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Abstract

Motivation: Genome-wide association studies have had great success in iden-

tifying human genetic variants associated with disease, disease risk factors, and

other biomedical phenotypes. Many variants are associated with multiple traits,

even after correction for trait-trait correlation. Discovering subsets of vari-

ants associated with a shared subset of phenotypes could help reveal disease

mechanisms, suggest new therapeutic options, and increase the power to de-

tect additional variants with similar pattern of associations. Here we introduce

two methods based on a Bayesian framework, SNP And Pleiotropic PHenotype

Organization (SAPPHO), one modeling independent phenotypes (SAPPHO-I)

and the other incorporating a full phenotype covariance structure (SAPPHO-C).

These two methods learn patterns of pleiotropy from genotype and phenotype

data, using identified associations to discover additional associations with shared

patterns.

Results: The SAPPHO methods, along with other recent approaches for pleiotropic

association tests, were assessed using data from the Atherosclerotic Risk in

Communities (ARIC) study of 8,000 individuals, whose gold-standard associ-

ations were provided by meta-analysis of 40,000 to 100,000 individuals from

the CHARGE consortium. Using power to detect gold-standard associations
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at genome-wide significance (0.05 family-wise error rate) as a metric, SAPPHO

performed best. The SAPPHO methods were also uniquely able to select the

most significant variants in a parsimonious model, excluding other less likely

variants within a linkage disequilibrium block. For meta-analysis, the SAPPHO

methods implement summary modes that use sufficient statistics rather than

full phenotype and genotype data. Meta-analysis applied to CHARGE detected

16 additional associations to the gold-standard loci, as well as 124 novel loci, at

0.05 false discovery rate. Reasons for the superior performance were explored

by performing simulations over a range of scenarios describing different genetic

architectures. With SAPPHO we were able to learn genetic structures that were

hidden using the traditional univariate tests.

Availability: https://bitbucket.org/baderlab/fast/wiki/Home. SAPPHO soft-

ware is available under the GNU General Public License, v2.

1. Introduction

Genome-wide association studies (GWAS) have had remarkable success in

identifying genetic variants responsible for human disease, disease risk factors,

and other biomedical phenotypes. To date, more than 17607 variants, primarily

single nucleotide polymorphisms (SNPs), have been associated at genome-wide

significance with at least 785 distinct traits, according to the GWAS catalog

[1]. Many variants are pleiotropic, with significant associations with multiple

traits (Fig. 1). Observations of pleiotropy motivate systematic approaches to

identify pleiotropic variants. Such approaches could use observed patterns of

pleiotropy to identify additional variants that follow the same pattern. In a

Bayesian setting, the observed patterns would provide prior probabilities that

could boost the confidence that other variants with the same pattern are true

associations, even if their univariate p-values do not reach conventional genome-

wide significance thresholds. A second valuable application could be to use

pleiotropic associations to infer mechanisms shared by multiple diseases, which
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could lead to new therapeutic approaches including drug repurposing.

A challenge is that we do not know in general which traits share causal ge-

netic factors. While these pleiotropic patterns may be discovered from genome-

wide association study data, re-use of the same data for pattern discovery and

association discovery requires new methods to control false discovery rates. A

second important challenge is to develop methods that provide as direct a route

as possible to the most significant variant within an association locus. Methods

that produce parsimonious models, selecting just the most significant variant

and excluding the neighboring linked variants, have great value. A third chal-

lenge is to incorporate the phenotype-phenotype covariance structure in the

analysis to discriminate between a model in which a variant affects two pheno-

types directly and an alternative model in which a variant directly affects one

phenotype, which in turn affects a second correlated phenotype.

While there are no pleiotropic association methods in general use, there have

been three general directions for methods development. First, for small collec-

tions of highly correlated phenotypes, a reasonable approach is to aggregate

associations over all the phenotypes. This approach has greatest power when

the true model is that a variant affects each phenotype. A recent report demon-

strated good power for phenotypes related to hypertension [2]. This approach

is similar in motivation to gene-based methods for GWAS signal aggregation,

including VEGAS for common variants [3] and SKAT for rare variants [4].

When phenotypes are highly correlated and possibly redundant, a second

direction has been to use orthogonalization methods, usually principal compo-

nent analysis or singular value decomposition, to identify a rank-reduced set of

linear combinations. A representative method is principal components of heri-

tability (PCH), which generates linear combination of phenotypes with highest

heritability for each genetic variant [5]. A drawback of this approach is that

validating an association with a linear combination of phenotypes is more diffi-

cult than validating an association with a single phenotype, particularly when

different studies assess different sets of phenotypes. An alternative approach is

to use a linear combination of phenotypes as a feature to predict the variant
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genotype, reversing the typical direction of regression. The MultiPhen method

uses ordinal regression to perform this type of test, with increased power for

variants affecting multiple phenotypes [6]. While methods such as canonical

correlation analysis (CCA) and MANOVA that assume that genotypes follow

a normal distribution have inflated type-I error, MultiPhen produces no such

inflation when parametric p-values are used.

A third approach has been to adapt methods like L1/LASSO [7] that favor

selection of sparser sets of features [8]. Despite the promise of this approach,

it has not been widely used, possibly because the L1 regularization is still too

weak to reject variants introduced through correlation only and not causation

and because of computational costs for genome-wide applications.

The approach pursued here is to exploit observed association patterns to

identify additional variants following the same pattern. These patterns are

biclusters, with subsets of variants associated with subsets of phenotypes. Bi-

clustering has been a productive approach for identifying block structure in

gene expression data [9]. Biclustering is not directly applicable to GWAS data,

however, because blocks of SNPs identified by näıve application of standard

biclustering algorithms would be dominated by non-causal variants in linkage

disequilibrium or haplotype blocks with a single causal variant.

We report results for a new Bayesian framework for genome-wide associa-

tion studies of multiple phenotypes with shared genetics: SNP And Pleiotropic

PHenotype Organization, SAPPHO. The SAPPHO method is motivated by our

previous work developing a Bayesian method for gene-based association tests,

Gene-Wide Significance (GWiS) [10, 11], which aggregates statistical associa-

tions of multiple independent variants within a gene for a single phenotype.

Each identified variant within a gene effectively updates the prior probability

that additional variants within the same gene are also associated, permitting

successive identification of variants with smaller effects that could be missed by

conventional univariate tests of individual SNPs. Using an assessment with real

data and gold standards from meta-analysis, GWiS was found to have greater

power than univariate tests and also greater power than other gene-based meth-
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ods, including methods based on summing the effects over all variants [3] and

methods using L1/LASSO [7]. GWiS had robust performance across different

genetic architectures, including the number of true effects per gene and the mi-

nor allele frequencies. The robust performance was in part due to a lack of

tuning parameters. Instead, most parameters in the GWiS model were treated

as nuisance parameters and removed by integration.

The SAPPHO method uses a similar approach to associate individual vari-

ants with multiple phenotypes in a single genome-wide model for testing T

total SNPs for association with P total phenotypes. Model priors interpolate

between two probability distributions for genetic architecture, one which each

of the T ×P possible SNP-phenotype associations is independent, and a second

in which each of the 2P possible patterns of association has its own prior proba-

bility. All of the remaining association structure parameters are integrated out,

yielding a method with only a single adjustable parameter, the mixing fraction

of the two priors. This parameter is essentially the threshold for the weak-

est possible variant-phenotype association that can be entered into a regression

model. Identifying the most likely model is NP-hard, and heuristics are needed

for an acceptable runtime. SAPPHO uses a greedy forward approach to iden-

tify a local optimum with an algorithm that scales linearly with the number of

SNP-phenotype associations identified in the data.

We evaluate our proposed method through analysis of cardiovascular elec-

trocardiogram (ECG) phenotypes and simulation. For ECG phenotypes, meta-

analyses of studies with 40,000 to 100,000 individuals have been conducted

with overlapping sets of variants associated with PR, QRS, and QT intervals.

Notwithstanding concerns about missing heritability [12], the fraction of heri-

tability explained by genome-wide significant associations for these traits ranges

from 4% to 17% [13, 14, 15, 16]. The genome-wide significant findings provided

by meta-analysis provide gold-standard true positive associations for assessing

the power of different methods. The SAPPHO methods have the further poten-

tial to provide new biomedical knowledge by revealing classes of variants that

contribute to distinct subsets of ECG parameters.
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The Methods section provides a mathematical description of SAPPHO and

the algorithm used to identify an optimum in the space of all possible models.

Briefer summaries of other approaches are provided, together with summaries

of real and simulated data used for assessment. The Results section reports

on the assessment results and the pleiotropic patterns observed for ECG traits

and also for simulations representing a range of scenarios of phenotypes that

share genetic and environmental factors. The Discussion concludes with an

interpretation of the benefits and drawbacks of different pleiotropy methods

and a vision for possible future directions to discover and exploit pleiotropy in

human genetic association studies.

2. Methods

2.1. Genetic model

SAPPHO has been developed for quantitative phenotypes. Case/control

or other dichotomous phenotypes can be represented as 0/1 encodings, which

general retain high power when causal variants have small effects [11]. Similarly,

rank-ordered categories can be represented as corresponding integers. Unranked

categories can in principle be represented as 0/1 indicators for each category;

in practice, these are less common than quantitative, graded, or dichotomous

phenotypes. Extensions to dichotomous phenotypes or general linear models in

the exponential family are possible but more computationally intensive without

a corresponding gain in power [11].

The SAPPHO statistical model considers a population of N unrelated in-

dividuals and P distinct phenotypes, with each individual assessed for each

phenotype. The phenotype data is represented as a real-valued phenotype ma-

trix Y with N rows and P columns. Individuals are also genotyped at distinct

loci corresponding to T total independent tests, represented as a real-valued

genotype matrix X with N rows and T columns. In most applications, the

genotype values will correspond to allele frequencies or dosages for bi-allelic sin-

gle nucleotide polymorphisms (SNPs), measured directly or imputed. All data
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elements of Y and X are assumed present. In practice, some individuals will

lack data for some genotypes and phenotypes. In this work, for simplicity only

individuals with complete data are retained. Exclusion could be done at the

level of individual means, variances, and covariances of phenotypes and geno-

types, which in theory leads to non-positive-definite covariance matrices but in

practice usually does not cause numerical instabilities [11].

An association model, denoted M , specifies the direct effects of variants on

phenotypes. For this work, we restrict attention to linear models. Thus, a

model specifies which elements of a regression coefficient matrix β with T rows

and P columns may be non-zero; the number of non-zero elements is denoted

|M |. The model does not specify the corresponding values; these are treated as

nuisance parameters that are integrated out. We consider two different models

representing alternative assumptions about the phenotype covariance matrix:

SAPPHO-I models each phenotype as independent given the genetic effects;

SAPPHO-C models the complete phenotype-phenotype covariance structure.

Given the model M and the genotypes X for an individual, the probability

distribution for phenotypes Y is multivariate normal with covariance matrix Ω,

diagonal for SAPPHO-I and including off-diagonal elements for SAPPHO-C,

Pr(Y|X,M) =

∫
β

Pr(β)dβ

∫
Ω

Pr(Ω)dΩ×

N∏
i=1

(2π)−P/2|Ω|−1/2 ×

exp[−(1/2)(yi − xiβ)+Ω−1(yi − xiβ)] (1)

where xi and yi are genotype and phenotype vectors for individual i, and the

superscript + denotes transpose. The integral over β is over the |M | non-

zero elements, and the β and Ω integrals include formal normalization factors

Pr(β) and Pr(Ω). The notation |Ω| denotes the determinant of the pheno-

type covariance matrix Ω. This covariance matrix does not include the genetic

contributions; the observed covariance matrix V is

V = Ω + (N − 1)−1β+X+ · [I −N−111+] ·Xβ. (2)
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The normalization factors Pr(β) and Pr(Ω) formally depend on meta-parameters

for regularization. In practice, we use the asymptotic limit that excludes the

contribution of the meta-parameters, as we did with GWiS [10], keeping terms

of order lnN and greater. Performing steepest descents around the maximum

likelihood estimates β̂ and Ω̂, equivalent to the Bayesian Information Crite-

rion or BIC [18], the asymptotic limit for the log-probability of the observed

phenotypes given genotypes and model is

ln Pr(Y|X,M) ∼ ln Pr(Y|X, β̂, Ω̂)− (|M |/2) lnN

= −(1/2) ln[(2π)P |Ω̂|]− (N/2)

−(|M |/2) lnN. (3)

For SAPPHO-I, we assume that the phenotypes are independent with each

other; this is essentially equivalent to setting the non-diagonal elements of Ω

equal to zero, leaving only the non-diagonal σ2
j s that correspond to the residual

variance of each phenotype; in other words, now |Ω| =
∏P
j=1 σ

2
j , where σ2

j

is the residual variance of each phenotype. The probability distribution for

phenotypes Y becomes a product of P normal distributions, with the number

of distributions equal to the number of phenotypes:

Pr(Y|X,M) =

∫
β

Pr(β)dβ

∫
Ω

Pr(Ω)dΩ×

N∏
i=1

P∏
j=1

(2πσ2
j )−1/2 ×

exp[−(2σ2
j )−1(yij − xiβj)

+(yij − xiβj)], (4)

where yij is the jth element of vector yi, and βj denotes the jth column of

matrix β. Adopting the same asymptotic approximation for the log-probability

using BIC yields

ln Pr(Y|X,M) ∼ ln Pr(Y|X, β̂, Ω̂)− (|M |/2) lnN

= −1

2

P∑
j=1

ln(2πσ̂j
2)− (N/2)

−(|M |/2) lnN. (5)
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2.2. Model prior

The model prior probability, Pr(M), is represented as the product of two

terms,

Pr(M) ∝ PrMγ
1 PrM

(1−γ)
2 . (6)

This form corresponds to linear interpolation on a logarithmic scale,

ln Pr(M) = γ ln PrM1 + (1− γ) ln PrM2 + constant, (7)

where γ ∈ [0, 1] and the constant term is model-independent and may be ig-

nored. The prior PrM1 penalizes each genotype-phenotype association indi-

vidually, while the prior PrM2 penalizes based on each different association

pattern, as described below.

The prior PrM1 models each possible SNP-phenotype pair as a binary ran-

dom variable reflecting association with probability θ or no association with

probability 1 − θ for θ ∈ [0, 1]; the single parameter θ is shared by each of the

T × P possible genotype-phenotype associations. For any model with |M | = K

total associations, PrM1 is

PrM1 =

∫ 1

0

dθP (θ)θK(1− θ)(TP−K), (8)

where P (θ) is a possible prior on θ; we use the uniform prior P (θ) = 1. While P

varies with the number of phenotypes in different studies, T is set equal to the

conventional number of independent effects in the genome for human GWAS,

106. The nuisance parameter θ is integrated out to yield the standard result,

PrM1 =
K!(TP −K)!

(TP + 1)!
= Beta(K + 1, TP −K + 1), (9)

where ‘!’ denotes the factorial function and ‘Beta’ is the standard Beta function

extending the combinatorial factor to non-integer arguments.

The derivation of PrM2 is similar to PrM1, except that it considers pat-

terns rather than individual associations. A pattern α is one of the 2P − 1

possible subsets of phenotypes, excluding the null pattern of no associations.

The probability that a SNP belongs to pattern α is denoted θα, with θα ∈ [0, 1]
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and
∑
α θα = 1 defining a multinomial probability distribution. Denoting nα as

the total number of variants with pattern α, and
∑
α nα = n, n being the total

number of associated SNPs, the probability for a particular model M is

PrM2 = (2P − 2)!

∫
{θ}

d{θ}P [{θα}]
∏
α

θnαα . (10)

The integral is over all possible feasible parameters and P [{θα}] is a possible

prior distribution; we use the uniform distribution P [{θα}] = 1. The term

(2P − 2)! is the standard normalization factor for a multinomial distribution.

The nuisance parameters θα are removed by integration, yielding the standard

result,

PrM2 =
(2P − 2)!

(n+ 2P − 2)!

2P−1∏
α=1

nα!. (11)

Note that for PrM2 only the occupied patterns contribute to the model proba-

bility, similar to latent Dirichlet allocation (LDA) in which only occupied states

contribute [19]. This probability model favors pleiotropy models in which vari-

ants share the same association patterns. The overall prefactor (2P − 2)!/(n+

2P − 2)! is identical for all models and independent of the occupation num-

bers {nα} for different patterns. Therefore, for the purpose of computational

efficiency, we use

PrM2 ∝
∏2P−1
α=1 nα!

n!
. (12)

2.3. Model score

The goal of SAPPHO is to identify the most likely model, M̂ , defined as

M̂ = arg maxM Pr(M |Y,X). The posterior probability of a model is defined by

Bayes rule as

Pr(M |Y,X) = Pr(Y,X,M)/Pr(Y,X)

= Pr(Y|X,M) Pr(X,M)/Pr(Y,X). (13)

We make the standard assumption that the model M is independent of the

genotype data, Pr(X,M) = Pr(X) Pr(M), giving

Pr(M |Y,X) =
Pr(Y|X,M) Pr(M)

Pr(Y|X)
. (14)
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The conditional probability Pr(Y|X) is independent of model and need not be

calculated. Similarly, to avoid numeric overflow and underflow, model posterior

probabilities are always calculated as log-likelihood ratios relative to the null

model, defined as the model score SM ,

SM ≡ ln
Pr(Y|X,M) Pr(M)

Pr(Y|X,M∅) Pr(M∅)

= (1/2) ln(|V |/|Ω|)− (|M |/2) lnN

+γ ln Beta(K + 1, TP −K + 1)

+(1− γ)
∑
α

ln Γ(nα + 1)

−(1− γ) ln Γ(
∑
α

nα + 1) (15)

In practice, all models, including the null model, typically include constant

terms for phenotype mean and covariates that represent relevant clinical vari-

ables, including sex, age, height, weight, and body mass index, and possible ad-

ditional covariates that describe population structures. Regression coefficients

for these covariates are calculated in parallel with regression coefficients for ge-

netic variants, but they make no net contribution when models are compared.

For computational efficiency, SAPPHO regresses out the known covariates and

then operates on the residuals.

The parameter γ is the single adjustable parameter in the SAPPHO method.

While it could be set using cross-validation, this would require a gold-positive

training set and depends on the genetic architecture. An architecture with no

shared genetic factors would favor PrM1, whereas an architecture with a small

number of strong patterns would favor PrM2. Instead, we relate γ to the effect

size required to enter a new SNP-phenotype association into a model. To be

more specific, we take the dominant term from the Beta penalty, together with

the BIC penalty, giving the χ2 threshold for adding a single association to the

model,

χ2 = ln(|V |/|Ω|) (16)
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The value of γ is then calculated accordingly,

γ =
χ2 − lnN

2 ln(TP )
(17)

Behavior of SAPPHO under different values of this tuning parameter is discussed

in the following paragraphs. In general, with real data, we found that setting

γ ln(TP ) = ln(104) is a good value to control for type I and II error rate;

with simulation, different tuning parameter will lead to different behaviors of

SAPPHO, favoring different true underlying real association patterns.

2.4. Model search and variant ranking

Identifying M̂ is NP-hard and is not attempted directly. Instead, a greedy

forward approach is employed. Given a current model, all models that may be

reached by adding a single genetic association are considered. There are two

possible cases. In one case, a variant with no associations gains an association

to a single phenotype. In the second case, a variant associated with a subset

of phenotypes gains an association with one additional phenotype. With T

total variants and P total phenotypes, this procedure requires calculating the

posterior probability for approximately T × P possible models. The model

with the greatest increase in posterior probability is selected, and the procedure

continues until any additional association decreases the posterior probability.

The resulting model, locally optimal with respect to adding associations, is

termed M̃ , distinct from the global optimum M̂ . In principle, stepwise forward-

backward selection would also be possible, but would require full matrix inverses

that would vastly increase the computational cost. Backward steps removing a

variant and all of its associations are used at the very end of the model search,

however, for variant ranking.

For SAPPHO-I, computation is made more efficient by using successive or-

thogonalization rather than matrix inverses at each step to obtain the new

maximum likelihood estimates for β̂ and Ω̂.

To further speed the model search by SAPPHO-I and SAPPHO-C, the can-

didate list of variants is pre-filtered, as is common with with other approaches
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that build multivariate genome-scale models. A preliminary univariate test is

conducted for each of the T total variants with each of the P total phenotypes,

yielding T × P total p-values. Each variant is then assigned its minimum p-

value across the P phenotypes, and variants are sorted from smallest to largest

p-value. Candidate variants are taken from this list in increasing p-value order,

with variants excluded if they are in strong linkage disequilibrium (r2 ≥ 0.8)

with a better-ranked variant that has already been selected. Selection ends

when the p-value of the best remaining variant is above a threshold. We used

1× 10−4 as a threshold and found no differences in model selection for a more

lenient and more computationally expensive threshold of 1× 10−3.

2.5. Test statistic and significance thresholds

Starting from the full final model, M̃ , a test statistic for each variant v in

the model is obtained by removing that single variant from M̃ to obtain a new

model M̃/v. All of the variant’s associations are removed; thus, if M̃ has |M |

non-zero β parameters and a variant v in the model has associations with Pv

phenotypes, the new model M̃/v has |M |−Pv non-zero β parameters. The score

Sv for a particular variant v is calculated as expected,

Sv = ln Pr(M̃ |Y,X)− ln Pr(M̃/v|Y,X), (18)

and serves as the test statistic for that variant. As mentioned above, the model

M̃ is optimal with respect to forward selection but not necessarily to backward

selection. While the search biases Sv to positive values, negative values are

possible and are observed, albeit infrequently.

Genome-wide randomizations were used to calibrate the value of Sv, con-

trolling for either family-wise error rates (FWER), with FWER = 0.05 corre-

sponding to genome-wide significance, or false discovery rate (FDR), controlling

for FDR = 0.05 as the threshold. Thresholds for FDR require fewer permuta-

tions for estimation; FDR was therefore used for simulated data and CHARGE

data, whereas FWER was used for analysis of ARIC data. Permutations of

the original data were generated starting with the vector of genotypes and the
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vector of phenotypes for each individual, with covariates already regressed out.

Permutations were performed by randomizing the pairing between a genotype

vector and its phenotype vector. Elements within individual genotype and phe-

notype vectors were not permuted. These permutations maintain the genetic

covariance and phenotype covariance structure of the data.

Filtering steps independent of genotype-phenotype pairing, primarily filter-

ing based on allele frequency and Hardy-Weinberg equilibrium, were identical for

all permutations. Subsequent processing of permuted data sets exactly matched

processing of the original data, including the computationally expensive step of

performing all the genome-wide univariate tests. For FWER, the null distribu-

tion of the test statistic was obtained from 100 genome-wide permutations. The

score of the best variant was retained for the 100 permutations, and the 5th-best

score was used to define the 0.05 FWER threshold. For FDR, 10 permutations

were done in the same way. The expected number of false discoveries F̂ (S?)

with scores greater than or equal to threshold S? was estimated as

F̂ (S?) = B−1
B∑
b=1

∑
v

Θ[Sv(b) ≥ S?]× Pbv, (19)

where B = 10 is the number of permutations, Sv(b) is the score of variant v in

permutation b, Θ(u) = 1 if logical argument u is true and 0 if false, and Pbv

is the number of phenotypes associated with variant v in permutation b. The

FDR for the unpermuted data for a given threshold was then calculated as

FDR(S?) =
F̂ (S?)∑

v Θ[Sv ≥ S?]× Pv
. (20)

Variants from the unpermuted data were arranged in decreasing order by score;

the first SNP v′ for which FDR(Sv′) > 0.05 was identified; and the previous

SNPs with Sv > Sv′ were retained as the predicted positives at FDR 0.05. As

is standard for methods based on model scores, calibration by permutation test

is done separately for each data set analyzed.
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2.6. Other methods

Assessments involved representative available implementations of major classes

of pleiotropy methods. In general, adjustable parameters were set using pub-

lished recommendations. We restricted attention to methods with run times

that were small multiples of the cost of performing all T ×P univariate tests of

individual variants and phenotypes.

For aggregating association signals over a set of phenotypes, the methods

SHom and SHet, using homogeneous and heterogeneous test statistics, were

selected [2]. Given summary statistics of all T × P univariate tests (regression

coefficients and standard deviations), SHom uses a generalized inverse-variance

weighted analysis to combine individual tests into a pooled z-score, which also

considers the correlation between phenotypes and sample sizes of different stud-

ies. By comparing the test statistic with a standard normal distribution, SHom

obtains one p-value for each tested variant. SHet has a scoring function similar

to SHom, but also introduces a threshold τ . The p-value for the test statistic

combining all t-scores greater than τ is maximized, and the corresponding p-

value is assigned to the given SNP. Because of this selection process, SHet does

not follow a standard normal distribution, and p-values are obtained through

permutation.

For tests involving linear combinations of phenotypes, the Principal Compo-

nents of Heritability (PCH) method [5] and MultiPhen [6] were selected. With

PCH, a phenotype loading vector w is first estimated for each SNP. The loading

vector is selected to maximize the variance of the loaded phenotypes explained

by the given SNP using a subset of the data. Next, a t-score is obtained by

regressing the genotype data onto the loaded phenotypes using the remainder

of the data. By adopting a bagging technique and running cross-validation, the

t-score distribution is estimated and a p-value is obtained.

For MultiPhen, each genotype is treated as a response variable outcome,

and phenotypes are predictors. MultiPhen uses proportional odds logistic re-

gression to regress genotype on the hyperplane constructed by the phenotypes,

which models genotype data as ordinal [6]. No distributional assumptions are
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required for phenotypes, allowing MultiPhen to accommodate both binary and

continuous measurements in a single framework. While ordinal regression for

integer-valued allele dosages is theoretically attractive, the computational cost

is much greater than for linear regression (Table 1). Furthermore, allele dosages

estimated from imputation are real-valued rather than integer-valued. Multi-

Phen includes a gaussian kernel for this reason, and gaussian regression was

used instead of ordinal regression for some of the results reported here. Mul-

tiPhen has two additional modes, variable selection and variable non-selection.

For variable non-selection, all phenotypes are used as predictors for the geno-

type data; for variable selection mode, backward selection were performed on

the phenotypes in order to exclude the phenotypes that were not associated

with the SNP, and then the selected phenotypes were regressed on the genotype

data. Non-selected phenotypes have nominal p-values of 1 as output.

We attempted to assess a regularized regression method, using an available

implementation of the graphical fusion LASSO [8]. The shrinkage behavior of

graphical fusion LASSO method requires optimization of regularization param-

eters λ and γ by cross-validation over a search grid. The cross-validation steps

were computationally intensive, and for many (λ, γ) grid values the iterations

did not converge. No other implementations for GWAS were readily available.

Published results based on graphical LASSO are generally for smaller data sets;

the available implementation was originally developed for a data set of 34 SNPs

and 543 individuals [8]. We therefore excluded LASSO-based methods from the

comparison.

Calibration of methods for 0.05 FWER or 0.05 FDR were conducted as for

SAPPHO using the same set of genome-wide permutations. This calibration

was conducted even for methods providing a nominal p-value based on assumed

parametric distributions to ensure accurate benchmarking.

2.7. Assessment with real data

We assessed SAPPHO using individual-level phenotype and genotype data

from the the Atherosclerotic Risk In Communities (ARIC) study cohort [20],
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focusing on phenotypes related to the electrocardiogram (ECG) parameters PR,

QRS, and QT, which are risk factors for cardiovascular disease, sudden cardiac

death, and stroke. This cohort includes approximately 8000 Caucasian ethnicity

subjects and 2000 African-American ethnicity subjects. Assessments here use

only the Caucasian ethnicity because power has been insufficient for African-

American ethnicity.

Known positive phenotype-genotype associations were taken from meta-

analyses conducted by the CHARGE consortium, which includes ARIC as a

cohort. Recent meta-analyses have included 88,000 individuals for PR, 40,407

for QRS, and approximately 100,000 for QT [13, 14, 15, 16]. Covariates for the

EKG phenotypes were selected to be identical to those used in meta-analysis:

height, age, gender, center, BMI, centerm, and heart rate.

Genotypes for ARIC were imputed by pre-phasing with Shapelt (v1.r532)

and then imputing to 1000 Genomes [21] using IMPUTE2 [22, 23]. Measured

SNPs used for imputation were restricted to MAF > 0.005, > 95% complete,

HWE > 0.00001, resulting in 711,589 SNPs in the final set used for the imputa-

tion. Final imputations from IMPUTE2 used the reference panel 1000 Genomes

haplotypes – Phase I intergrated variant set release (v3) in NCBI build 37 (hg19)

in chunks of size 5Mb. All 1092 individuals were used for imputation from the

reference panel.

Analyses were done focusing on the overlapping variants between ARIC and

CHARGE cohorts, and we have tested that this overlap set of variants essen-

tially includes all SNPs reported as significant by previous GWAS for ECG

traits. Variants were removed if the ARIC or CHARGE genotypes violated

Hardy-Weinberg equilibrium (P < 0.00001), were poorly imputed (Qual < 0.3),

or if the minor alleles were too low frequency to have power (MAF < 0.01),

corresponding to fewer than 160 copies of the minor allele. These criteria and

filtering variants to require univariate p-value ≤ 10−4 and low LD with more

significant variants (see Methods) resulted in 620 total variants for the PR,

QRS, and QT phenotypes. This filtered list was used for each method.

Assessments were performed by defining variant-phenotype associations present
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in the meta-analyses at genome-wide significance (p-value ≤ 5 × 10−8 for each

phenotype) as known positives. Assessments are complicated by linkage disequi-

librium within the genome, which can lead to genome-wide significant findings

for multiple variants within a linkage disequilibrium block. These multiple vari-

ants often correspond to a single causal variant, and for purposes of assessment

they were grouped into a single known positive.

We performed the grouping as follows. For each phenotype, we linked to-

gether pairs of genome-wide significant SNPs within 500 kbp of each other.

We then identified the distance-based connected components defined by these

pairwise links. Each connected component in principle could contain multi-

ple independent causal effects. To determine whether independent effects were

present, we provided the SNPs in each connected component as a single locus

to GWiS [10]. GWiS was then run separately on each connected component to

select candidate SNPs representing independent effects.

In regions with strong association signals, these candidate sets may still

contain more SNPs than independent effects. Furthermore, independent ef-

fects must be matched across phenotypes. We therefore used linkage disequilib-

rium as defined by r2 correlation to identify a final set of independent effects.

We introduced correlation-based links between pairs of SNPs with r2 ≥ 0.05

and identified the connected components defined by the correlation-based links.

This resulted with 107 gold-standard connected components, each connected

component corresponding to a single effective known positive with one or more

phenotypes.

We also investigated the robustness of the gold-standard connected compo-

nents with respect to the r2 threshold of 0.05. For a threshold of r2 ≥ 0.01

the number of connected components was 90, and for r2 > 0.1 the number of

connected components was 112. At the lower threshold, multiple effects are

merged into a single connected component, while at higher threshold, one single

effect may be divided into multiple connected components. With r2 ≥ 0.05,

the SCN5A-SCN10A locus was assigned 3 different association signals, while at

r2 ≥ 0.1 the SCN5A-SCN10A locus had 5 independent effects, which bracket
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the estimates from existing literature [13, 14, 15, 16]. While the details of perfor-

mance of individual methods depend somewhat on the r2 threshold, the relative

performance of different methods is stable with reasonable choices for the clus-

tering threshold. Therefore for the current study all results were reported based

on r2 ≥ 0.05 (Supplementary table 1).

Methods differ in their treatment of LD blocks and their attempt to iden-

tify the subset of phenotypes associated with each variant. The SAPPHO-I

and SAPPHO-C methods attempt to provide a parsimonious list of associa-

tions, with only one SNP in each significant LD block. Other methods report

each SNP within an LD block as a positive. The SAPPHO-I, SAPPHO-C,

MultiPhen-Selection, and univariate methods identify the subset of pheno-

types associated with a SNP, whereas other methods do not. For purposes of

assessment, we calculated the r2 for each SNP selected by a method to each

SNP in the gold standard correlation-based connected components. We de-

fined r2 ≥ 0.1 as the threshold for matching. Each correlation-based connected

component with at least 1 matching SNP was counted as a true positive; the

remaining connected components were counted as false negatives. We tried dif-

ferent threshold including r2 ≥ 0.1, r2 ≥ 0.5, r2 ≥ 0.7, and r2 ≥ 0.8, and found

that while using the thresholds other than r2 ≥ 0.1 did not substantially in-

crease the number of true positives, they yielded many false positives, primarily

non-causal variants somewhat correlated with real effects. We therefore used

r2 ≥ 0.1 as the threshold for reporting results.

To be more favorable to the non-parsimonious methods, we used a similar

grouping strategy to define the number of false positives. SNPs reported by a

method but with r2 < 0.1 to any SNP in a gold-standard connected component

were grouped into false-positive connected components using r2 ≥ 0.05, and each

false-positive connected component was then counted as a single false positive.

For SAPPHO, MultiPhen-Selection and univariate tests, the methods which

provide the subset of phenotypes associated with each variant, we performed

subsequent analyses to assess the ability to detect the correct variant-phenotype

associations.
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In addition to performing assessments with the original ARIC data, we also

performed assessments in which the ARIC data was augmented with with ran-

dom phenotypes generated as independent and identically distributed standard

normal random variables. We performed tests with 3, 6, and 10 random phe-

notypes added to the 3 ECG phenotypes. These assessments were designed to

identify robustness of methods when phenotypes with shared genetic factors are

unknown.

SAPPHO was then run in summary mode using sufficient statistics from

CHARGE analyses. The sufficient statistics included phenotype covariances,

phenotype-genotype regression coefficients and standard errors, allele frequen-

cies, genotype-genotype covariances, and sample numbers for each phenotype-

genotype association. For SAPPHO-C, the difference in sample numbers compli-

cated the likelihood ratio term in the score statistics, and the computational ex-

pense increased dramatically as more associations were included into the model;

therefore, only SAPPHO-I was run in this case. Permutations were performed

by randomly resampling 100,000 individuals from the ARIC primary data. To

be more specific, individuals from ARIC data were resampled with replacement

for 100,000 times to construct 100,000 ‘new’ individuals. With this procedure,

the genotype allele distribution for resampled population should be consistent

with that of the ARIC population. Shuffling and subsequent steps were then

performed exactly as for the ARIC primary data to preserve the underlying

phenotype-phenotype correlation was preserved. Results for 0.05 FDR used 10

population-wide, genome-wide permutations. The methods for constructing the

gold standard and assessing true and false positives were the same as for the

ARIC primary data.

To assess the biological relevance of new associations identified as significant

by SAPPHO for the CHARGE cohort, enrichment analysis was performed for

genes detected by SAPPHO-I at 0.05 FDR. The analysis focused on the curated

gene sets including BIOCARTA, KEGG, REACTOME, and GO pathways as

aggregated by MSigDB [24]. For this analysis, a 2 × 2 contingency table was

constructed for each pathway, with 0/1 columns denoting whether the gene was
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detected by SAPPHO-I at 0.05 FDR as the columns, and 0/1 rows denoting

whether that gene was in the pathway. Fisher’s exact test was then run on each

contingency table to obtain a one-sided p-value for a one-sided test of enrich-

ment. We performed this assessment first for all the loci reported by SAPPHO-I.

We then modified the procedure to account for the possibility that some of the

pathway assignments found in MSigDB may have been influenced by the GWAS

contributing to CHARGE, whose data we are using. Our modification was to

exclude all gold-standard loci from consideration, removing them both from the

SAPPHO-I results and from the gene sets. We then performed 2×2 contingency

enrichment analysis as before but restricted to the non-gold-standard loci.

2.8. Assessment with simulated data

Methods were run on simulated data to gain further insight into differences

in performance due to controlled aspects of genetic and environmental archi-

tecture of complex phenotypes. Simulations followed previous protocols used

to assess GWiS and other gene-based tests [10]. Simulated data sets included

1,000,000 independent SNPs for 10,000 individuals. Minor allele frequencies for

each SNP were generated uniformly between 0.01 and 0.5 to model common

variants. Three sets of simulations were done using frameworks denoted ‘genes

only’, ‘genes and environment’, and ‘genes only with random phenotypes’. Each

phenotype y with genotype vector x was simulated as

y = µ+ (x− 2p) · β + ε
√

1− σ2
G, (21)

where µ is the overall phenotype mean, p is the vector of minor allele frequencies,

β is the vector of regression coefficients for the scenario, ε is a unit normal

random variable, and σ2
G is the genetic variance,

σ2
G =

∑
k

2pk(1− pk)β2
k

where pk denotes the minor allele frequency of SNP k. The entry βk = 0 if SNP

k is not associated with the phenotype. For an associated SNP,

βk =

√
Vk

2pk(1− pk)
.
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The term Vk is chosen based population size N and specified type I and type II

error rates α1 and α2 for univariate tests as

Vk =
(z1 − z2)2

N
.

For a two-tailed test, z1 = Φ−1(1 − α1/2). The term z2 is set by the de-

sired type II error rate α2 ≡ 1 − power as z2 = Φ−1(α2). The function

Φ−1 is the inverse of the standard normal cumulative distribution with Φ(z) ≡∫ z
−∞ du exp(−u2/2)/

√
2π. With this setting, a SNP with regression coefficient

βk will have the specified power at threshold α. All simulations were performed

5 independent times, including 10 sets of permutations each to determine the

0.05 FDR threshold.

In the ‘genes-only’ scenarios, phenotypic correlations were due entirely to

shared genetic variants with no environmental effects. These simulations con-

sidered 6 phenotypes and 24 SNPs with causal effects. Simulations were per-

formed separately for 3 scenarios reflecting increased sharing of genetic factors:

independent, in which 4 SNPs were associated with each phenotype and no

SNPs shared between phenotypes (24 total pairwise SNP-phenotype associa-

tions); block, in which the 6 phenotypes were divided into 2 blocks, and each

block was associated with 12 SNPs (72 total SNP-phenotype associations); and

full, in which the 24 SNPs contributed to each of the 6 phenotypes (144 total

SNP-phenotype associations). Effects for all SNPs were set to have 50% power

at 5× 10−8 threshold.

For ‘genes-and-environment’ simulations, phenotypic correlations were due

to both genetic and environmental effects. Two scenarios were simulated in

this case: weak environment and strong environment. For weak environment, 4

phenotypes were partitioned into 2 blocks of 2 phenotypes; phenotypes within

the same block are correlated through environmental effects, while phenotypes

across different blocks are not; for strong effects, the 4 phenotypes are all cor-

related through environmental effects. For these scenarios, the random variable

ε for each phenotype p (Eq.21 ) follows a multivariate normal with Var(εp) = 1

and with covariance Cov(εp, ε
′
p) determined by a predefined environmental co-
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variance structure. For the weak environment simulation, the 4× 4 covariance

matrix is a block matrix of two matrices of size 2, and for strong environmental

simulation, all elements of the 4×4 matrix are non-zero. For this study, we chose

to set the correlation for different environmentally correlated phenotypes to 0.5.

For weak environment, SNPs were associated with the phenotypes in 4 modes:

different-block-same-effect, where each SNP is associated with two phenotypes,

one from each block, and the effects are in the same direction; different-block-

different-effect, where each SNP is associated with two phenotypes, one from

each block, and the effects are in opposite directions; same-block-same-effect,

where each SNP is associated with two phenotypes from the same block, and

the effects are in the same direction; same-block-different-effect, where each

SNP is associated with two phenotypes from the same block, and the effects

are in opposite directions. For strong environment, SNPs were associated with

the phenotypes in 2 modes: same effect, where SNPs are correlated with all

phenotypes with effects of the same direction; different effect, where SNPs are

correlated with first two phenotypes with positive effects, and the last two phe-

notypes with negative effects. Different directions of effect were represented by

different signs for the regression coefficients, with magnitudes defined based on

type I and type II error rates exactly as in the ‘genes-only’ simulation. All effects

were simulated to have 50% power at 5 × 10−8 univariate test threshold. For

weak environment, 24 SNPs were simulated and divided equally into 4 modes,

with 6 SNPs in each mode, ending up with 48 total associations; for strong

environment, 24 SNPs were simulated and divided equally into two modes, with

12 SNPs in each mode, ending with 96 total associations. With this set of

simulation assessed the capability of different methods to detect SNPs whose

association patterns have the same or opposite direction from the environmental

association patterns.

For the ‘mixture of genetic and non-genetic phenotypes’ simulations, we at-

tempted to generate scenarios similar to the real ARIC data with known asso-

ciation patterns. Therefore, 13 total phenotypes were simulated, and the simu-

lations were done with three scenarios: ONE association, where all active SNPs

23

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 28, 2018. ; https://doi.org/10.1101/273540doi: bioRxiv preprint 

https://doi.org/10.1101/273540


were associated with phenotype 1; TWO associations, where all active SNPs

were associated with phenotypes 1 and 2; and THREE associations, where all

active SNPs were associated with phenotypes 1, 2, and 3. For each scenario, all

active SNPs follow the same association pattern, with the number of associated

phenotypes differing between the scenarios. The effect of each association was

simulated such that each SNP has 50% power at 5 × 10−8 threshold, with the

two associations and three associations effect calculated as follows using P to

denote power:

Punivariate = 1− (1− PTWO)2 =
1

2
(22)

which gives us PTWO = 0.293.

Punivariate = 1− (1− PTHREE)3 =
1

2
(23)

which gives us PTHREE = 0.206. 24 SNPs were simulated to be associating

variants in each scenario, yielding 24, 48, and 72 total associations.

3. Results

3.1. Comparison of performance for different methods on ARIC data

For evaluation with primary data, both SAPPHO-I and SAPPHO-C, to-

gether with other pleiotropy methods, were applied to identify shared genetic

contributions to ECG traits (Fig. 2). Methods were calibrated using permu-

tations to identify the appropriate threshold corresponding to a 0.05 FWER

for genome-wide tests of 3 phenotypes. The conventional threshold for univari-

ate tests of 3 independent phenotypes would be (5/3) × 10−8 = 1.67 × 10−8.

Calibration by permutation for univariate tests gave a single-test threshold of

1.068 × 10−8. With ARIC data, SAPPHO-C was able to recall 15 known loci,

better than any other methods, followed by SAPPHO-I, finding 13 known loci

(Fig. 2). The MultiPhen and SHet methods are next best in performance, re-

turning 8 or 9 true positives, but no better than standard univariate tests. The

methods PCH and SHom perform worse than univariate tests (Fig. 2, Supple-

mentary Table 2).
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We then investigated the variants identified by each method. The set identi-

fied by SAPPHO included the variants identified by all other methods, except for

a single locus found by SHet. This SNP, rs1896312, has known positive associ-

ations with PCHARGE PR = 1.151× 10−34 and PCHARGE QRS = 2.626× 10−9.

P-values from ARIC for univariate tests were PARIC PR = 1.5 × 10−6 and

PARIC QRS = 3.3× 10−3. The p-value returned by SHet was 2.94× 10−9, bet-

ter than its FWER=0.05 threshold value 1.52 × 10−8. The SNP was added

to both SAPPHO-I and SAPPHO-C models, but did not pass the 0.05 FWER

threshold. The reason that this loci was only detected by SHet is that as ob-

served with ARIC data and simulated data, SHet is powered to find variants

that have weak associations across all or most of the given phenotypes. For

SAPPHO, given its stringency for adding associations to the model, only the

PR association was detected, and thus, this SNP was not reported as being

significant.

Two SNPs were identified by multiple methods, yet were not in the gold-

standard: rs7638275 and rs17608766. rs7638275 has PCHARGE PR = 0.845,

PCHARGE QRS = 0.41, and PCHARGE QT = 0.4667, and was therefore not in-

cluded in the gold-standard. However, it has PARIC PR = 5.27 × 10−13 and

PARIC QRS = 1.97 × 10−6, strong evidence for a true association within the

ARIC subpopulation. We note that rs7638275 was reported as a rare variant

with low imputation quality for most cohorts in CHARGE, and therefore it was

not detected for any of the three ECG traits. In ARIC, however, rs7638275

was well imputed with a 1.5% minor allele frequency, and therefore detected

by methods including SAPPHO-I, SHet, MultiPhen, PCH, and univariate tests.

SAPPHO-C did not identify rs7638275 because its effect was partially explained

by correlated SNPs already in the model. We reached this conclusion by at-

tempting to add rs7638275 to the SAPPHO-C model; we found that its p-values

were much less significant, 2.11× 10−5 for PR and 0.01745 for QRS.

The other SNP, rs17608766, had p-values PCHARGE PR = 1.7 × 10−7 and

PCHARGE QRS = 1.2 × 10−5 for CHARGE, and PARIC PR = 1.4 × 10−7 and

PARIC QRS = 3.0×10−4 in ARIC cohort. It was not included the gold standard
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because none of its associations passed the p-value 5 × 10−8 threshold. This

SNP was found by both SHom/SHet and SAPPHO-I using data from ARIC

cohort. This SNP was also later found by SAPPHO-I run on CHARGE meta-

analysis results, which is strong evidence for its association with ECG traits

(Supplementary Table 3). This finding was supported by a recent study which

reported rs17608766, located in the gene GOSR2, to be associated with cardiac

structure and function [25], which exhibits SAPPHO’s capability to identify

novel pleiotropic associations.

3.2. Pleiotropy of ECG traits in ARIC and CHARGE

SAPPHO-I was run in summary mode on CHARGE meta-analysis summary

results to see whether any additional pleiotropic SNP could be identified. The

other methods were not run with CHARGE summary results, for two different

reasons: PCH and MultiPhen require primary phenotype and genotype data

which are not available for CHARGE, and SHom/SHet perform poorly based

on results from ARIC cohort and simulations. These results, together with the

association pattern obtained from ARIC and the gold-standard, are shown in

(Fig. 3).

The genetic architecture of ECG traits includes SNPs contributing to distinct

subsets of PR, QRS, and QT phenotypes. Given that ARIC is a subset of the

CHARGE cohort, the power to detect true associations using ARIC data is

smaller compared to using the entire CHARGE data. Therefore, for SAPPHO

and univariate tests run on ARIC, in some cases gold-standard SNPs were not

detected at all; in other cases, the strongest associations of a SNPs are retained

but other gold-standard associations are lost. As is seen in (Fig. 3), the predicted

number of associations is smaller than the expected number of associations,

and the numbers denoting count of real hits lie below the diagonal line. For

MultiPhen run on ARIC, however, the number denoting real hit counts all lie

on or above the diagonal line, indicating that more associations were found

for certain loci in the gold standard. Given the much smaller power of ARIC

compared to CHARGE, these are likely to be over-predicted associations from
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MultiPhen rather than true pleiotropic loci; this over-predicting behavior of

MultiPhen was later observed in the simulation studies as well (Supplementary

Table 4, association pattern).

With ARIC data, SAPPHO methods were able to retrieve more hits than

either MultiPhen or univariate tests. For CHARGE data, SAPPHO-I run in

summary mode was able to retrieve all the real hits in the gold standard. Ad-

ditional associations were found with SAPPHO-I for some gold standard loci,

yielding additional loci with pleiotropic effects (Table 3). The number of addi-

tional associations added depends on the tuning parameter; for this test we set

the γ parameter to allow for associations with p < 10−4 to be added.

For loci already part of the gold standard, two types of new associations

were added (Table 3): (1) a variant already associated with at least one trait

was associated with at least one additional trait; (2) a variant not previously

associated with any trait was associated with a new trait not yet associated with

that locus. In loci not part of the gold standard, SAPPHO detected 124 new hits

at 0.05 FDR. Most were associated with single traits, but the above-mentioned

SNP rs17608766 in GOSR2 was detected as pleiotropic. Pleiotropic effects at

the locus level were observed more frequently. For example, SLC12A7 contains

rs2334955 and rs4285270, which were associated with QT and PR respectively,

and KLHL38 contains rs4871397 and rs16898685, which were associated with

PR and QRS respectively. The linkage disequilibrium for each of these pairs

of SNPs is weak, R2 = 0.064 for rs2334955 and rs4285270 and R2 = 0.0017

for rs4871397 and rs16898685, suggesting two independent effects within each

locus. These associations reveal new genetic connections between different ECG

traits.

Our analysis of CHARGE has no known ground truth; therefore, we used

biological annotations to assess performance and gain insight. These assess-

ments tested for enrichment of genes identified at 0.05 FDR for membership in

annotated gene sets (see Methods). A total of 7246 gene sets were analyzed,

corresponding to a nominal p-value of 6.9× 10−6 for conventional significance.

Genes detected by SAPPHO at 0.05 FDR show strong enrichment signals for
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several pathways involved with cardiac physiology and activities (Supplemental

Table 5). The three most significant gene sets represent regulation of heart

contraction (p = 2.5× 10−19), muscle systems processes (p = 3.6× 10−19), and

cardiac conduction (p = 3.7 × 10−19). Additional notable categories include

regulation of heart rate (p = 3.0 × 10−17), heart process (p = 1.1 × 10−14),

and cardiac muscle cell action potential (p = 4.3 × 10−14). To ensure that

these findings were robust, we repeated the analysis but excluded the signifi-

cant findings from previously published GWAS. Gene sets specific to cardiac

electrophysiology remain highly significant, including regulation of heart con-

traction (p = 3.5 × 10−8), muscle systems processes (p = 2.3 × 10−9), cardiac

conduction (p = 1.6×10−7), as well as heart rate (p = 5.9×10−6), heart process

(p = 5.9×10−6), and cardiac muscle cell action potential (p = 3.1×10−6). These

findings support the conclusion that the novel loci with statistical associations

detected by SAPPHO increase are indeed causal for ECG traits.

Given that pleiotropy is observed for ECG traits, we asked whether variants

that affect the same subset of traits typically have the same direction of effect,

and whether this depends on the observed phenotypic correlation. For ECG

traits, Cor(PR,QRS) = 0.051, Cor(PR,QT) = −0.026, Cor(QRS,QT) = 0.168,

where Cor(x, y) stands for the correlation between the two traits x and y. The

consistency of direction of effects and phenotypic correlations for pleiotropic

SNPs detected by SAPPHO on CHARGE are shown in Table 4, where ‘+/+’

denotes the SNPs whose effects are in the same direction, and ‘+/-’ denotes

the count of SNPs whose effects are in different directions. Out of the 23 pairs

of association effects, 16 were consistent with the phenotypic correlations. The

probability that association effects were consistent with phenotype correlation

was 0.70 with a 95% binomial distribution confidence interval of [0.49, 0.84].

We conclude that SAPPHO is able to detect variants whether or not the direc-

tion of genetic effect matches the overall direction of correlation. We further

conclude that variants that contribute to the same pair of phenotypes can often

show different directions of effect, suggesting that distinct biological mechanisms

connect the variants to their downstream effects on ECG traits.
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3.3. Performance of different methods with additional null phenotypes

We also investigated performance of each method as noise was introduced

through addition of null phenotypes (Fig. 2). This assessment models a col-

lection of phenotypes where only small subsets share genetic factors, and these

subsets are unknown at the outset. The least robust method is SHom, which

makes the assumption that all traits share genetic factors. Other methods also

lose power when noise phenotypes are presented, though to a lesser degree. For

real-world application, variants are not likely to be associated with all inputed

phenotypes, making robustness when noise phenotypes are presented crucial.

3.4. Genes-only simulations

Methods were assessed with phenotypes with shared genetic factors but with-

out shared environmental contributions (Fig. 4). Three scenarios were consid-

ered, with increased sharing of genetic factors: independent, with 4 independent

SNPs contributing to each of 6 phenotypes; block, with 12 SNPs contributing

to one block of 3 phenotypes, and 12 other SNPs contributing to a second block

of 3 phenotypes; and full, with 24 SNPs contributing to all 6 phenotypes. In

general, all pleiotropy-based methods performed better with increasing shared

genetic factors. Univariate tests were run and real-positives were determined

with three methods: UNI where the 0.05 FDR threshold was used; UNILE with

LE standing for loose-empirical where the standard 5×10−8 threshold were used

for each association; UNISE with SE standing for stringent-empirical where the

5× 10−8 threshold was corrected with the number of phenotypes tested, which

in this case is 6.

The performance of SAPPHO, assessed as power to detect at genome-wide

significance, out-performed all other methods for the independent scenario.

Methods other than SAPPHO have lower power than univariate tests when phe-

notypes do not share causal variants. For the full scenario, pleiotropy methods

other than PCH and UNISE had power close to 100%, making the methods dif-

ficult to distinguish on this basis. For the block scenario, the MNS (MultiPhen-

non-select) and MS (MultiPhen-select) methods were somewhat better than
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other methods, outperforming SAPPHO-I, SAPPHO-C, and SHet by 1 to 2

hits in 2 out of 5 runs. These simulations suggest that SAPPHO’s superior

performance on real data comes in part from robust performance even when

pleiotropy is absent.

3.5. Genes-and-environment simulations

As described in the method section, for the genes-and-environment simula-

tions, phenotypic correlations were set to be due to both genetic and environ-

mental effects. Simulations were run in two modes: strong environment and

weak environment.

For strong environment same-effect SNPs, most methods performed well ex-

cept for SHet and SAPPHO-C, which were unable to detect most associations

for this group of SNPs. SHom was able to detect all SNPs because the un-

derlying association pattern was same as the simulated pattern, namely the

variant is associated with all phenotypes. Although the underlying assumption

for SAPPHO-I did not match the simulation pattern, it performed well because

all the SNPs followed the same association pattern; thus the pattern prior gives

its power to detect all the variants.

Unexpectedly, SAPPHO-C performed poorly in the same-effect setting. The

reason is likely because the variance explained by one association is compensated

through correlation with other phenotypes, with the result that adding a variant

to the model does not improve the model score. To explore this effect further,

we calculated the SAPPHO-C score for the true model and found it to have

a large negative score. We can also explain this effect by noting that the BIC

penalty assumes that regression coefficients for a SNP have independent sign,

whereas the architectures in this scenario force the regression coefficients to have

the same sign, resulting in a penalty that is too large.

For strong environment different-effect SNPs, all methods performed well,

except for SHom, due to the difference in the simulated data and its underlying

assumption.

For weak environment simulations, SNPs were simulated to follow 4 different
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patterns: different-block-same-effect(dbse), different-block-different-effect(dbde),

same-block-same-effect(sbse), same-block-different-effect(sbde). Different/same-

block denotes whether the environmental correlation is identical with the genetic

pleiotropic effects, and same/different effect denotes whether the effects for the

simulated pleiotropic SNPs are of the same direction or not. For dbse, SAPPHO-

C and MultiPhen performed the best by finding all associated SNPs; followed by

SAPPHO-I, SHet, and PCH; for dbde, SAPPHO-C and MultiPhen again per-

formed the best. This is somewhat similar to the genetic only simulation, where

the correlation between phenotypes are only through genetic effect, and SNPs

are correlated with both blocks. For sbse, SAPPHO-I performed the best, while

SAPPHO-C, SHet, and SHom performed poorly; this situation is similar to the

same-effect SNPs for strong environment simulation, where a SNP is associated

with all phenotypes in a block, with positive effects. Similarly, the performance

on sbde was same as different-effect for strong environment simulation, with all

methods performing well. For both simulations, the original version of Multi-

Phen using ordinal regression was again performed, yielding outcomes similar

to using Gaussian regression, but with much longer running time.

3.6. Mixture of genetic and non-genetic phenotypes

We performed simulations with genetic effects in 3 out of 13 total pheno-

types to further investigate the relative performance of SAPPHO and MultiPhen

and, in cases where SAPPHO performed less well, whether the cause was the

underlying statistical model or the greedy rather than full model search. These

simulations used three scenarios labeled ONE, TWO, and THREE. In scenario

ONE, all associations were with phenotype 1. In scenario TWO, all associa-

tions were pleiotropic with phenotype 1 and phenotype 2. In scenario THREE,

all associations were pleiotropic with phenotypes 1, 2, and 3. Phenotypes 4-13

were random in all simulations, with no genetic component. Other methods

performed less well (Supplemental Table 3).

As described previously (see model score in the Method section), SAPPHO

has a single tuning parameter defined by the least significant univariate p-value
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that can be added to an association model. Because model scores are calibrated

by permutation, this parameter does not affect stringency in terms of FDR or

FWER. It can affect power, however, because a more stringent threshold will

reject weaker true associations. It also affects computational cost because a

looser threshold yields a longer list of candidate variants. We used thresholds

5× 10−4, 2.5× 10−4, 10−4, 10−5, 10−6 (Supplementary Table 4).

Using the loose threshold of 5× 10−4, SAPPHO-I outperformed MultiPhen

for scenario ONE, performed equivalently for scenario TWO, and had slightly

less power than MultiPhen for scenario THREE (Fig. 7). To determine whether

the power disadvantage was due to the greedy search or to the statistical model,

we also calculated the score of model defined by the true associations. In this

case, SAPPHO performed better than MultiPhen. We conclude that SAPPHO’s

performance could be improved using a more sophisticated model search, for

example considering considering single and double associations in a single step,

or adding backward steps.

We also performed simulations using the more stringent threshold of 10−6

for adding associations. In scenario ONE, SAPPHO still out-performed Mul-

tiPhen. In scenarios TWO and THREE, SAPPHO performed worse, in large

part because the threshold prevented true associations from being considered.

At 0.05 FDR, both SAPPHO and MultiPhen returned false positive results.

SAPPHO false positives tend to be spurious associations of a variant with an in-

dividual phenotype. MultiPhen tends to over-predict associations: given a true

association to a phenotype, MultiPhen often predicts additional false-positive

associations for the same SNP with additional phenotypes. These results sup-

port the hypothesis that the additional pleiotropic associations found by Multi-

Phen in the ARIC data are false positives rather than true associations, consis-

tent with the lack of significance for these associations in the larger CHARGE

data set.
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4. Discussion

We have presented a Bayesian-motivated method, SAPPHO, designed to

detect pleiotropic effects in GWAS. SAPPHO exploits previously observed as-

sociation patterns to identify additional variants following the same pattern.

Representative methods were selected for comparison: SHom and SHet, which

pool summary statistics of all variant-phenotype associations to define a com-

bined test-statistic; PCH, which constructs linear combinations of phenotypes

for genotype data to be regressed on; and MultiPhen, which performs reverse

regression such that the phenotypes are treated as predictors to explain the

variance of genotypes. In applications to a real data set, ECG phenotypes from

ARIC, with known positives available from the much larger CHARGE study,

SAPPHO performed better than other pleiotropy methods in discovering the

true associations at genome-wide significance. SAPPHO also performed best

when additional random phenotypes augmented the true phenotypes, an assess-

ment of performance when pleiotropy involves only a subset of the phenotypes

in a study.

SAPPHO uses an association model that is in the exponential family, which

makes it amenable to use with summary statistics rather than individual pheno-

type-genotype data in the context of meta-analyses. In applications to meta-

analysis data from CHARGE, SAPPHO identified 295 loci at 0.05 FDR, cor-

responding to 171 loci in the genome-wide significance gold standard and 124

novel loci. Gene sets corresponding to cardiac electrophysiology are highly en-

riched for these novel loci, supporting a conclusion that SAPPHO has identified

many additional relevant loci beyond those previously reported. While some

of the additional loci may arise from using a less stringent 0.05 FDR threshold

compared with the 0.05 FWER threshold, we also note that there are no es-

tablished methods to define significant loci for pleiotropic tests. Investigating

the direction of effect for pleiotropic variants, we find that variants affecting

pairs of traits often have relative directions of effect that are different and that

often do not match the overall phenotypic correlation. These findings suggest
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that multiple independent biological mechanisms connect pleiotropic variants to

downstream phenotypes.

Simulated phenotype and genotype data sets were used to explore the rea-

sons for the superior performance. These studies suggested that the version of

SAPPHO that models the full phenotype covariance matrix, SAPPHO-C, can

actually perform poorly when phenotypes are strongly correlated. A simplified

version in which phenotypes are modeled as independent when conditioned on

genetic effects, SAPPHO-I, retains robust performance. SAPPHO-I is also more

computationally efficient and more amenable to use with summary data from

meta-analysis.

Simulations also demonstrated that SAPPHO can have an advantage over

univariate tests even applied to a mixture of phenotypes in which some lack

genetic effects. The Bayesian prior learns this pattern and is able to boost

associations with the phenotypes that have genetic effects.

The MultiPhen method also performed well. It out-performed SAPPHO in

some simulation settings involving weaker effects, although it had a drawback

of over-predicting spurious associations for variants with true associations for a

subset of phenotypes.

SAPPHO depends on a single adjustable parameter, which in effect deter-

mines the minimum effect strength that can be entered into the genetic model.

Permitting weaker effects, expressed as a looser univariate p-value, improved

SAPPHO’s performance. We found, however, that the greedy forward search

implemented by SAPPHO occasionally yields a local rather than global opti-

mum, as assessed by calculating the score of the true model. Improving the

search heuristic, for example by permitting the model to add two associations

simultaneously, may improve the performance.

We conclude that SAPPHO, and particularly the SAPPHO-I implementa-

tion for summary statistics, is a powerful method for discovering pleiotropic

patterns of association in the context of single studies, with access to individual

genotype and phenotype data, and also to meta-analyses. Application to large

compendiums of GWAS results, for example dbGaP or the UK BioBank, could
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lead to new discoveries of genetic associations and patterns of shared genetic

architecture for human phenotypes and disease.
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Figure 1: Histogram of pleiotropic variants. Counts are for variants associated with at least

one trait at genome-wide significance (p < 5 × 10−8) [1]; no attempt was made to correct for

correlation between variants (linkage disequilibrium) or between traits. The number of total

variants is 17607, and total number of phenotypes is 785.
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Figure 2: Pleiotropy methods were used to detect associations with the PR, QRS, and QT

phenotypes in the ARIC cohort. The three measured phenotypes were then augmented with 3,

6, and 10 noise phenotypes. SAPPHO had the greatest power to detect associations regardless

of noise phenotypes were present. The pleiotropy methods SHet, MS, MNS had power similar

to standard univariate tests. PCH and SHom had lower power than univariate tests, and

the performance of SHom degraded further as noise phenotypes were added. All methods

were controlled for type I error at FWER = 0.05. Methods were MultiPhen-Selection (MS),

Mutiphen-NonSelection (MNS), Principal Components of Heritability (PCH), Homogeneous

Test Statistics (SHom), Heterogeneous Test Statistics (SHet), and univariate tests corrected

using permutations (UNI).
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Figure 3: Number of associations recovered versus number previously known (p < 5 × 10−8

in CHARGE for univariate single phenotype test). First row: CHARGE meta-analysis data

as analyzed by univariate tests for each phenotype (p < 5 × 10−8) and by SAPPHO-I (0.05

FDR). The first row denotes univariate test (with p < 5 × 10−8 cut-off) and SAPPHO-I run

on CHARGE meta-analysis results; Second row: ARIC data as analyzed by SAPPHO-I and

SAPPHO-C using 0.05 FWER threshold. Third row: ARIC data as analyzed by MultiPhen

and univariates test using 0.05 FWER threshold, equivalent to p < 5 × 10−8/3 for univari-

ate tests. More discoveries are made with CHARGE (top row) because it is a larger cohort

and because 0.05 FDR is a less stringent threshold than 0.05 FWER. SAPPHO has greater

power for the ARIC cohort than MultiPhen or univariate tests. Pleiotropic associations dis-

covered by MultiPhen in the ARIC cohort (bottom left panel) may be over-predictions as

these associations were not genome-wide significant in the much larger CHARGE cohort.
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Figure 4: Power for associations of 6 phenotypes simulated to be correlated through genetic

effects only. Scenarios are Independent (6 phenotypes, no pleiotropy), Block (2 blocks of

3 phenotypes each), and Correlated (all 6 phenotypes correlated). Error bars indicate 95%

confidence intervals estimated from 5 repeated runs and a binomial distribution. For the in-

dependent scenario lacking pleiotropy, SAPPHO methods performed the best. For the block

correlation scenario, MultiPhen leading performed best, followed by SAPPHO. For a single

correlated block, all pleiotropy methods perform well. Methods were MultiPhen-NonSelection

(MNS); MultiPhen Ordinal regression (MO); MultiPhen-Selection (MS); univariate test cor-

rected with permutation (UNI); univariate test at loose empirical threshold p < 5 × 10−8

(UNILE); univariate test at stringent empirical threshold p < 5 × 10−8/6 for 6 phenotypes

(UNISE).
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Figure 5: Power to detect associations for scenarios involving strong environmental correla-

tions. Two sets of SNPs each containing 12 variants were simulated to contribute to 4 pheno-

types. For the same-direction scenario, all 12 SNPs have positive effect with all phenotypes;

for the different-direction scenario, the 12 variants had positive effects for the first 2 pheno-

type and negative effects for the second 2 phenotypes. SAPPHO-C and SHet were unable

to detect same-effect SNPs; SHom could not detect different-direction SNPs. Methods were

MultiPhen-NonSelection (MNS); MultiPhen Ordinal regression (MO); MultiPhen-Selection

(MS); univariate test corrected with permutation (UNI).
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Figure 6: Power to detect associations for scenarios involving weak environmental corre-

lations. Four sets of SNPs each containing 6 variants were simulated to contribute to 4

phenotypes. Scenarios as described in the main text were DBSE, different-block-same-effect;

DBDE, different-block-different-effect; SBSE, same-block-same-effect; and SBDE, same-block-

different-effect. SAPPHO-I and MultiPhen performed the best over all scenarios. SAPPHO-

C experiences dramatic loss of power under the sbse scenario, similar to its loss of power

for similar scenarios involving strong environmental correlations. Methods were MultiPhen-

NonSelection (MNS); MultiPhen Ordinal regression (MO); MultiPhen-Selection (MS); uni-

variate test corrected with permutation (UNI).
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Figure 7: Simulations of a mixture of genetic and non-genetic phenotypes, with 1, 2, or 3

genetic phenotypes embedded as part of 13 total phenotypes. The remaining non-genetic

phenotypes generated as standard normal random variables. The SAPPHO parameter was

set to include associations with p-value < 5 × 10−4. Methods were MultiPhen in selection

mode (MS), SAPPHO-I with a greedy forward (SAPPHO-I), and the SAPPHO-I score for

the true model (True Model). The greedy forward search limits the power of SAPPHO-I; a

more sophisticated strategy could improve its power.
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Method Run Time

SHom 0m2s

SHet 0m13s

SAPPHO-I 1m1s

MultiPhen NonSelection Gaussian 2m2s

PCH 3m38s

SAPPHO-C 4m39s

MultiPhen Selection Gaussian 4m55s

MultiPhen NonSelection Ordinal 30m15s

MultiPhen Selection Ordinal 115m28s

Table 1: Running time for different methods for a simulation with 10,000 individuals, 6

phenotypes, and 638 SNPs of which 24 had associations, with Core i5 2.9 GHz CPU, 8

GB RAM. 12 SNPs are associated the first three phenotypes, while the other 12 SNPs are

associated with the second three phenotypes.
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Parsimonious Non-Parsimonious

Phenotype selection SAPPHO-I Univariate

SAPPHO-C MultiPhen-Selection

No phenotype selection SHom, SHet, PCH

MultiPhen-NonSelection

Table 2: Assessed methods provide qualitatively different types of predictions. ‘Parsimonious’

indicates that a single SNP is selected from an LD block, whereas ‘Non-Parsimonious’ indicates

that all SNPs in an LD block are reported. ‘Phenotype selection’ indicates that the subset of

associated phenotypes is reported, whereas ‘No phenotype selection’ indicates that the results

do not specify which phenotypes are associated with a SNP and which are not.
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Univariate SAPPHO

Locus GWS 0.05 FDR SAPPHO, SNPs PPR PQRS PQT

LRIG1 QRS PR, QRS rs2242285 1.3× 10−6 2.0× 10−8 0.094

HERPUD2 PR PR, QRS rs11763856 4.5× 10−10 1.82× 10−6 0.018

SIPA1L1- PR, QRS PR, QRS, QT rs17767398 6.4× 10−13 1.3× 10−10 3.1× 10−5

C14orf56

LAP3P2 QRS PR, QRS rs9470361 5.6× 10−7 8.8× 10−29 0.0048

EPS15 PR PR, QRS rs17106627 2.7× 10−8 2.2× 10−7 0.49

SLC35F1- QRS,QT PR,QRS,QT rs11153730 1.2× 10−6 1.3× 10−19 5.2× 10−67

C6orf204 (plus 3 additional)

LOC401324 QRS PR, QRS rs340389 6.4× 10−7 2.6× 10−8 0.011

PR rs12673438 9.3× 10−8 0.21 0.53

NOS1AP- QT QT rs12143842 0.12 1.3× 10−4 8.97× 10−210

OLFML2B QRS rs4656349 0.22 3.1× 10−6 5.23× 10−134

(plus 10 additional)

CAV1- PR PR rs3807989 8.7× 10−69 5.8× 10−6 6.6× 10−5

CAV2- QRS rs6867 4.0× 10−20 1.3× 10−6 2.0× 10−4

TES QT rs7801180 1.8× 10−15 1.7× 10−6 1.4× 10−6

SLC8A1 QT QT rs12997023 3.1× 10−6 0.06 5.4× 10−14

PR rs4993292 4.0× 10−6 0.06 2.3× 10−13

HETR5B- QRS QRS rs2160411 5.0× 10−3 1.3−9 2.3× 10−4

STRN PR rs6744560 1.2× 10−7 6.5× 10−4 0.45

FADS2 QT QT rs174577 5.0× 10−4 2.2× 10−5 1.2× 10−10

PR rs2727270 3.1× 10−6 0.34 0.22

SKI PR PR rs4648819 4.7× 10−10 1.1× 10−3 1.8× 10−2

QRS rs12045693 1.5× 10−3 6.7× 10−6 0.12

SMARCAD1 QT QT rs183993 1.9× 10−4 0.98 8.8× 10−9

PR rs2639793 3.6× 10−6 0.34 0.11

CCDC141- PR,QT PR rs922984 1.8−11 0.11 3.6× 10−3

TTN PR rs10497523 2.6× 10−8 0.42 0.18

QT rs7600330 0.045 0.068 3.2× 10−8

QRS rs17362588 1.01× 10−6 2.2× 10−7 0.087

Table 3: Additional novel associations detected by SAPPHO-I in known gold-standard loci.

Locus: Gene symbol or symbols spanning an associated region. Univariate GWS: phe-

notypes detected at 5 × 10−8 genome-wide significance threshold. SAPPHO 0.05 FDR:

phenotypes detected by SAPPHO at 0.05 FDR. SAPPHO, SNPs: SNPs detected by SAP-

PHO, with rows corresponding to the previous SAPPHO 0.05 FDR column. PPR, PQRS,

PQT : univariate p-values from CHARGE meta-analysis. New associations added to a locus

are in two categories: (1) a variant already associated with at least one trait is associated

with a new trait or traits (the first 7 loci in the table); (2) a new variant is introduced and is

associated with a trait not previously associated with the locus (the last 8 loci in the table).
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Phenotypes Correlation +/+ +/−

PR-QRS 0.051 9 3

QRS-QT 0.168 3 4

PR-QT −0.026 0 4

Table 4: Consistency of direction of effects and phenotypic correlations for each pair of ECG

phenotypes. ‘Correlation’ denotes the correlation of each phenotype-phenotype pair; ‘+/+’

denotes the count of SNPs whose effects are in the same direction; ‘+/−’ denotes the count of

SNPs whose effects are in different directions. Of the 23 pairs of association effects, 16 were

consistent with the phenotypic correlation, corresponding to a probability of 0.70 (binomial

parameter 95% confidence interval [0.49, 0.84]) that the direction of effect agreed with the

phenotypic correlation. These results demonstrate that SAPPHO is able to detect variants

whether or not the direction of genetic effect matches the overall direction of phenotypic

correlation.
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Description for supplementary tables

Supplementary Table 1 : Gold-standard from CHARGE meta-analysis

results at different thresholds for generating the connected components.

Supplementary Table 2 : SNPs detected by pleiotropy methods on ARIC

data at 0.05 FWER. For each table, multiple SNPs can belong to the same

locus. The number of loci detected by each method is shown in Fig. 2.

Supplementary Table 3 : All variants detected by SAPPHO-I on CHARGE

meta-analysis results at 0.05 FDR.

Supplementary Table 4 : Results for simulation with noise phenotypes at

0.05 FDR. Sheet 1: Number of true positives and false positives for all

methods; Sheet 2: Number of true positives for SAPPHO-I fed with true

associations at different thresholds, and MultiPhen in select mode; Sheet

3: association patterns for SAPPHO-I and MultiPhen in select mode:

Missed entirely denotes the number of variants missed entirely; Under-

predicted denotes the number of variants detected but with a subset of

true associations found; Exactly-predicted denotes variants detected with

the correct association pattern; Over-predicted denotes variants detected

with a mix of true associations and spurious associations; False positives

denotes variants reported but lacking any true associations.

Supplementary Table 5: Gene sets enriched for loci reported by SAPPHO-

I at 0.05 FDR for CHARGE ECG meta-analysis, calculated for all loci and

for novel findings defined by excluding the ECG gold-standard loci. Mean-

ing of the columns: ‘Pathway’ denotes the pathway name; ‘pathway gene

counts’ denotes the number of genes in that pathway; ‘SAPPHO gene

counts’ denotes number of all genes detected by SAPPHO; ‘SAPPHO

11’ denotes the number of genes detected by SAPPO and in that corre-

sponding pathway; ‘SAPPHO 10’ denotes the number of genes detected

by SAPPHO but not in the pathway; ‘SAPPHO 01’ denotes the number
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of genes in the pathway but not detected by SAPPHO; ‘SAPPHO 00’ de-

notes number of genes not in the pathway and not detected by SAPPHO;

‘SAPPHO pval’ denotes the pvalue of Fisher’s exact test; ‘SAPPHO loci’

denotes the genes in the ‘SAPPHO 11’ column. The following columns are

of the same meaning for the SAPPHO loci excluding the gold-standard.

60

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 28, 2018. ; https://doi.org/10.1101/273540doi: bioRxiv preprint 

https://doi.org/10.1101/273540

	Introduction
	Methods
	Genetic model
	Model prior
	Model score
	Model search and variant ranking
	Test statistic and significance thresholds
	Other methods
	Assessment with real data
	Assessment with simulated data

	Results
	Comparison of performance for different methods on ARIC data
	Pleiotropy of ECG traits in ARIC and CHARGE
	Performance of different methods with additional null phenotypes
	Genes-only simulations
	Genes-and-environment simulations
	Mixture of genetic and non-genetic phenotypes

	Discussion

