given the set of loci already included in Cn, but never diminish
the aggregated informativeness. This criterion is justified by the phenomenon of asymptotically per-
fect classification which is achievable when effectively utilizing information from the intrinsicly high
dimensional nature of functional data ([Delaigle and Hall, 2012]).
[3] Asymptotics: if allele frequencies at each locus differ between populations by at least ε > 0, where
ε is any predefined value as small as we wish, then Cn → 1 as n → ∞. Informally, with this Cn
an infinite number of loci with even very slight frequency differences between the two populations
induces complete informativeness. This criterion is strongly justified from both empirical studies
([Witherspoon et al., 2007]) with high-sequencing data and from theoretical considerations on separa-
tion in high dimensional spaces ([Edwards, 2003], [Tal, 2012a]).
[4] Neutrality: The inclusion of trivial loci (pi = qi) should not affect Cn, as naturally the two pop-
ulations are not differentiated with respect to such loci. Note that the alleles at such loci are still
polymorphisms within each population, but these polymorphisms occur with (theoretically) equal fre-
quencies.
[5] Continuity: Cn should be continuous in pi, qi and α, , as one would not expect small fluctuations
in allele frequencies at any locus or in population sizes to have large effects on informativeness.
[6] Dominance: for any finite number of loci n, we expect Cn to be maximal if and only if for some
locus i the differentiation is maximal, i.e. δi = |qi−pi| → 1. Informally, any single locus with maximal
allele frequency difference is sufficient for accurate assignment of any genotype: one may simply classify
according to the presence or absence of a given allele at that locus. The ‘if and only if’ assures that (for
any finite n) no other scenario that does not include δi → 1 would result in Cn → 1. The asymptotic
limit (→ 1) here follows from the continuity criterion.
[7] Delta: Overlapping allele-frequency differences should induce a strict ranking among loci. More
precisely, when some locus i has a wider and completely overlapping allele frequency difference compared
to locus k (without loss of generality, pi < pk and qi > qk), then the inclusion of locus i in Cn should
result in higher or equal total informativeness vs. the inclusion of k. Naturally, the contribution to
informativeness of a marker which is both rarer in one population and more common in the other
population – in relation to some other marker – should always be greater.
[8] Invariances: Naturally, we expect Cn to admit to several natural invariances and symmetries: [a]
invariant to different ordering of sequenced loci, i.e., the components of the allele frequency vectors P
and Q may be specified in any order, as long as they remain in synchrony; [b] symmetric with respect
to the two populations, i.e., Cn(P,Q) = Cn(Q,P ); [c] invariant to the arbitrary choice of the alleles to
which we assign the frequency parameters – the simultaneous substitution of pi with (1− pi) in P and
qi with (1− qi) in Q.
[9] Prior: Cn → 1 if α → 0 or α → 1, since if the discrepancy of source population size is extremely
large, the probability for correct assignment should be asymptotically 1, irrespective of the allele
frequency values. In that mostly hypothetical case, one would simply assign any unknown genotype
to the large population. The use of limits here results from the continuity criterion and the framework
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that specifies Cn < 1 and 0 < α < 1.
In formal terms:
Let P = (p1, . . . , pn), Q = (q1, . . . , qn), allele frequencies 0 < pi, qi < 1, population P prior 0 < α < 1.
Cn(α, P,Q), abbreviated Cn(P,Q) or just Cn, should satisfy:

[1] Cn = 0 iff P = Q (∀i pi = qi, α = 1
2)

[2] Cn+1 ≥ Cn
[3] ∀ ε > 0, if ∀i |pi − qi| > ε⇒ lim

n→∞
Cn = 1

[4] pn+1 = qn+1 ⇒ Cn+1 = Cn

[5] Cn is continuous in pi, qi and α
[6] ∀n, Cn → 1 iff |pi − qi| → 1 for some i
[7] If without loss of generality, pn < qn, then for all ε : 0 < ε < 1 − qn, Cn(P, (q1, . . . , qn + ε)) ≥

Cn(P,Q) and for all ε : 0 < ε < pn, Cn((p1, . . . , pn − ε), Q) ≥ Cn(P,Q).

[8] Cn(P,Q) = Cn((pσ(1), . . . , pσ(n)), (qσ(1), . . . , qσ(n))) for all permutation σ ∈ Sn
Cn(α, P,Q) = Cn(1− α,Q, P )

Cn(P,Q) = Cn((p1, . . . , 1− pi, . . . , pn), (q1, . . . , 1− qi, . . . , qn))

[9] lim
α→0

Cn = 1 and lim
α→1

Cn = 1

Obviously, any measure Cn that complies with the set of criteria admits an infinite number of
‘correlated’ measures representing the degrees of freedom of Cn (just as Shannon entropy H has degrees
of freedom represented by a linear factor). Formally, this sense of a correlation between two functions
f and g implies that for any two sets of parameters x and y,{

f(x) > f(y)⇒ g(x) > g(y)

f(x) < f(y)⇒ g(x) < g(y)

It is easy to show that equivalently, this implies the existence of a monotonic function h such that
f = h(g). In terms of our inferential framework, this means that for any two panels of SNPs (along with
corresponding population priors) represented by x and y above, correlated informativeness measures
always admit the same ranking, and one is a monotonic function of the other. In Appendix F we prove
that any measure correlated with Cn also complies with our set of criteria.

2.2 Informativeness based on information-theoretic concepts

A well-known information theoretic measure of shared entropy is the mutual information, also com-
monly interpreted and utilized as a powerful measure of statistical dependency, sensitive also to
nonlinear functional relationships ([Steuer et al., 2002]). The mutual information between an allele
at a single locus and the source population has been explored in the context of feature selection
([Peng et al., 2005]) and ancestry informativeness ([Rosenberg et al., 2003]).

We would like to examine this instantiation of mutual information as a candidate for our Cn. From
basic definitions of mutual information and conditional probability, we utilize our assumption of linkage
equilibrium within each population to express the joint multivariate distributions [Y1, . . . , Yn|X] and
[Y1, . . . , Yn] in terms of the allele frequencies p(yi|X). With the population priors translating into
P (X = 0) = α, P (X = 1) = 1− α, we get (see [Tal, 2012b, Eq. 2]),

I(X; [Y1, . . . , Yn]) =

2n−1∑
k=0

[
αhk log

hk
αhk + (1− α)gk

+ (1− α)gk log
gk

αhk + (1− α)gk

]
. (2.2)

To comply with an upper bound of 1 corresponding to complete informativeness, normalization is
required in the formulation of Cn. The maximal value of this expression of mutual information is
but since H(X) would be the minimum of the two in all non-trivial cases, we may normalize by
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H(X) = −α logα− (1− α) log(1− α),

Cn =
I(X; [Y1, . . . , Yn])

H(X)
.

However, this candidate then fails the zero criterion (since Cn = 0 if pi = qi for all values of prior
α) and most crucially fails the priors criterion, since Cn = 0 instead of 1 as α approaches 0 or 1, as
illustrated in Fig. 1 (correcting Fig. 1B in [Tal, 2012b], which lacks proper normalization). The failure
of the priors criterion is a characteristic of the non-normalized formulation as well, simply since H(X)
is virtually zero at the prior extremes. Therefore, the deficiency exposed here similarly applies to the
non-normalized informativeness for assignment measure, denoted In from [Rosenberg et al., 2003]. We
shall therefore henceforth refer to the mutual information-based informativeness as In.
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Fig. 1: Cn based on (normalized) mutual information fails the priors criterion. In this example, allele frequencies are
p1 = 0.03/q1 = 0.18; p2 = 0.03/q2 = 0.18, p3 = 0.20/q3 = 0.48.

A related information theoretic measure is the variation of information (VI). It has been used as
a criterion for comparing two partitions or clusterings of the same data set, and measures the amount
of information lost and gained in changing from one cluster to another ([Meila, 2007]). The measure
is defined as the difference between the joint entropy and the mutual information, and has the benefit
of being a true metric.

Expressing VI between the population and genotype distributions in terms of our variables and
incorporating the priors we have,

V I(α, P,Q) = −
2n−1∑
k=0

[
(αhk) log(αhk) + (1− α)gk log((1− α)gk)

]

−
2n−1∑
k=0

[
αhk log

hk
αhk + (1− α)gk

+ (1− α)gk log
gk

αhk + (1− α)gk

]
.

(2.3)

As with the previous candidate, we normalize by the maximal value attained by VI, which here is the
joint entropy. Therefore,

Cn =
V I(X; [Y1, . . . , Yn])

H(X,Y1, . . . , Yn)
.

However, this candidate fails the important dominance criterion, irrespective of the normalization
factor chosen (in fact, Cn decreases as the absolute allele frequency difference increases at a locus), as
illustrated in Fig. 2.

Some intuition about the deficiency of mutual information between the class and genotype in
capturing informativeness when population priors are incorporated is gained by noting that mutual
information represents the reduction of uncertainty in one random variable when knowing the other.
Typically, in the ancestry inference framework that occupies us here, this means that I(X;Y ) is the
(average) reduction of uncertainty about the source population X, when knowing the genotype at n loci
Y = [Y1, . . . , Yn]. By symmetry of mutual information, this inevitably also represents the reduction of
uncertainty about the genotype at n loci when knowing the source population X, but since typically
H(Y )� H(X) for n� 1, this reduction in H(Y ) is relatively inconsequential. The absolute amount
of reduction in source population uncertainty strictly depends on the initial amount of its uncertainty,
which is encapsulated by the prior ε. This explains why the priors criterion fails with In: as the prior
approaches the extremes of 0 or 1, H(X) → 0 and consequently the reduction in this quantity also
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Fig. 2: Cn based on the variation of information fails the dominance criterion. In this example the population
parameters are as in Fig. 1.

approaches zero. But this scenario represents virtual certainty about inferring the source population,
such that In should have approached 1 instead. This basic insight is schematically depicted in Fig. 3.
The normalized formulation similarly fails this criterion, since,

lim
α→0

I(X;Y )

H(X)
= lim

α→0

αDKL(P‖Q) + o(α)

α(1− α− logα) + o(α)
= lim

α→0

DKL(P‖Q)

1− α− logα
= 0,

and similarly lim
α→1

I(X;Y )
H(X) = 0.

Fig. 3: The reduction of uncertainty about the source population X, when knowing the genotype Y at n loci.

3 Cn Based on a Naïve Bayes Classifier

The optimal classifier under known class-conditional densities is the Bayes classifier (with class priors)
or alternatively the maximum-likelihood (ML) classifier, where data are classified to the most probable
class. The Bayes error then is the expected error of this classifier, usually under a 0/1 risk function
([Hastie et al., 2009]). Here, we wish to derive a simple formulation of the Bayes error in the context
of our population genetic model. The assumption of linkage equilibrium within each source population
corresponds to within-class stochastic independence, and motivates the use of the popular a naïve
Bayes classifier. The genotype frequencies are then simply the product of population-conditional
allele frequencies across an independent set of loci (as in [Cornuet et al., 1999]; [Phillips et al., 2007];
[Tal, 2012b]). A similar approach for a decision-theoretic informativeness is the multilocus version
of the optimal rate of correct assignment (ORCA) with general priors from [Rosenberg et al., 2003].
From basic definitions, the Bayes error for discrete data from two classes can be expressed as a prior-
weighted sum of probabilities over all instances of the data ([Hastie et al., 2009]). For our framework,
this translates to a sum over the 2n possible genotypes, indexed by k,

En =

2n−1∑
k=0

min(αhk, (1− α)gk), (3.1)
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where the genotype frequencies gk and hk are defined in Eq.(2.1). Since for two classes the Bayes
error is bounded below by 0 and above by 1

2 , a straightforward transformation equivalent to proper
normalization is,

Cn = 1− 2En.

Thus,

Cn = 1− 2

2n−1∑
k=0

min(αhk, (1− α)gk). (3.2)

It is possible to derive an equivalent formulation based on the variational distance, a form of f -
divergence ([Nguyen et al., 2009, section 2.1.1]), with a natural modification to incorporate our priors
(see Appendix A for proof),

Cn =

2n−1∑
k=0

∣∣∣αhk − (1− α)gk

∣∣∣. (3.3)

where the genotype frequencies are again as in Eq. (2.1).
Finally, we would like to produce a general formulation of Cn which separates the classifier function

(denoted here Dk, with corresponding indicator function dk) from the error rate formalism. This will
serve us in subsequent sections for deriving other decision-theoretic forms of Cn. Following Eq. (3.2)
we can write,

Cn = 1− 2

2n−1∑
k=0

(
αhkdk + (1− α)gk(1− dk)

)
, (3.4)

where

dk =

{
1, if Dk > 0

0, if Dk ≤ 0
[the indicator function, dk = 1R+(Dk)]

(in case of equal distances, Dk = 0, we arbitrarily choose to classify to population P ). For the
naïve Bayes, Dk simply compares the genotype probabilities weighed by the priors,

Dk =
n∑
i=1

log
|1− fn(k, i)− qi|
|1− fn(k, i)− pi|

− log
α

1− α
. (3.5)

It is proven in Appendix B that these equivalent formulations of Cn satisfy the complete set of
informativeness criteria.

In fact, it is possible to derive a parametrized family of measures of infinite cardinality, based on
a specific generalization of the variational distance that is also compliant with the full set of criteria
(proof in Appendix G). Formally, denote this family of measures by Ckn, parametrized by the integer
k : 1, . . . ,∞,

Ckn(α,p,q) =
∑
z∈Ink

∣∣∣αhn(p, z)− (1− α)hn(q, z)
∣∣∣

where p = (p1, . . . , pn), q = (q1, . . . , qn), Ik = {0, 1
k , . . . , 1} and

hn(p, z) =

n∏
i=1

(
k

kzi

)
pkzii (1− pi)k(1−zi).

Note that
∑
z∈Ink

hn(p, z) =
∑
z∈Ink

hn(q, z) = 1.

Crucially, it can be shown that for any k, Ckn is qualitatively different or uncorrelated with the
Bayes-based Cn, i.e., is not a monotonic function of it (Appendix H). The compliance of the family of
measures Ckn with all criteria therefore implies that the Bayes-error Cn is not a unique solution in the
context of our axiomatic framework for an informativeness measure.

The benefit of the Bayes-error Cn over any instantiation from the infinite class Ckn derives from the
former’s simplicity in both formulation and computational cost in comparison to the latter. Therefore,
we will henceforth focus our analysis on the simpler formulation.
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We now reveal a core discrepancy of our Bayes-error Cn and the information-theoretic In. We first
demonstrate that Cn and In are not correlated (i.e., no function h exists such that I1 = h(C1)) even
for the most rudimentary case of n = 1 and equal priors. To see this, denote I1 by f(x, y) and C1 by
g(x, y), both a function only of the two allele frequencies x and y at a single locus (setting α = 0.5),
such that,

0 < x, y < 1

f(x, y) =
1− x

2
log

2(1− x)

2− x− y
+
x

2
log

2x

x+ y
+

1− y
2

log
2(1− y)

2− x− y
+
y

2
log

2y

x+ y

g(x, y) = |x− y|.

To prove f and g are not correlated we only need to identify two points (p, q) and (p′, q′) such that
g(p, q) = g(p′, q′) but f(p, q) 6= f(p′, q′). It is easily verified that one such instance is (p, q) = (0.3, 0.1)
and (p′, q′) = (0.3, 0.5). This lack of correlation even for the most rudimentary case strongly implies
non-correlation in the general sense of n ≥ 1. Crucially, simulations indeed indicate many cases of
discrepancy between Cn and In in their ranking for informativeness of particular marker panels and
associated values of the population prior. In such cases, the relative ranking given by Cn or In to these
panels is almost surely prior-dependent (as illustrated by one such typical scenario in Fig. 4).
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Fig. 4: A simulation of one scenario demonstrating the discrepancy (curves intersect at different locations relative
to the prior) between the decision-theoretic Cn and the [Rosenberg et al., 2003] information-theoretic In, as measures
of multilocus informativeness. At a population prior of 0.65 panel A is deemed superior according to Cn (Fig. 4A),
while panel B is deemed superior according to In (Fig. 4B). Both panels consist of 6 SNPs (panel A: 3 loci with allele
frequencies p = 0.03/q = 0.18 and 2 loci with p = 0.20/q = 0.48; panel B: 3 loci with p = 0.30/q = 0.04 and 2 loci with
p = 0.32/q = 0.25).

3.1 Several distinctive properties of the decision-theoretic informativeness

In this section we reveal insightful set of properties of the Bayes-based Cn, which expecially highlight
a unique balance between information originating from the genetic data vs. information attributable
to population size discrepancy, represented by the priors (see Appendix C for the proofs of these
properties).

[a] Loci-subadditivity (w/out priors): The sum of the informativeness of two sequences of loci cannot
be lower than the informativeness of the aggregated sequence,

Cn(P,Q) + Cm(P ′, Q′) ≥ Cn+m((p1, . . . , pn, p
′
1, . . . , p

′
m), (q1, . . . , qn, q

′
1, . . . , q

′
m)),

or put more simply in terms of an ordered lists concatenation operator ||,

Cn(P,Q) + Cm(P ′, Q′) ≥ Cn+m(P‖P ′, Q‖Q′),

For n = m = 1 the strength of this subadditivity (the inequality above) reflects the redundancy in
informativeness within a pair of individual loci. We note that when population priors are incorporated
in Cn, this property no longer necessarily holds.1 We may nevertheless allow for priors by introducing
a correction term |1− 2α|,

Cn(α, P,Q) + Cm(α, P ′, Q′) ≥ Cn+m(α, P‖P ′, Q‖Q′)− |1− 2α|
1A simple counter example for a loci pair is: p1 = 0.24/q1 = 0.18, p′1 = 0.09/q′1 = 0.04 and prior α = 0.51.
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at the expense of overstretching somewhat the meaningful sense of proper subadditivity (see proof in
Appendix C).

[b] Population-subadditivity (w/out priors): Cn complies with a triangle inequality between any
three populations. Formally, for any n loci given three populations P , Q and R,

Cn(P,Q) + Cn(Q,R) ≥ Cn(P,R)

This property affords the interpretation of informativeness as a distance metric between populations,
relative to any given number of loci (n). We note here that (contrary to the erroneous claim in
[Tal, 2012b]) subadditivity does not generally hold with general priors,2

Cn(α, P,Q) + Cn(β,Q,R) ≥ Cn(γ, P,R)

where the three priors are derived from relative population sizes N1, N2 and N3 of P , Q and R
respectively such that, α = N1/(N1 + N2), β = N2/(N2 + N3), γ = N1/(N1 + N3) and thus any two
priors define the third, e.g.,

γ =
αβ

αβ + (1− α)(1− β)
.

[c] Prior-washout: The effect of the prior is washed out with additional loci; i.e., the effect on infor-
mativeness from the consideration of population priors generally diminishes with more loci. Formally,
the range for Cn as a function of α (0 < α < 1) never increases with n → n + 1, i.e. the minimal
value of Cn(α) increases or is unchanged (note this does not imply that for any two priors and any n,
|Cn+1(α1)−Cn+1(α2)| ≤ |Cn(α1)−Cn(α2)|). Moreover, asymptotically with n the prior is completely
washed out becoming uninformative.

[d] Prior-sensitivity: Cn as a function of the prior α is convex and the minimum is unique almost
surely (and Cn is not necessarily minimal at α = 1

2). This means that Cn is always sensitive to
fluctuations in the prior.

[e] Prior-dominance: There is a particular asymmetric balance between information stemming from
the population priors and information from the genetic markers. For any given allele frequencies at
n loci, there exist thresholds for prior disparity, beyond which the information provided by the priors
eclipses the information provided by genetic markers. At that level of disparity and beyond, Cn [a]
is only a function of the prior α, [b] is insensitive to small fluctuations of allele frequencies, and [c] is
ultimately unaffected by the exclusion of any or all n loci. In consequence, for any panel of markers
there always exists a level of prior disparity (as a function of the allele frequencies) beyond which an
effective classifier may ignore the given genotype sample, simply assigning it to the population with
the larger prior.

[f] Uninformative-loci: There always exists some such that the inclusion of an extra locus with an
allele frequency difference does not change Cn.3 Formally, for any P and Q with n loci, and for any
prior α, without loss of generality,

∀p, ∃ε > 0 such that Cn+1((p1, . . . , pn, p), (q1, . . . , qn, p+ ε)) = Cn(P,Q).

We would next like to inquire whether a formulation of Cn based on the error rate of any valid
classifier may also satisfy our axiomatic framework, or perhaps not all classifiers are equivalent in this
sense.

4 Cn based on a Nearest Centroid (NC) Classifier

Whereas a Bayes classifier is based on the probability of observing a given genotype in a target popula-
tion, distance methods assign a genotype to the “closest” population ([Liao et al., 2009], [Degen et al., 2017]).
In particular, we will require a genetic distance metric adopted as a measure between an individual
and a population, or rather, the population genetic centroid. Importantly, these centroids are unique

2e.g., n = 1, p = 1/4, q = 1/2, r = 3/4, α = 2/5, β = 3/5, γ = 1/2. In general, for higher dimensions such failure may
occur with qi = (piri)

1/2, β = 1− α, γ = 1/2; e.g., n = 3; pi = 0.7; ri = 0.95; qi = (piri)
1/2, α = 0.45, β = 0.55, γ = 1/2.

3e.g., the 3rd locus here is uninformative: p1 = 0.02/q1 = 0.24, p2 = 0.2/q2 = 0.1, p3 = 0.1/q3 = 0.25 with α = 0.7.
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- defined irrespective of the distance measure one employs, and irrespective of the presence or absence
of LD in the data or model.

In practical settings, the centroids are learned from the training data of m individual samples,
x1, . . . , xm and computed using a simple arithmetic average: M = (x1 + · · · + xm)/m, (simulated
in Fig. 5) or in terms of our model, M = [E(Y1|X), . . . , E(Yn|X)] such that, M1 = (p1, . . . , pn) and
M2 = (q1, . . . , qn).

Fig. 5: A 3−dimensional hypercube depiction of samples of three-locus genotypes from two haploid biallelic populations,
and their centroids (blue and green). Each sphere at a vertex is an individual sample defined by alleles (a and A) at three
loci; the small spheres represent population means. 80 samples from each population were randomly drawn from two
populations with linkage equilibrium in each; allele frequencies are p1 = 0.2/q1 = 0.4; p2 = 0.1/q2 = 0.3; p1 = 0.3/q2 =
0.5.

The distance between any genotype xk, defined here as the k−th coordinate in {0, 1}n, and centroid
M1 depends on the distance metric we chose to employ. Using a Euclidean metric,

‖x− y‖2 =

√√√√ n∑
i=1

(xi − yi)2

the distance to the centroid is,

dist(xk,M1) =

√√√√ n∑
i=1

(1− pi)2fn(k,i)p
2(1−fn(k,i))
i =

√√√√ n∑
i=1

(fn(k, i)− pi)2

where as before, fn(k, i) := the ith bit of k. Alternatively, using a Manhattan distance or L1 norm,

‖x− y‖ =

n∑
i=1

|xi − yi|

and the distance to the centroid would be,

dist(xk,M1) =
n∑
i=1

(1− pi)fn(k,i)p
1−fn(k,i)
i =

n∑
i=1

|fn(k, i)− pi|.

In the context of a genotypic space, the L1 norm is equivalent to the allele-sharing-distance (ASD).
and is therefore more appropriate for our framework than the Euclidean, and we therefore confine our
development to the former (the Euclidean distance is the square root of the ASD only for distances
between genotypes but not for distances to centroids). The classifier term is then simply a difference of
the distances of a genotype to the two centroids, i.e.,

dist(xk,M1)− dist(xk,M2),
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Dk =
n∑
i=1

|fn(k, i)− pi| −
n∑
i=1

|fn(k, i)− qi|.

However, Cn based on such classifier does not comply with the crucial dominance criterion for any
n ≥ 3, as illustrated by counter-example in Fig. 6.

A B

Fig. 6: The dominance criterion fails for Cn based on a nearest-centroid classifier (allele frequencies p1 = 0.8/q1 =
0.4, p2 ≈ 0/q2 ≈ 1, p3 = 0.2/q3 = 0.8). | A: A hypercube representation of a 3−loci scenario with 40 samples from each
population; although there is complete separation along one dimension (p2 = 0, q2 = 1), some vertices may be wrongly
classified (genotype A1A2a3 is closer in both L1 and L2 to the mean of the blue population, despite belonging to the
green population). | B: Cn < 1 despite reaching complete frequency divergence at locus #2 (p2 ≈ 0, q2 → 1).

The underlying problem is that the L1 metric does not take into account the variances of the
genotype distribution of each population along the direction from any genotype to its population
centroid. To overcome this issue, we use normalization that captures the distance to the mean in units
of standard deviations, as in [Liao et al., 2009] and [Patterson et al., 2006]. In a Euclidean space, the
Mahalanobis distance is the distance of a test point to the centroid divided by the width of the ellipsoid
in the direction of the test point ([Hastie et al., 2009]), given by a variance-covariance matrix Σ. In
terms of the distance of a binary vector x to mean vector µ,

distMahal(x, µ) =
√

(x− µ)tΣ−1(x− µ)

Similarly, we define a corresponding ASD-Mahalanobis (ASD-M) distance,

distASD−M (x, µ) =
∥∥∥(x− µ)t

√
Σ−1

∥∥∥
1

The assumption of linkage equilibrium implies a diagonal covariance matrix (comprising only variances)
so that the distance of xk to M1 for our two metrics is,

distASD−M (xk,M1) =

n∑
i=1

(1− pi)fn(k,i)p
1−fn(k,i)
i√

pi(1− pi)
=

n∑
i=1

|fn(k, i)− pi|√
pi(1− pi)

such that our classifier function Dk is

Dk =

n∑
i=1

|fn(k, i)− pi|√
pi(1− pi)

−
n∑
i=1

|fn(k, i)− qi|√
qi(1− qi)

. (4.1)

Finally, we would like to incorporate the class priors into our classifier function Dk. Since priors do
not naturally enter a distance classifier as they do a Bayesian posterior, we approach this problem by
reformulating the expression of Dk for the Bayes and NC classifiers in a similar fashion. The Bayes
classifier from Eq.(3.5) can be reformulated as,

Dk =

n∑
i=1

[
fn(k, i)(log qi − log pi) + (1− fn(k, i))(log(1− qi)− log(1− pi))

]
− log

α

1− α
,
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whereas the NC classifier from Eq. (4.1) as,

Dk =
n∑
i=1

[
fn(k, i)

(1− pi
pi

− 1− qi
qi

)
+ (1− fn(k, i))

( pi
1− pi

− qi
1− qi

)]
.

From this we derive the function that best reflects the effect of the prior as − log α
1−α .

Interestingly, this alternative formulation ofDk provides insight into why different classifiers deviate
from the optimal Bayesian, at least for multidimensional binary distributions; in the case of the NC
classifier, this is due to

√
1−pi
pi

being only a rough approximation of − log pi.

Finally, the we transform the resulting error rate to an expression for Cn as in Eq. (3.4),

Cn = 1− 2

2n−1∑
k=0

(
αhkdk + (1− α)gk(1− dk)

)
, (4.2)

dk =

{
1, if Dk > 0

0, if Dk ≤ 0

Dk =

n∑
i=1

|fn(k, i)− pi|√
pi(1− pi)

−
n∑
i=1

|fn(k, i)− qi|√
qi(1− qi)

− log
α

1− α

where the genotype frequencies are as in Eq. (2.1).
Nevertheless, despite the use of a normalized metric in the NC classifier, the distance-based Cn does

not comply with all required criteria (see Appendix D). We briefly remark here that this deficiency is
most probably a characteristic of many other non-optimal classifiers. For instance, we have examined
a simple information-theoretic classifier based on the notion of typical sequences from [Tal et al., 2017].
Using a closed-form formulation of the error rate of the cross-entropy classifier (their Appendix A.2)
and allowing for class priors, it is easy to show by counter example that at least two of our criteria are
not met: the performance criterion (e.g. pi = 0.1/qi = 0.3 fails at n = 5) and the neutrality criterion
(e.g. pi = 0.03/qi = 0.2, n : 1 . . . 6 and pi = 0.1/qi = 0.1 for n > 6 fails at n = 11).

5 Sampling Effects

Our information measure has been defined parametrically, from the underlying properties of geno-
type distributions across two populations. In practice, however, researchers employ estimates made
from sampled data rather than parametric allele frequencies. Simulations of a variety of classifica-
tion methods on genetic data show that performance is always degraded with smaller population
samples, most notably given low values of differentiation ([Cornuet et al., 1999]; [Rosenberg, 2005];
[Tal, 2012a]). Nevertheless, there is information available for classification under these more restrictive
circumstances, which we would like to quantify.

The test error, also referred to as generalization error, is the prediction error over an independent
test sample. Here the training set is fixed, and test error refers to the error for this specific training set.
A related quantity is the expected prediction error (or expected test error). In practice, estimation of
test error conditional on a particular training set is in general difficult, given just the data from that
training set. Instead, cross-validation and related methods may provide reasonable estimates of the
expected test error ([Hastie et al., 2009]). We therefore extend the information measure to encompass
these limiting circumstances.

Denote by Cn,m the informativeness under a sampling scenario, effectively an expectation over all
training samples of size m, where m = {m1,m2} indicates sample sizes from the two populations.
The introduction of this sampling framework calls for a new set of criteria, which are formulated in
reference to Cn to replace the existing criteria.

[1*] Sampling-Effect: For any sample size m, Cn,m ≤ Cn. This requirement is justified by established
observations and theoretical results on reduced classification performance with smaller samples (e.g.,
[Cornuet et al., 1999]; [Rosenberg, 2005]).
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[2*] Sampling-Convergence: As sample size m increases Cn,m → Cn. This requirement is justified by
common observations on the effect of increasing sample size ([Cornuet et al., 1999]; [Rosenberg, 2005]),
also motivated from the efficiency quality of any estimator – approaching the underlying parameter
being estimated with a probability approaching one as the sample size becomes large.

The introduction of sampling effects requires a reformulation of Cn that distinguishes frequency
estimates from the parametric frequencies. Essentially, the former are used in the expression for the
classifier, while the latter are used in the expectation of the conditional error and thus we express
a classifier module that is separate from the averaging process. Instead of the misclassification rate,
we require a conditional test error - the expected error of a classifier over an independent training
sample, and the expected test error or the generalization error - an average over all training samples
of size m ([Hastie et al., 2009]). Our goal is to express the expected test error for the Bayesian and
nearest-centroid classifiers in closed form.

Letm1 andm2 denote given samples size from the two haploid biallelic populations. Letmi
1 andmi

2
be the average number of allele ‘A’ in locus i over all training samples of size m1 and m2 respectively.
The maximum likelihood estimator (MLE) of the true allele frequencies is an unbiased estimator,4

p̄i = MLE(pi) = mi
1/m1 = pi

q̄i = MLE(qi) = mi
2/m2 = qi.

The distributions of the sample mean (allele frequency estimates) Xi and Yi for populations P and Q
respectively, are binomial,5

f(Xi = j) =

(
m1

jm1

)
pjm1
i (1− pi)m1(1−j)

f(Yi = l) =

(
m2

lm2

)
qlm2
i (1− qi)m2(1−l)

for j = 0,
1

m1
, · · · , 1 l = 0,

1

m2
, · · · , 1.

(5.1)

The expected test error under all training samples of size m = {m1,m2} is the expectation with respect
to the sampling distribution of the allele frequencies of the conditional test error cn(X,Y ), which is
conditional on a particular sample of size m of frequency values X and Y ,

Cn,m = Ecn(X,Y ) =
1∑

X1=0

· · ·
1∑

Xn=0

1∑
Y1=0

· · ·
1∑

Yn=0

(
cn

n∏
i=1

f(Xi)f(Yi)

)
(5.2)

where cn follows the general formulation in Eq. (3.4),

cn = 1− 2

2n−1∑
k=0

(
αhkdk + (1− α)gk(1− dk)

)
, (5.3)

dk =

{
1, if Dk > 0

0, if Dk ≤ 0

And where the classifier compares genotype sample probabilities given a particular sample, following
the Bayes classifier formulation of Eq. (3.5),

Dk =
n∑
i=1

log
|1− fn(k, i)− Yi|
|1− fn(k, i)−Xi|

− log
α

1− α

where hk, gk, fn(k, i) are defined in Eq. (2.1).
4It is also possible to use a proper Bayesian approach for estimating allele frequencies, with Beta priors at each SNP

locus, as in [Rannala and Mountain, 1997, Eq. 5].
5In simulating Cn,m we replace allele frequency estimates of zero with a small constant, 1/(m+1), a common procedure

to avoid zero genotype frequencies ([Rosenberg, 2005]; [Phillips et al., 2007]).
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Cn,m indeed complies with the two new criteria (see Appendix E for proof).

6 Discussion

Much of the work on elucidating factors contributing to the informativeness of genetic markers for
ancestry inference had focused only on a small number of core factors, namely, higher informative-
ness with additional loci, with wider source population divergence, and with a larger population
sample size in the learning phase ([Estoup and Angers, 1998]; [Cornuet et al., 1999]; [Edwards, 2003];
[Rosenberg et al., 2003]; [Wang, 2006]; [Witherspoon et al., 2007]; [Ding et al., 2011]; [Tal, 2012a]; [Tal, 2012b]).
A central goal of this paper was to provide a formal grounding for an effective decision-theoretic mea-
sure compliant with an extended set of such factors framed axiomatically at the outset, subsequently
revealing a host of novel intrinsic properties of both theoretical importance and practical relevance.
Although one normally proceeds by explicitly deriving a measure from a set of axioms, we were con-
strained by the sheer cardinality of this set, adopting a top-down approach instead: demonstrating that
a prospective informativeness measure adheres to all criteria. Naturally, in any axiomatic framework
one strives to include some minimal set of consistent and independent criteria, such that no criterion
contradicts nor logically follows from a combination of others ([Rodin, 2014]). The consistency of our
framework follows in retrospect from the demonstration of at least one candidate in full compliance
(the Bayes-based Cn). The independence aspect is harder to make formal but should be sufficiently
intuitively captured from the basic formulations.

The information-theoretic measure

Mutual Information based measures have been widely used in both feature selection ([Battiti, 1994];
[Last et al., 2001]; [Grall-Maes and Beauseroy, 2002]; [Huang and Chow, 2005]; [Huang and Rong, 2009]),
most effectively exemplified in the Max-Dependency principle ([Peng et al., 2005]), and in deriving an-
cestry informativeness measures ([Rosenberg et al., 2003]). The information-theoretic approach has
origins more generally in the infomax principle, where a subset of features Yθ should be chosen so that
the mutual information between the features and the class label X, I(Yθ;X), is maximized (equiva-
lently, that the conditional entropy H(X|Yθ) is minimized). Some formal justification for the relevance
of this principle to classification tasks is given by Fano’s inequality, which relates the conditional
entropy between the source and destination in a communication channel to the transmission error
([Zhao et al., 2013]). As a result, mutual information can be used to express both an upper and lower
bound for the Bayes error rate ([Brown et al., 2012]).

Nevertheless, much of the justification for employing mutual information in ancestry informative-
ness or feature selection is simply based on its usefulness in practice. For instance, [Peng et al., 2005]
utilize a multivariate mutual information for feature selection since “minimal error usually requires the
maximal statistical dependency of the target class c on the data distribution in the subspace Rm (and
vice versa)”. This approach is effectively epitomized by a recent analysis of filters for feature selection,
where the authors explain that “an intuitive [filter] J would be some measure of correlation between
the feature and the class label–the intuition being that a stronger correlation between these should
imply a greater predictive ability when using the feature” ([Brown et al., 2012]).

Here we have shown that multilocus ancestry informativeness measures based on mutual infor-
mation that also account for population priors (such as the multilocus version of In proposed in
[Rosenberg et al., 2003]) do not properly incorporate the information available from such priors. In
the context of our axiomatic framework, this amounts to non-compliance with the priors criterion,
which requires any measure of informativeness to approach its maximum when priors approach their
extremes (reflecting a high discrepancy in source population sizes). This is of significance since in-
formativeness ultimately represents the value of information given by the data (loci and priors) that
an effective classifier can utilize in making correct inferences. In essence, it is a proxy for the perfor-
mance of effective classifiers in a given setting, the level of certainty they can achieve. Indeed, we have
shown that the decision and information theoretic measures may give different relative rankings to
SNP panels under certain values of the priors. This ranking discrepancy is incongruent with the claim
in [Rosenberg et al., 2003] that ORCA (analogous to our Bayes-based Cn) and In are highly correlated
and produce similar estimates of panel ranking so that one ‘can proceed using only one statistic’. This
is most likely a consequence of our focus here on multilocus rather than single-locus informativeness,
along with the incorporation of population priors. Indeed, numerical simulations indicate that the
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ranking discrepancy between Cn and In is accentuated with a larger panel size (n) and with greater
inequality in population priors – a rigorous analysis of which is not further pursued here and is left for
future work.

Properties of Cn

We have revealed properties of the Bayes-based Cn that broadly pertain to two important aspects of
this measure: subadditivity across loci and populations, and an interplay of information between the
prior and the genetic variants. The loci-subadditivity property, which compares the sum of informative-
ness of two genetic sequences to that of the aggregated sequence, can be viewed as a generalization of a
theorem by [Gattepaille and Jakobsson, 2012] on the informativeness of two-locus haplotypes of bial-
lelic markers in the absence of linkage disequilibrium within populations. These authors were concerned
with the effect of LD on the strength and sign of the gain of informativeness for assignment (GIA),
a term they used to describe as similar inequality as above, utilizing the mutual information based
In of [Rosenberg et al., 2003], concluding that “although there are a number of predictable behaviors
of GIA–such as that GIA ≤ 0 when markers are in linkage equilibrium and that GIA is often large
for cases where private alleles exist–GIA is not a trivial function of LD or allele frequencies”. Their
primary motivation was to use this statistic as a heuristic for deciding whether to combine SNPs into
haplotypes for improved accuracy in population assignment schemes, specifically targeting that part
of LD that is due to physical linkage in the genomes, i.e., to handle the issue of having markers close
along a chromosome (a type of data is typically pruned before further use in assignment schemes).

The population-subadditivity property allows interpreting Cn as a distance metric between popu-
lations relative to any given number of loci. By definition, a metric on a set X is a distance function
d : X × X → R that satisfies four conditions: d(x, y) ≥ 0 (the non-negativity of informativeness),
d(x, y) = 0 if and only if x = y (the zero criterion), d(x, y) = d(y, x) (the invariances criterion for
class symmetry) and d(x, z) ≤ d(x, y) + d(y, z) (this population-subadditivity property). This feature
of Cn is in stark contrast to standard differentiation measures such as FST which are not metrics (see
[Tal, 2013] for analysis of several population genetic distances).

The prior-washout property describes the diminished effect of the population prior as additional
loci are included in Cn. Although this phenomenon is a direct consequence of the performance cri-
terion, we have chosen to separately highlight it since it offers another perspective on the balance
between the informative roles of the population prior vs. the genetic variants. For Bayesian classi-
fiers, the washout effect also emerges from taking an information-theoretic perspective, by utilizing the
asymptotic equipartition property (AEP) of relative entropy typical sets ([Cover and Thomas, 2006, p.
388]).

The interplay between the effects of the population prior vs. that of the genetic variants on our Cn
is most sharply exemplified by the prior-sensitivity, prior-dominance and uninformative-loci properties.
We have shown that while Cn is always sensitive to fluctuations in the prior, there are cases (which we
characterize in detail in the proofs) where an additional locus is uninformative (i.e., Cn is invariant)
given any value of the prior; and more surprisingly, we show that for any given set of loci, prior
extremities beyond certain thresholds (determined by allele frequencies at these loci, Eqs. (C.2), (C.3)
in Appendix C) render the information from the loci completely redundant for the assignment task. At
this range of high disparity of population size, informativeness is only a function of the priors, with
the consequence that effective classifiers may then simply assign unknown genotypes to the largest
source population (as evidenced by the prior and likelihood terms of the log-posterior ratio of a Bayes
classifier).

Feature Selection

Searching for the best m features out of the n available for the classification task is known to be a
NP -hard problem and thus exhaustive evaluation of possible feature subsets is usually unfeasible in
practice due to the large amount of computational effort required ([Huang and Rong, 2009]). This is
why single-locus rather than multilocus based heuristics are common ([Rosenberg, 2005]). While Cn
is not intended as a metric or heuristic for implementing feature selection schemes as it is inherently
multilocus in nature, it could still be employed for related tasks. Primarily, it can be used for comparing
between a small number of given SNP panels, for verification subsequent to a standard feature selection
task. Moreover, the delta criterion implies the possibility of ranking single loci for their contribution
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to an already existing panel in the particular case where a subset of loci has completely overlapping
population frequency differences. We emphasize in this context that it is generally not possible to rank
loci for their contribution to total informativeness, due to their interdependence and redundancies.
Indeed, it has long been recognized in feature selection that combinations of individually good features
do not necessarily lead to good classification performance. In other words, selecting the loci that are
individually most informative does not necessarily produce the optimal panel, or more compactly put,
“the m best features are not the best m features” ([Peng et al., 2005]).

In the context of feature selection, it is common to make a distinction between filter and wrapper
methods. Filter type methods select variables regardless of the classification model, and are based
only on general principles like a correlation of features with the predicted variable. Such methods are
particularly effective in computation time for a large set of features, and in robustness to overfitting
when the number of observations is small. In contrast, a wrapper is a feature selector that convolves
with a classifier (e.g., naive Bayes classifier), with the direct goal of minimizing the classification error
of that particular classifier. Usually, wrappers can yield high classification accuracy for a particular
classifier at the cost of high computational complexity and less generalization of the selected features
on other classifiers.

While Cn has features of both filters and wrappers, it is more appropriately categorized as a
wrapper, since it incorporates multiple features and has an explicit relation to the classification model
(essentially derived from a classifier error rate). In this context is worth noting that our Bayes-error
based Cn is not prone to overfitting since it effectively uses an infinite training sample (i.e., it is
parametrized by underlying allele frequencies). Moreover, the finite-sample Cn,m also does not suffer
from overfitting as it employs estimates of single SNP frequencies, rather than multilocus genotype
frequencies.

Estimation from finite samples

Previous work on incorporating finite population samples in ancestry informativeness measures and in
panel selection had proceeded by simply replaced true allele frequencies with sample frequencies in the
informativeness measure. This approach, however, cannot provide general insight to the diminished
informational content due to working with frequency estimates (e.g., [Rosenberg et al., 2003] in their
Bayes-based ORCA and mutual information-based In for both the single- and multilocus formulations;
see [Sampson et al., 2011] for a discussion of this issue). While this approach is may be appropriate
in the context of practical feature selection schemes based on particular training samples, it does not
convey the intrinsic degrading effect on informativeness resulting from finite samples. Closer to our
approach is the analysis in [Rosenberg, 2005] of a performance function for panel selection, which proves
(Theorem 7) a result akin to our sampling-convergence criterion of Cn,m for the Bayes-based ORCA
statistic computed by simulation using sample allele frequencies. However, this result only captures
the conditional test error, whereas we target the expected test error – an expectation of the former
over all possible samples of size m. That treatment also includes a performance result characterizing
the effect of additional loci (Corollary 8 of Theorem 7) given some minimal sample size threshold – an
analysis which we do not undertake here for Cn,m.

Distance-based Methods

We have also analyze a simple distance-based classifier and derived a model of its error rate to see
whether other effective classifiers can serve as a basis for informativeness. The construction of a nearest-
centroid classifier for the high-dimensional discrete genetic data has revealed that simple genetic metrics
such as the allele sharing distance do not take into account the variance-covariance matrices of the
distribution of genotypes of each population (theoretically, if the centroids lie on opposite vertices of the
hypercube genotype space, the classifier may associate up to 2(n−2) vertices to the ‘wrong’ centroid).
Such metrics effectively ignore the width of the distributions in the direction of individual to population-
mean comparison. This issue probably explains the weak performance of the misclassification rate Cc
from Fig. 2 in [Witherspoon et al., 2007], with data from low MAF sites (“rare” alleles, MAF < 0.1).
Nevertheless, other treatments have ignored this issue, e.g., [Degen et al., 2017] who use a k-Nearest
Neighbor (k-NN) algorithm for classification to one of a collection of source populations based on
simple pairwise individual allele-sharing distance.

To overcome this issue, we developed a normalization akin to a Mahalanobis distance adopted to
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the discrete nature of the genetic space. In a Euclidean space, the Mahalanobis distance is the distance
of a test point to the centroid divided by the width of the ellipsoid in the direction of the test point
([Hastie et al., 2009]) and is normally applied within classification techniques such as the k-Nearest
Neighbor (k-NN) or linear and quadratic discriminant analysis (LDA, QDA). The use of a Mahalanobis
distance is common procedure in classification schemes involving continuous gene expression data.
[Dudoit et al., 2002] have also implemented similar normalization for nearest-centroid classification of
gene expression profiles, using Diagonal linear discriminant analysis (DLDA). However, their model
is different in a few crucial respects from our model: they assume normality of the underlying data
distributions and equal class densities. A similar approach was adopted in [Tibshirani et al., 2002,
Tibshirani et al., 2003] describing a method of classifying gene expression test samples according to
closest shrunken centroids, also standardizing by variance estimates.

An approach that bears a stronger resemblance to our SNP distribution model is described in
[Patterson et al., 2006]. The paper describes an application of PCA for genetic biallelic data using
standardized distances. Each entry in the PCA matrix is normalized by the variance of C(i, j), the
number of occurrences of the MAF allele for locus j from individual i. The authors report that “We
verified (unpublished data) that the normalization improves results when using simulated genetic data,
and that on real data known structure becomes clearer.” Even closer to our distance-approach is the
work of [Liao et al., 2009] which introduces a classifier for SNP data genotypes with distance normal-
ization by variance and a similar correction for population priors via a logarithmic term. However,
since it employs a shrinkage centroid deriving a simple expression for its error rate would be hardly
feasible.

The naïve Bayes classifier upon which Cn is formulated derives multilocus genotype frequencies
under an implicit assumption of linkage equilibrium (LD). Indeed, we would not normally expect to
see linkage disequilibrium within distinct populations, except between markers that are in close prox-
imity (physical linkage, pruned in common preprocessing procedures) or in cases of recent admixture
([Pritchard et al., 2000]). At a population level, admixture manifests as LD between markers reflecting
a shared history of descent, and invalidating the independence assumption. Haplotype based analysis
was devised to potentially harness this information ([Lawson et al., 2012]). A possible approach for
extending our model for ancestry informativeness to take advantage of information from LD that exists
in structured populations, might involve including variance-covariance matrices that specify pairwise
LD estimates for normalization in an NC classifier, instead of the diagonal covariance matrices. This
extension is left for future work.

Conclusion

In this paper we have taken an axiomatic approach to select a measure for ancestry informativeness. We
have shown that a measure based on an optimal Bayes classifier complies with the full set of proposed
criteria, in contrast to a popular measure based on mutual information. The core deficiency of the
information theoretic approach is in properly incorporating the information available from population
priors. This is exemplified in decision and information theoretic measures providing different relative
rankings to SNP panels under certain population priors. The measure based on a Bayes error was
moreover shown to possess several surprising properties which characterize the interplay between in-
formation originating from the priors and the genetic markers. We have also analyzed a distance-based
classifier adopted to discrete high-dimensional population genetic data, as an instance of an effective
classifier which nevertheless cannot form a basis for satisfactory multilocus ancestry informativeness
measure. Finally, we have extended the framework to formally quantify the inherent degrading effect
on informativeness from using finite population samples in the learning phase.
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Appendix A The relation between the Bayes error and some gener-
alization of the variational distance

A.1 The relation

Here we develop a proof for the general case of unequal priors. It is required to show that,

2n−1∑
k=0

|αhk − (1− α)gk| = 1− 2

2n−1∑
k=0

min{αhk, (1− α)gk} (A.1)

where,

0 < α < 1,
2n−1∑
k=0

hk =
2n−1∑
k=0

gk = 1, hk, gk > 0.

Proof. In fact, we note that |x− y| = x+ y − 2 min{x, y} for all x, y. Therefore

2n−1∑
k=0

|αhk − (1− α)gk| =
2n−1∑
k=0

(
αhk + (1− α)gk − 2 min{αhk, (1− α)gk}

)
= α

2n−1∑
k=0

hk + (1− α)

2n−1∑
k=0

gk − 2

2n−1∑
k=0

min{αhk, (1− α)gk}

= 1− 2

2n−1∑
k=0

min{αhk, (1− α)gk}.

A.2 Other representations of Cn

Reminder:

Cn =
2n−1∑
k=0

|αhk − (1− α)gk| [Eq. (3.3) in the main text], or,

Cn = 1− 2
2n−1∑
k=0

min{αhk, (1− α)gk} [Eq. (3.2) in the main text]

where,

hk =

n∏
i=1

|1− fn(k, i)− pi|, gk =

n∏
i=1

|1− fn(k, i)− qi|

and fn(k, i) is the ith bit of k in its binary form.
To simplify the proofs, we also use another representation of Cn

Cn(α, P,Q) =
∑
z∈In
|αFn(p, z)− (1− α)Fn(q, z)| (A.2)

where In = {0, 1}n and Fn(p, z) =
n∏
i=1

pzii (1− pi)1−zi , Fn(q, z) =
n∏
i=1

qzii (1− qi)1−zi .

Proposition 1. The Eq. (A.2) is equivalent to the Eq. (3.3).

Proof. In fact, we have an isomorphism between each k = 0, . . . , 2n−1 and one corresponding element
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z(k) = (z
(k)
1 , . . . , z

(k)
n ) ∈ In with z(k)

i = fn(k, i). Moreover, we have

Fn(p, z(k)) =

n∏
i=1

p
z
(k)
i
i (1− pi)1−z(k)i =

n∏
i=1

p
fn(k,i)
i (1− pi)1−fn(k,i) =

n∏
i=1

|1− fn(k, i)− pi| = hk

and similarly Fn(q, z(k)) = gk. This implies the proof.

Remark 1. From Eq. (A.1) and Eq. (A.2) imply

Cn = 1− 2
∑
z∈In

min{αFn(p, z), (1− α)Fn(q, z)}. (A.3)

To simplify the proofs, we will use all four these representations of Cn (i.e. (3.2), (3.3), (A.2),
(A.3)).

Appendix B Proof of compliance of Bayes Cn with all criteria

[1] Zero: (⇐): If P = Q (i.e. pi = qi, ∀i = 1, . . . , n) and α = 0.5 then we have Fn(p, z) = Fn(q, z) for
all z ∈ In. Thus from Eq. (A.2), and since the sum of all genotype frequencies from a single population
is 1,

Cn =
∑
z∈In
|αFn(p, z)− (1− α)Fn(q, z)| = |α− (1− α)|

∑
z∈In

Fn(p, z) = |2α− 1| = 0.

(⇒): Conversely, we need to show that Cn = 0 implies P = Q (i.e., pi = qi, ∀i = 1, . . . , n) and
α = 0.5. First, notice that if Cn = 0 then trivially each summand of Eq. (A.2) must be zero, i.e.
αFn(p, z) = (1 − α)Fn(q, z), ∀z ∈ In. By summing for all z ∈ In we have α = 1 − α or α = 0.5.
Therefore Fn(p, z) = Fn(q, z), ∀z ∈ In. Denote by ∂1

i I
n := {z ∈ In : zi = 1}. Then we have for

every i = 1, . . . , n

pi =
∑

z∈∂1i In
Fn(p, z) =

∑
z∈∂1i In

Fn(q, z) = qi.

[2] Performance: See proof in [Tal, 2012b, Appendix B.1], and Fig. B.1 for illustration.
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Fig. B.1: Cn based on Bayes error complies with performance. Shown are two cases corresponding to different class
priors, with allele frequencies p1−12 = 0.1/q1−12 = 0.3, p13 = 0.05/q13 = 0.3, p14 = 0.24/q14 = 0.2, p15 = 0.01/q15 = 0.15.

[3] Asymptotics: See proof in [Tal, 2012b, Appendix B.2], and Fig. B.2 for illustration.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 29, 2018. ; https://doi.org/10.1101/273466doi: bioRxiv preprint 

https://doi.org/10.1101/273466
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Number of Loci

In
fo
rm
at
iv
en
es
s
C
n

Rare SNPs

Common SNPs

Fig. B.2: Cn based on Bayes error complies with asymptotics. Two cases are shown (using Monte Carlo simulations),
common (p1 = 0.2/q1 = 0.45) and rare (p1 = 0.02/q1 = 0.12) SNPs and prior α = 0.4.

[4] Neutrality: We need to prove that Cn = Cn+1 if pn+1 = qn+1. In fact, by denoting z̄ = (z, zn+1), p̄ =
(p, pn+1), q̄ = (q, qn+1), we have

Cn+1 =
∑

z̄∈In+1

|αFn+1(p̄, z̄)− (1− α)Fn+1(q̄, z̄)|

=
∑
z∈In

( ∑
zn+1∈I

|αFn(p, z)p
zn+1

n+1 (1− pn+1)1−zn+1 − (1− α)Fn(q, z)q
zn+1

n+1 (1− qn+1)1−zn+1 |

)

=
∑
z∈In

(
|αFn(p, z)pn+1 − (1− α)Fn(q, z)qn+1|+ |αFn(p, z)(1− pn+1)− (1− α)Fn(q, z)(1− qn+1)|

)

=
∑
z∈In

(
|αFn(p, z)− (1− α)Fn(q, z)|pn+1 + |αFn(p, z)− (1− α)Fn(q, z)|(1− pn+1)

)
=
∑
z∈In
|αFn(p, z)− (1− α)Fn(q, z)| = Cn.

(B.1)

[5] Continuity: From Eq. (A.2), Cn is a sum of absolute values of continuous functions and therefore
has no singularities, and since pi, qi and α are real-valued parameters, Cn is continuous with respect
to its parameters.
[6] Dominance: (⇒) We need to prove that for a fixed n and some fixed α ∈ (0, 1), if there exists
i ∈ {1, . . . , n} such that |qi − pi| → 1 then Cn → 1. In fact, without loss of generality we assume that
pn → 0 and qn → 1. We note that

• If zn 6= 0 then pznn (1− pn)1−zn → 0 and then Fn(p, z)→ 0

• If zn = 0 then qznn (1− qn)1−zn → 0 and then Fn(q, z)→ 0.

Therefore min{αFn(p, z), (1−α)Fn(q, z)} → 0 for all z ∈ In. This results in En → 0 and consequently
Cn → 1.

(⇐) Conversely, assume that Cn → 1 for a fixed n and some fixed α ∈ (0, 1), we need to prove
that there exists i ∈ {1, . . . , n} such that |qi − pi| → 1. In fact, we first note that p 6= q because
otherwise |2α−1| = Cn → 1 which is a contradiction. Moreover, because Cn satisfy the neutrality and
invariant property, we can assume that pi < qi for all i. Now, put I = {k : 1 ≤ k ≤ n, pk → 0} and
J = {k : 1 ≤ k ≤ n, qk → 1}. Because Cn → 1, it implies

min{αF(p, z), (1− α)Fkn(q, z)} → 0 for all z ∈ In. (B.2)

By choosing z = (0, . . . , 0) we imply
n∏
i=1

(1 − qi) → 0, therefore J 6= ∅. Similarly, by choosing

z = (1, . . . , 1) we imply
n∏
i=1

pi → 0, therefore I 6= ∅. Assume that I ∩J = ∅ then we can choose z ∈ In
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such that

zk =

{
0, if k ∈ I
1, if k ∈ J .

Note that

• pi 6→ 1 for i /∈ I ∪ J (otherwise, it implies qi(> pi)→ 1 and contradicts to the definition of J );

• pi 6→ 0 for i /∈ I ∪ J and i ∈ J (from the definition of I).

Therefore we have

αF(p, z) = α
∏
i∈I

(1− pi)
∏
i∈J

pi
∏

i/∈I∪J

pzii (1− pi)(1−zi) 6→ 0.

Similarly, we have qi 6→ 0 for i /∈ I ∪ J ; qi 6→ 1 for i /∈ I ∪ J and i ∈ I and therefore

(1− α)Fkn(q, z) = (1− α)
∏
i∈I

(1− qi)
∏
i∈J

qi
∏

i/∈I∪J

qzii (1− qi)(1−zi) 6→ 0.

It implies that min{αF(p, z), (1−α)Fkn(q, z)} 6→ 0 which contradicts to (G.4). Thus I ∩J 6= ∅ which
implies the proof (see Fig. B.3 for illustration).
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Fig. B.3: Cn based on Bayes error complies with Dominance: Cn → 1 as |qi − pi| → 1. Shown here are three cases
corresponding to different class priors, for 5 loci where q5 changes from ≈ 0 through ≈ 1 while p5 ≈ 0; the other 4 loci
have frequencies: p1 = 0.01/q1 = 0.3, p2 = 0.2/q2 = 0.35, p3 = 0.4/q3 = 0.3, p4 = 0.1/q4 = 0.15.

[7] Delta: For simplicity in notation, we examine n + 1 loci (where n can also be 0), and the proof
proceeds without loss of generality with respect to locus n + 1 with allele frequencies p and q. First,
express Cn+1 as in Eq. (B.1),

Cn+1 =
∑

z̄∈In+1

|αFn+1(p̄, z̄)− (1− α)Fn+1(q̄, z̄)|

=
∑
z∈In

(
|αFn(p, z)p− (1− α)Fn(q, z)q|+ |αFn(p, z)(1− p)− (1− α)Fn(q, z)(1− q)|

) (B.3)

Each pair of absolute-value terms can be seen as a sum of two V -shaped functions of q, without
loss of generality (illustrated in Fig. B.4). Let us examine the first pair, indexed by z. The zero ‘tip’
of one V -shaped function occurs where,

1− q
1− p

=
αFn(p, z)

(1− α)Fn(q, z)
(B.4)

while the zero tip of the other occurs where,

q

p
=

αFn(p, z)

(1− α)Fn(q, z)
. (B.5)

Assume, without loss of generality, that q > p at the zero-tip described by Eq. (B.4). Since the RHS
equals the RHS of Eq. (B.5), then q < p at the zero-tip described by Eq. (B.5). Now, since the absolute
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values of the slopes of all V -shaped function pairs are equal, their sum is a 3-piece-wise linear convex
function where the center section is of slope zero (Fig. B.4). This is also the case for any paired sum in
Eq. (B.3), and since the sum of convex functions is convex, Cn+1 is necessarily convex. Crucially, the
slope-zero sections of all these 2n convex functions (as a function of q) necessarily partially overlap, so
that their sum Cn+1 also has a slope-zero section (Fig. B.4). Thus, if q < p then substituting a lower
value for q can only increase Cn+1; similarly, if q > p then substituting a higher value for q can only
increase Cn+1.

+ =A

B
+ =

0

0

p
p

Fig. B.4: A schematic for the proof of the delta criterion.

[8] Invariances: [a] since the genotype probabilities Fn(p, z) and Fn(q, z) in Eq. (A.2) are each a
commutative product of allele frequencies from all loci, Cn is invariant to different ordering of loci;
[b] Cn(α, P,Q) = Cn(1− α,Q, P ) follows from the presence of an absolute value in the formulation of
Eq. (A.2); [c] the simultaneous substitution of pi with (1− pi) and qi with (1− qi) simply changes the
order of the summation terms in Eq. (A.2) and thus does not affect Cn. We illustrate this with regard
to C2:

C2 = |αp1p2 − (1− α)q1q2|+ |αp1(1− p2)− (1− α)q1(1− q2)|
+ |α(1− p1)p2 − (1− α)(1− q1)q2|+ |α(1− p1)(1− p2)− (1− α)(1− q1)(1− q2)|

Now, after the substitution (termed here C ′2) we get,

C ′2 = |α(1− p1)(1− p2)− (1− α)(1− q1)(1− q2)|+ |α(1− p1)p2 − (1− α)(1− q1)q2|
+ |αp1(1− p2)− (1− α)q1(1− q2| + |αp1p2 − (1− α)q1q2|

[9] Prior: If α → 0 or α → 1 then one of the two terms within the sum in Eq. (A.2) diminishes to
zero and what remains in the limit is the sum over all genotype probabilities in one population, which
equals 1, therefore Cn → 1.

Appendix C Proof of the properties of the Bayes-based Cn

[a] Loci subadditivity (w/out priors): we need to show that Cn+m(P‖P ′, Q‖Q′) ≤ Cn(P,Q)+Cm(P ′, Q′).
Let h′l designate the 2m genotype frequencies associated with frequency vector P ′, and similarly g′l with
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reference to frequency vector Q′. Then from Eq. (3.3) it directly follows that,

Cn+m(P‖P ′, Q‖Q′) =
1

2

2n−1∑
k=0

2m−1∑
l=0

|hkh′l − gkg′l|

=
1

2

2n−1∑
k=0

2m−1∑
l=0

|hk(h′l − g′l)− (gk − hk)g′l|

=
1

2

2n−1∑
k=0

2m−1∑
l=0

|hk(h′l − g′l)|+
1

2

2n−1∑
k=0

2m−1∑
l=0

|(gk − hk)g′l|

=
1

2

2n−1∑
k=0

hk

2m−1∑
l=0

|(h′l − g′l)|+
1

2

2m−1∑
l=0

g′l

2n−1∑
k=0

|(gk − hk)|

= Cm(P ′, Q′) + Cn(P,Q)

where the transition between lines 2 and 3 is due to the triangle inequality (|a − b| ≤ |a| + |b|), and
the transition between lines 4 and 5 is due the sum over all genotype frequencies at any population
equaling 1. We note that when general priors are incorporated in Cn, this property may fail.

We may nevertheless allow for priors by introducing a correction term |1− 2α|,

Cn(α, P,Q) + Cm(α, P ′, Q′) ≥ Cn+m(α, P‖P ′, Q‖Q′)− |1− 2α|

In fact, we have

Cn+m(α, P‖P ′, Q‖Q′) =
∑
z∈In

∑
z′∈Im

∣∣∣∣∣αFn+m(p,p′, z, z′)− (1− α)Fn+m(q,q′, z, z′)

∣∣∣∣∣
=
∑
z∈In

∑
z′∈Im

∣∣∣∣∣αFn(p, z)Fm(p′, z′)− (1− α)Fn(q, z)Fm(q′, z′)

∣∣∣∣∣
=
∑
z∈In

∑
z′∈Im

∣∣∣∣∣[αFn(p, z)− (1− α)Fn(q, z)
]
Fm(p′, z′) + Fn(q, z)

[
αFm(p′, z′)− (1− α)Fm(q′, z′)

]
+ (1− 2α)Fn(q, z)Fm(p′, z′)

∣∣∣∣∣
≤
∑
z∈In

∑
z′∈Im

(∣∣∣αFn(p, z)− (1− α)Fn(q, z)
∣∣∣Fm(p′, z′) + Fn(q, z)

∣∣∣αFm(p′, z′)− (1− α)Fm(q′, z′)
∣∣∣

+ |1− 2α|Fn(q, z)Fm(p′, z′)

)
= Cn(α, P,Q) + Cm(α, P ′, Q′) + |1− 2α|.

(C.1)

[b] Population-subadditivity (w/out priors): the compliance of Cn(P,Q) with the triangle inequality fol-
lows from a formulation in the form of the variational distance, as per Eq. (3.3). [Khosravifard et al., 2007]
prove that such distance indeed satisfies the triangle inequality.
[c] Prior-washout: This property is a direct implication of the performance criterion, since the minimum
with respect to α also increases, Cn+1(α) ≥ Cn(α) (see Fig. 5), and asymptotically follows from
the asymptotics criterion Cn(α) → 1 with n, such the prior is completely washed out at the limit.
This property can also be inferred from an information-theoretic perspective on a Bayes classifier
([Cover and Thomas, 2006, p. 388]). The likelihood ratio with priors π1 and π2,

π1P1(X1, . . . , Xn)

π2P2(X1, . . . , Xn)
> or < 1
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can be formulated as,
1

n
log

π1

π2
+

1

n

n∑
i=1

log
P1(Xi)

P2(Xi)
> or < 0

where from the AEP the second term tends to D(P1‖P2) or −D(P2‖P1) in accordance to P1 or P2

being the true source distribution, while the first term tends to 0, thus the effect of the prior washes
out.
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Fig. C.1: The prior-washout property: the effect of the prior on informativeness is diminished with more loci.

[d] Prior-sensitivity: We first show that Cn as a function of the prior α is convex. Notice from Eq. (3.3)
that it is a sum of V -shaped convex functions of α, f(α) = |(hk + gk)α − gk| and therefore is itself a
convex function. To find α giving the minimum of Cn(α) notice that the minimum must occur at one
or more of the 2n ‘singularity’ points of this piecewise linear convex function, given simply by,

αj =
gj

gj + hj

and therefore, the minimum occurs at,

minCn(α) = min
j

2n−1∑
k=0

|αjhk − (1− αj)gk| = min
j

(
2n−1∑
k=0

∣∣∣ hkgj
gj + hj

− hjgk
gj + hj

∣∣∣).
To show that Cn is never invariant to fluctuations in α , i.e., that this minimum is unique, we need
to prove there are no domains where the slope of Cn(α) is zero. The slope of each linear section of
Cn(α) is some combination of ±(hk + gk), the coefficient of α. For the slope to be zero this sum over
all genotypes has to be exactly zero, a situation which is almost surely (with probability 1) impossible
since the allele frequencies are real-valued parameters and thus genotype frequencies never exactly
equal between populations.
[e] Prior-dominance: We need to show that for any combination of allele frequencies there always exist
two thresholds strictly in (0, 1), 0 < α0 < α1 < 1, such that a prior that is more extreme than these
thresholds fully determines Cn, i.e., all the genetic loci become effectively uninformative. In fact, we
note that αFn(p, z)− (1− α)Fn(q, z) ≥ 0 if and only if

α ≥ Fn(q, z)

Fn(p, z) + Fn(q, z)
.

Therefore, by putting

α0(p,q) := min
z∈In

Fn(q, z)

Fn(p, z) + Fn(q, z)
(C.2)

and
α1(p,q) := max

z∈In
Fn(q, z)

Fn(p, z) + Fn(q, z)
. (C.3)

It implies immediately that 0 < α0(p,q) ≤ α1(p,q) < 1. Moreover, for all α ≥ α1(p,q) we have

Cn =
∑
z∈In

αFn(p, z)− (1− α)Fn(q, z) = 2α− 1,
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and for all α ≤ α0(p,q) we have

Cn =
∑
z∈In
−αFn(p, z) + (1− α)Fn(q, z) = −2α+ 1.

From Cn(α1) = 2α1 − 1, Cn(α0) = 1 − 2α0 and the non-negativity criterion it also follows that
α0 ≤ 1

2 ≤ α1. Now, since α1 and α0 are continuous functions of pi and qi (as Fn(p, z) and Fn(q, z)
are simply products of those frequencies), slight fluctuations in any allele frequency may induce only
a slight change in the thresholds α1 and α0, so that the prior remains within the range for which
Cn = |2α − 1|. More formally, for any ε > 0, and prior α = α1 + ε or α = α0 − ε strictly between 0
and 1, Cn = |2α− 1| and is invariant to slight fluctuations in allele frequencies.

From the uninformative-loci property and the delta criterion it immediately follows that any locus
i, for which Cn is invariant to small fluctuations in pi or qi, is uninformative; i.e., it does not contribute
information in the sense that Cn(α) = Cn−1(α), where this locus is excluded in Cn−1. Crucially, this
implies that for any prior within the invariant range for Cn(P,Q), i.e., α ≥ α1 or α ≤ α0, all loci are
effectively uninformative.

To see this, we need to show that the prior thresholds of Cn is included in those of Cn+1, i.e.
(α0(p,q), α1(p,q)) ⊆ (α0(p̄, q̄), α1(p̄, q̄)); consequently, the exclusion of any m loci would result in
Cn(α) = Cn−m(α) = C0 = |1− 2α|. In fact, we have from Eq. (C.3)

α1(p̄, q̄) = max
z̄∈In+1

Fn+1(q̄, z̄)

Fn+1(p̄, z̄) + Fn+1(q̄, z̄)
= max

z̄∈In+1

1

1 + Fn+1(p̄,z̄)
Fn+1(q̄,z̄)

= max
z∈In

max

{
1

1 + Fn(p,z)
Fn(q,z)

pn+1

qn+1

,
1

1 + Fn(p,z)
Fn(q,z)

1−pn+1

1−qn+1

}

≥ max
z∈In

{
1

1 + Fn(p,z)
Fn(q,z)

}
= α1(p,q).

By a similar proof we also have α0(p̄, q̄) ≤ α0(p,q). It completes the proof.
Note that calculating the thresholds α1 and α0 is of exponential complexity O(k) = O(2n), but we
can achieve a much better result, linear in n, i.e., O(n). This is possible from the following simple
transformation,

max
z∈In

Fn(q, z)

Fn(p, z) + Fn(q, z)
=

1

1 + min
z∈In

Fn(p,z)
Fn(q,z)

=
1

1 +
n∏
i=1

min
{

1−pi
1−qi ,

pi
qi

} .
[f] Uninformative-loci: We need to show that formally for any P and Q with n loci, and without loss
of generality,

∀p, ∃ε > 0 such that Cn+1((p1, . . . , pn, p), (q1, . . . , qn, p+ ε)) = Cn(P,Q).

Proof. The equality Cn = Cn+1 above occurs iff the following inequalities k : 0 to 2n−1 from the proof
of the performance criterion ([Tal, 2012b, Appendix B.1]) are equalities,

min{αhk, (1− α)gk} = αhk = αhkp+ αhk(1− p)
≥ min{αhkp, (1− α)gkq}+ min{αhk(1− p), (1− α)gk(1− q)},

(C.4)

and

min{αhk, (1− α)gk} = (1− α)gk = (1− α)gkq + (1− α)gk(1− q)
≥ min{αhkp, (1− α)gkq}+ min{αhk(1− p), (1− α)gk(1− q)}.

(C.5)

This in turn occurs when, following Eq. (C.4), αhkp ≤ (1− α)gkq and αhk(1− p) ≤ (1− α)gk(1− q)
for each k : 0 to 2n − 1 for which min{αhk, (1− α)gk} = αhk.
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Now write instead of q, p+ ε: αhkp ≤ (1−α)gk(p+ ε) and αhk(1− p) ≤ (1−α)gk(1− p− ε). We get,

p(αhk − (1− α)gk)

(1− α)gk
≤ ε ≤ (1− p)((1− α)gk − αhk)

(1− α)gk

for each k : 0 to 2n− 1 for which αhk ≤ (1−α)gk, and therefore the LHS is non-positive and the RHS
is non-negative, and as expected, 0 < ε < 1. Also, when following Eq. (C.5), αhkp ≥ (1 − α)gkq and
αhk(1− p) ≥ (1− α)gk(1− q) for each k : 0 to 2n − 1 for which min{αhk, (1− α)gk} = (1− α)gk.

Now write instead of q, p+ ε: αhkp ≥ (1− α)gk(p+ ε) and αhk(1− p) ≥ (1− α)gk(1− p− ε). We
get,

(1− p)((1− α)gk − αhk)
(1− α)gk

≤ ε ≤ p(αhk − (1− α)gk)

(1− α)gk

for each k : 0 to 2n− 1 for which αhk ≥ (1−α)gk, and therefore the LHS is non-positive and the RHS
is non-negative, and as expected, 0 < ε < 1.
Thus unless alhk = (1− α)gk for some k : 0 to 2n − 1, then for any p there is always a non-degenerate
range around zero, such that for any ε within that range, the inclusion of an extra locus with allele
frequencies p and p+ ε does not increase Cn.6
The range for ε is, finally, the overlap of all such ranges (since they are satisfied simultaneously),

min

[
min

k:αhk<(1−α)gk

p(αhk − (1− α)gk)

(1− α)gk
, min
k:αhk≥(1−α)gk

(1− p)((1− α)gk − αhk)
(1− α)gk

]

≤ ε ≤ min

[
min

k:αhk<(1−α)gk

(1− p)((1− α)gk − αhk)
(1− α)gk

, min
k:αhk≥(1−α)gk

p(αhk − (1− α)gk)

(1− α)gk

] (C.6)

where the internal minimums are taken over k : 0 to 2n − 1. Since the probability for the occurrence
of αhk = (1− α)gk for any k ranging over all possible genotype frequencies is negligibly small, we can
conclude that the theorem is true, almost surely.7

Appendix D Proof the NC-based Cn complies with a subset of the
criteria

[1] Zero: If P = Q (i.e., pi = qi for all i) then by definition α = 0.5 (since these are effectively the
same population) and thus hk = gk, Dk = 0 and dk = 0 for all k. From Eq. (9), and since the sum of
all genotype frequencies from each single population is 1,

Cn = 1− 2

2n−1∑
k=0

(
1

2
hk · 0 +

1

2
hk · 1) = 1−

2n−1∑
k=0

hk = 0.

It remains to be proven in future work whether conversely, Cn = 0 implies P = Q (i.e., pi = qi for all
i) and α = 0.5.
[2] Performance: This criterion fails. The discontinuity inherent in the classifier expression dk renders
Cn decreasing as n→ n+ 1 under certain scenarios (see Fig. D.1A).
[3] Asymptotics: A formal proof that Cn → 1 left for future work, but numerical simulations strongly
indicate it (see Fig. D.1B for illustration).

6Note that the existence of this non-degenerate range around zero for ε does not depend on the allele frequency at
the extra locus (denoted in this proof as p).

7It is true almost surely since the probability that a genotype would have the same frequency in both populations,
weighed by the priors, is vanishingly small (even with only one locus, since allele frequencies differ between populations).
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Fig. D.1: Cn based on a NC classifier fails performance (here pi = 0.1/qi = 0.4 for the first four loci and subsequently
pi = 0.5/qi = 0.62). | B: Cn based on a NC classifier satisfies asymptotics criterion, here simulated with both common
(pi = 0.2/qi = 0.45) and rare alleles (pi = 0.02/qi = 0.12) and α = 0.4.

[4] Neutrality: We need to prove that if pn+1 = qn+1 then Cn+1 = Cn.

Proof. From Eq. (4.2)we have,

Cn+1 = 1− 2
2n+1−1∑
k=0

(
αhk|n+1dk|n+1 + (1− α)gk|n+1(1− dk|n+1)

)
,

where the subscript k|n+1 designates that the term is defined with reference to n+1 loci. First notice
that the classifier expression does not change,

Dk|n+1 =

n+1∑
i=1

fn+1(k, i)− pi√
pi(1− pi)

− fn+1(k, i)− qi√
qi(1− qi)

− log
α

1− α

= Dk +
fn+1(k, n+ 1)− pn+1√

pn+1(1− pn+1)
− fn+1(k, n+ 1)− qn+1√

qn+1(1− qn+1)
= Dk.

since pn+1 = qn+1 from assumption. Finally, we split the multiple sum into two multiple sums, the
first in which genotypes have a ‘0’ allele as the n + 1 locus, and the second in which they have a ‘1’
allele at that locus, noticing also that the sum from 2n to 2n+1 − 1 equals the sum from 0 to 2n − 1
when the n+ 1 locus is fixed,

Cn+1 = 1− 2

[
2n−1∑
k=0

(
αhk|n+1dk|n+1 + (1− α)gk|n+1(1− dk|n+1)

)

+
2n+1−1∑
k=2n

(
αhk|n+1dk|n+1 + (1− α)gk|n+1(1− dk|n+1)

)]

= 1− 2

[
(1− pn+1)

2n−1∑
k=0

(
αhkdk + (1− α)gk(1− dk)

)
+ pn+1

2n−1∑
k=0

(
αhkdk + (1− α)gk(1− dk)

)]
= Cn.

[5] Continuity: This criterion fails (e.g., see in Fig. D.2 the discontinuity points).
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Fig. D.2: Cn based on a NC classifier satisfies the dominance criterion but fails the continuity and delta criteria. Shown
here are three cases corresponding to different class priors, for 5 loci where q5 changes from 0+ through 1− while p5 = 0+;
the other 4 loci we given arbitrary frequencies: p1 = 0.01/q1 = 0.3, p2 = 0.2/q2 = 0.35, p3 = 0.4/q3 = 0.3, p4 = 0.1/q4 =
0.15.

[6] Dominance: We need to prove that for any finite number of loci, Cn → 1 iff |qi − pi| → 1.

Proof. We prove, without loss of generality, that if qn+1 → 1 and pn+1 → 0 then Cn+1 → 1. In fact,
we have

Cn+1 = 1− 2
∑

z̄∈In+1

αFn+1(p̄, z̄)d(α, p̄, q̄, z̄) + (1− α)Fn+1(q̄, z̄)(1− d(α, p̄, q̄, z̄))

= 1− 2
∑
z∈In

∑
zn+1

[
αFn(p, z)p

zn+1

n+1 (1− pn+1)1−zn+1d(α, p̄, q̄, z̄)

+ (1− α)Fn(q, z)q
zn+1

n+1 (1− qn+1)1−zn+1(1− d(α, p̄, q̄, z̄))

]
.

(D.1)

Note that the classifier D(α, p̄, q̄, z̄) = D(α,p,q, z) + |zn+1−pn+1|√
pn+1(1−pn+1)

− |zn+1−qn+1|√
qn+1(1−qn+1)

. It implies that

if pn+1 → 0 and qn+1 → 1 then

D(α, p̄, q̄, z̄)→

{
+∞, if zn+1 = 1

−∞, if zn+1 = 0.

Therefore

d(α, p̄, q̄, z̄)→

{
1, if zn+1 = 1

0, if zn+1 = 0.

Thus, when pn+1 → 0 and qn+1 → 1 we have pzn+1

n+1 (1 − pn+1)1−zn+1d(α, p̄, q̄, z̄) → 0 and q
zn+1

n+1 (1 −
qn+1)1−zn+1(1− d(α, p̄, q̄, z̄))→ 0. It follows from Eq. (D.1) that Cn+1 → 1.

[7] Delta: This criterion fails (e.g. see in Fig. D.2 the decrease of Cn at several locations).
[8] Invariances: [a] since Dk is commutative as a sum, and hk and gk are commutative as a product,
Cn is invariant to different ordering of the loci; [b] Cn(α, P,Q) = Cn(1 − α,Q, P ) follows from the
symmetry of Dk and Cn with respect to pi and qi; [c] the simultaneous substitution of pi with (1− pi)
and qi with (1 − qi) simply changes the order of summation in Dk and Cn. We illustrate this with
reference to C1, and this is easily proven by induction on n. We write down the explicit form of C1,

C1 = 1− 2
(
α(1− p)d0 + (1− α)(1− q)(1− d0) + αpd1 + (1− α)q(1− d1)

)
where,

D0 =

√
p

1− p
−
√

q

1− q
− log

α

1− α
, D1 =

√
1− p
p
−
√

1− q
q
− log

α

1− α

dk =

{
1, if Dk > 0

0, if Dk ≤ 0
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Denote by C ′1 the measure following this substitution. It is straightforward that,

C ′1 = 1− 2
(
αpd1 + (1− α)q(1− d1) + α(1− p)d0 + (1− α)(1− q)(1− d0)

)
= C1

since Dk (and dk) were similarly modified by the substitution,

D0 =

√
1− p
p
−
√

1− q
q
− log

α

1− α
, D1 =

√
p

1− p
−
√

q

1− q
− log

α

1− α
.

[9] Priors: At the limit α→ 0, Dk → +∞, dk = 1 and thus in (9) both αhkdk → 0 and (1− α)gk(1−
dk)→ 0, therefore Cn → 1. Similarly, at the limit α→ 1, Dk → −∞, dk = 0 and both αhkdk → 0 and
(1− α)gk(1− dk)→ 0, therefore Cn → 1.

Appendix E Proof of compliance of Sampling-based Cn,m with the
new criteria

Here we prove the two new criteria and also show by simulation compliance with two other criteria
from Cn. We first rewrite Eq. (5.2) in the form of

Cn,m = Ecn(X,Y ) =
∑

x∈Inm1

∑
y∈Inm2

cn(α,p,q,x,y)Fm1
n (p,x)Fm2

n (q,y) (E.1)

where

cn(α,p,q,x,y) = 1− 2
∑
z∈In

αFn(p, z)d(α,x,y, z) + (1− α)Fn(q, z)(1− d(α,x,y, z))

with

d(α,x,y, z) =

{
1, if αFn(x, z) < (1− α)Fn(y, z)

0, if αFn(x, z) ≥ (1− α)Fn(y, z).

Note that we have immediately that cn(α,p,q,p,q) = Cn.
[3] Asymptotics: A proof is beyond the scope of this paper, but numerical simulations validate it (see
Fig. E.1A for illustration).
[6] Dominance: A formal proof is beyond the scope of this paper, but numerical simulations validate
it (see Fig. E.1B for illustration).
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Fig. E.1: |A: Cn,m satisfies the asymptotics criterion, simulated here for both 80 and 20 samples from each population,
α = 0.4.|B :Cn,m satisfies the Dominance criterion: Cn,m → 1 as |qi − pi| → 1, simulated here for 20 samples, 8 loci,
α = 0.7. In both examples we used pi = 0.1/qi = 0.3 (using Monte Carlo simulations).

[1*] Sampling-Effect: Need to show that for any sample size m > 0, Cn,m ≤ Cn. In fact, for given
x ∈ Inm1

, y ∈ Inm2
, for each z ∈ In we have d(α,x,y, z) ∈ {0, 1}, therefore

αFn(p, z)d(α,x,y, z) + (1− α)Fn(q, z)(1− d(α,x,y, z)) ≥ min{αFn(p, z), (1− α)Fn(q, z)}.
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It implies that, for given x ∈ Inm1
, y ∈ Inm2

, we have

cn(α,p,q,x,y) = 1− 2
∑
z∈In

αFn(p, z)d(α,x,y, z) + (1−α)Fn(q, z)(1− d(α,x,y, z)) ≤ 1− 2En = Cn.

Thus

Cn,m =
∑

x∈Inm1

∑
y∈Inm2

cn(α,p,q,x,y)Fm1
n (p,x)Fm2

n (q,y) ≤ Cn
∑

x∈Inm1

∑
y∈Inm2

Fm1
n (p,x)Fm2

n (q,y) = Cn.

It completes the proof (see Fig.E.2A for illustration).
[2*] Sampling-Convergence: We need to show that as sample size increases Cn,m → Cn. In fact, we note
that when m1 → ∞, Inm1

→ [0, 1]n and Fm1
n (p,x) → δp(dx). Similarly, when m2 → ∞, Inm2

→ [0, 1]n

and Fm2
n (q,y)→ δq(dy). Therefore when m = {m1,m2} → ∞ we have

Cn,m →
∫

[0,1]2n
cn(α,p,q,x,y)δp(dx)δq(dy) = cn(α,p,q,p,q) = Cn.

It completes the proof (see Fig. E.2B for illustration).
A B

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

Number of Loci

In
fo
rm
at
iv
en
es
s

Bayes Cn,60

Bayes Cn

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

Sample Size

In
fo
rm
at
iv
en
es
s

Bayes Cn,m

Bayes Cn

Fig. E.2: | A: Cn,m satisfies the sampling-effect criterion. Shown here for 60 samples from each population, α = 0.6. |
B: Cn,m satisfies the sampling-convergence criterion. Shown here for 10 loci, where α = 0.4. In both examples we used
pi = 0.1/qi = 0.3 (with Monte Carlo simulations).

Appendix F Proof that every monotonic function of a compliant in-
formativeness measure is also compliant

Given a function f : [0, 1]→ [0, 1] such that

(a) f(x) = 0 iff x = 0;

(b) f(x) = 1 iff x = 1;

(c) f is continuous;

(d) f is monotone.

We show here that if Cn is a compliant informativeness measure, then so is f(Cn). In fact, the Zero
criteria is followed from (a); the Performance criteria is followed from (d); the Asymptotic criteria
is followed from (b) and (c); the Neutrality criteria is followed from the definition of a single-value
function f ; the Continuity criteria is followed from (c); the Dominance criteria is followed from (b)
and (c); the Delta criteria is followed from (d); the Invariances criteria is followed from the definition
of a single-value function f ; the Prior criteria is followed from (b) and (c).
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Appendix G The alternative non-decision-theoretic formulation of Ck
n

in compliance with all criteria

We construct here a family of measures Ckn, parametrized by the integer k : 1, . . . ,∞,

Ckn(α, P,Q) =
∑
z∈Ink

∣∣∣αFkn(p, z)− (1− α)Fkn(q, z)
∣∣∣ (G.1)

where p = (p1, . . . , pn), q = (q1, . . . , qn), Ik = {0, 1
k , . . . , 1} and

Fkn(p, z) =

n∏
i=1

(
k

kzi

)
pkzii (1− pi)k(1−zi).

Note that
∑
z∈Ink

Fkn(p, z) =
∑
z∈Ink

Fkn(q, z) = 1, by using the same technique as in Appendix A, we also

have
Ckn(α, P,Q) = 1− 2

∑
z∈Ink

min
{
αFkn(p, z), (1− α)Fkn(q, z)

}
. (G.2)

We show that these measures are compliant with all criteria.
[1] Zero: (⇐): If P = Q (i.e. pi = qi, ∀i = 1, . . . , n) and α = 0.5 then we have Fkn(p, z) = Fkn(q, z) for
all z ∈ Ink . Thus from Eq. (G.1), and since the sum of all genotype frequencies from a single population
is 1,

Ckn =
∑
z∈Ink

|αFkn(p, z)− (1− α)Fkn(q, z)| = |α− (1− α)|
∑
z∈Ink

Fkn(p, z) = |2α− 1| = 0.

(⇒): Conversely, we need to show that Ckn = 0 implies P = Q (i.e., pi = qi, ∀i = 1, . . . , n) and
α = 0.5. First, notice that if Ckn = 0 then trivially each summand of Eq. (G.1) must be zero, i.e.
αFkn(p, z) = (1 − α)Fkn(q, z), ∀z ∈ Ink . By summing for all z ∈ Ink we have α = 1 − α or α = 0.5.
Therefore Fkn(p, z) = Fkn(q, z), ∀z ∈ Ink . Denote by ∂1

i I
n
k := {z ∈ Ink : zi = 1}. Then we have for

every i = 1, . . . , n

pki =
∑

z∈∂1i Ink

Fkn(p, z) =
∑

z∈∂1i Ink

Fkn(q, z) = qki

which implies pi = qi.
[2] Performance: We need to prove that Ckn+1 ≥ Ckn. In fact, by denoting z̄ = (z, zn+1), p̄ =
(p, pn+1), q̄ = (q, qn+1), we have

Ckn+1(α, p̄, q̄) =
∑
z∈Ink

∑
zn+1∈Ik

∣∣∣∣∣αFkn(p, z)

(
k

kzn+1

)
p
kzn+1

n+1 (1− pn+1)k(1−zn+1)

− (1− α)Fkn(q, z)

(
k

kzn+1

)
q
kzn+1

n+1 (1− qn+1)k(1−zn+1)

∣∣∣∣∣
≥
∑
z∈Ink

∣∣∣∣∣ ∑
zn+1∈Ik

αFkn(p, z)

(
k

kzn+1

)
p
kzn+1

n+1 (1− pn+1)k(1−zn+1)

− (1− α)Fkn(q, z)

(
k

kzn+1

)
q
kzn+1

n+1 (1− qn+1)k(1−zn+1)

∣∣∣∣∣
=
∑
z∈Ink

∣∣∣αFkn(p, z)− (1− α)Fkn(q, z)
∣∣∣ = Ckn(α,p,q).
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[3] Asymptotics: First of all, note that

Ekn :=
∑
z∈Ink

min
{
αFkn(p, z), (1− α)Fkn(q, z)

}
(G.3)

is also a Bayes error for classifying over two n-loci (k + 1)-allele populations. By applying the same
technique as in [Tal, 2012b, Appendix B.1], Ekn is bounded above by Bk

n, the misclassification rate from
simple multinomial model. Moreover, we have,

Bk
n =

∑
i=(i0,...,ik):|i|=n

min

{
α

(
n

i

)
pi00 · · · p

ik
k , (1− α)

(
n

i

)
qi00 · · · q

ik
k

}

≤
∑

i:|i|=n

√
α(1− α)

(
n

i

)
(p0q0)

i0
2 · · · (pkqk)

ik
2

=
∑

i:|i|=n

√
α(1− α)

(
n

i

)(
t0
p0 + q0

2

)i0
· · ·
(
tk
pk + qk

2

)ik
where tj =

2
√
pjqj

pj + qj
, j = 0, . . . , k

≤
∑

i:|i|=n

√
α(1− α)tn

(
n

i

)(p0 + q0

2

)i0
· · ·
(pk + qk

2

)ik
where t = max{t0, . . . , tk} ∈ (0, 1)

=
√
α(1− α)tn.

Thus, lim
n→∞

Ekn = 0. It implies lim
n→∞

Ckn = 0.

[4] Neutrality: We need to prove that Ckn = Ckn+1 if pn+1 = qn+1. In fact, by denoting z̄ = (z, zn+1), p̄ =
(p, pn+1), q̄ = (q, qn+1), we have

Ckn+1 =
∑

z̄∈In+1
k

|αFkn+1(p̄, z̄)− (1− α)Fkn+1(q̄, z̄)|

=
∑
z∈Ink

( ∑
zn+1∈Ik

∣∣∣αFkn(p, z)

(
k

kzn+1

)
p
kzn+1

n+1 (1− pn+1)k(1−zn+1)

− (1− α)Fkn(q, z)

(
k

kzn+1

)
q
kzn+1

n+1 (1− qn+1)k(1−zn+1)
∣∣∣)

=
∑
z∈Ink

(
|αFkn(p, z)− (1− α)Fkn(q, z)|

∑
zn+1∈Ik

(
k

kzn+1

)
p
kzn+1

n+1 (1− pn+1)k(1−zn+1)

)

=
∑
z∈Ink

|αFkn(p, z)− (1− α)Fkn(q, z)| = Cn.

[5] Continuity: From Eq. (G.1), Ckn is a sum of absolute values of continuous functions and therefore
has no singularities, and since pi, qi and α are real-valued parameters, Ckn is continuous with respect
to its parameters.
[6] Dominance: (⇒) We need to prove that for a fixed n and some fixed α ∈ (0, 1), if there exists
i ∈ {1, . . . , n} such that |qi − pi| → 1 then Ckn → 1. In fact, without loss of generality we assume that
pn → 0 and qn → 1. We note that

• If zn 6= 0 then pkznn (1− pn)k(1−zn) → 0 and then Fkn(p, z)→ 0

• If zn = 0 then qkznn (1− qn)k(1−zn) → 0 and then Fkn(q, z)→ 0.

Therefore min{αFkn(p, z), (1−α)Fkn(q, z)} → 0 for all z ∈ Ink . This results in Ekn → 0 and consequently
from Eq. (G.2) Ckn → 1.

(⇐) Conversely, assume that Ckn → 1 for a fixed n and some fixed α ∈ (0, 1), we need to prove
that there exists i ∈ {1, . . . , n} such that |qi − pi| → 1. In fact, we first note that p 6= q because
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otherwise Ckn = |2α − 1| 6→ 1 which is a contradiction. Moreover, because Ckn satisfy the neutrality
and invariant criteria, we can assume that pi < qi for all i. Now, put I = {j : 1 ≤ j ≤ n, pj → 0} and
J = {j : 1 ≤ j ≤ n, qj → 1}. Because Ckn → 1, it implies

min{αFkn(p, z), (1− α)Fkn(q, z)} → 0 for all z ∈ Ink . (G.4)

By choosing z = (0, . . . , 0) we imply
n∏
i=1

(1 − qi)
k → 0, therefore J 6= ∅. Similarly, by choosing

z = (1, . . . , 1) we imply
n∏
i=1

pki → 0, therefore I 6= ∅. Assume that I ∩J = ∅ then we can choose z ∈ Ink

such that zj =

{
0, if j ∈ I
1, if j ∈ J .

Note that

• pi 6→ 1 for i /∈ I ∪ J (otherwise, it implies qi(> pi)→ 1 and contradicts to the definition of J );

• pi 6→ 0 for i /∈ I ∪ J and i ∈ J (from the definition of I).

Therefore we have αFkn(p, z) = α
∏
i∈I

(1 − pi)k
∏
i∈J

pki
∏

i/∈I∪J
pkzii (1 − pi)k(1−zi) 6→ 0. Similarly, we have

qi 6→ 0 for i /∈ I ∪ J ; qi 6→ 1 for i /∈ I ∪ J and i ∈ I and therefore (1− α)Fkn(q, z) = (1− α)
∏
i∈I

(1−

qi)
k
∏
i∈J

qki
∏

i/∈I∪J
qkzii (1− qi)k(1−zi) 6→ 0.

It implies that min{αFkn(p, z), (1−α)Fkn(q, z)} 6→ 0 which contradicts to (G.4). Thus I ∩J 6= ∅ which
implies the proof.
[7] Delta:

[8] Invariances: [a] since the genotype probabilities Fkn(p, z) and Fkn(q, z) in Eq. (G.1) are each a
commutative product of allele frequencies from all loci, Ckn is invariant to different ordering of loci;
[b] Ckn(α, P,Q) = Ckn(1− α,Q, P ) follows from the presence of an absolute value in the formulation of
Eq. (G.1); [c] the simultaneous substitution of pi with (1− pi) and qi with (1− qi) simply changes the
order of the summation terms in Eq. (G.1) and thus does not affect Ckn.
[9] Prior: If α → 0 or α → 1 then one of the two terms within the sum in Eq. (G.1) diminishes to
zero and what remains in the limit is the sum over all genotype probabilities in one population, which
equals 1, therefore Ckn → 1.

Appendix H Proof that the alternative Ck
n is not a monotonic func-

tion of the Bayes Cn

More precisely, we show that, for given n and k > 1 we can find (α,p,q) and (α′,p′,q′) such that
Cn(α,p,q) = Cn(α′,p′,q′) but Ckn(α,p,q) 6= Ckn(α′,p′,q′). In fact, we can choose, for example,
α = α′ = 0.5, p1 = 0.1, q1 = 0, p′1 = 0.1, q′1 = 0.2, and pi = qi = p′i = q′i = 0.3 for all i = 2, . . . , n.
By applying the Neutrality criteria, we have Cn(α,p,q) = C1(0.5, p1, q1) = 0.1 = C1(0.5, p′1, q

′
1) =

Cn(α′,p′,q′) but Ckn(α,p,q) = Ck1 (0.5, p1, q1) 6= Ck1 (0.5, p′1, q
′
1) = Ckn(α′,p′,q′). The figure Fig. H.1

illustrate the behavior of the difference Ck1 (0.5, p1, q1)− Ck1 (0.5, p′1, q
′
1) when k runs from 1 to 10.
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Fig. H.1: Behavior of Ck
1 (0.5, p1, q1)− Ck

1 (0.5, p
′
1, q
′
1)
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