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Abstract 

 

Dynamic causal modelling (DCM) for resting state fMRI – namely spectral DCM – is a recently 

developed and widely adopted method for inferring effective connectivity in intrinsic brain 

networks. Most research applying spectral DCM has focused on group-averaged connectivity 

within large-scale intrinsic brain networks; however, the consistency of subject- and session- 

specific estimates of effective connectivity has not been evaluated. Establishing reliability 

(within subjects) is crucial for its clinical use; e.g., as a neurophysiological phenotype of disease 

progression. Effective connectivity during rest is likely to vary due to changes in cognitive, 

behavioural, and physical states. Determining the sources of fluctuations in effective 

connectivity may yield greater understanding of brain processes and inform clinical 

applications about potential confounds. In the present study, we investigated the consistency of 

effective connectivity within and between subjects, as well as potential sources of variability 

(e.g., hemispheric asymmetry). We further investigated how standard procedures for data 

processing and signal extraction affect this consistency. DCM analyses were applied to four 

longitudinal resting state fMRI datasets. Our sample consisted of 20 subjects with 653 resting 

state fMRI sessions in total. These data allowed to quantify the robustness of connectivity 

estimates for each subject, and to draw conclusions beyond specific data features. We found that 

subjects contributing to all datasets showed systematic and reliable patterns of hemispheric 

asymmetry. When asymmetry was taken into account, subjects showed very similar 

connectivity patterns. We also found that various processing procedures (e.g. global signal 

regression and ROI size) had little effect on inference and reliability of connectivity for the 

majority of subjects. Bayesian model reduction increased reliability (within-subjects) and 

stability (between-subjects) of connectivity patterns.  

 

Keywords: Dynamic causal modelling; Resting State; fMRI; Effective connectivity; Reliability; 

Variability; Longitudinal designs  
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Introduction 

 

During quiet wakefulness the brain shows several patterns of coherent activity, referred to 

as resting state networks (RSNs; Damoiseaux et al., 2006). RSNs include regions that are both 

functionally and structurally related (Van Den Heuvel, Mandl, Kahn, & Pol, 2009). Most studies 

investigating resting state networks are based on functional connectivity, which is defined as 

the statistical dependency among brain signals. However, interactions between brain regions 

are directed and are therefore not fully captured by (undirected) functional connectivity 

(Friston, 2011; Razi & Friston, 2016). Various methods have been developed to infer directed 

influences among brain regions, among which a prominent framework is Dynamic Causal 

Modelling (DCM; Friston, Harrison, & Penny, 2003).  

DCM uses Bayesian model inversion procedures to estimate effective connectivity among 

neural populations from observed signals (e.g., BOLD-signals). It incorporates a biophysically 

plausible hemodynamic model (i.e., the Balloon model; Buxton, Wong, & Frank, 1998) to 

generate predicted BOLD-responses from neuronal states. Initially DCM was developed to 

estimate effective connectivity for experimental (task) fMRI studies (Friston et al., 2003). 

Recently, a DCM - referred to as spectral DCM (spDCM) - has been developed specifically to infer 

effective connectivity in resting state fMRI (Friston, Kahan, Biswal, & Razi, 2014). This DCM is 

based on a generative model of (complex) cross spectra between regional BOLD signals, and 

uses a power-law function (in the spectral domain) to model (random and endogenous) 

neuronal fluctuations. Fitting spectral (second-order) data features makes spDCM deterministic, 

which renders the estimation scheme computationally and statistically more efficient; 

compared to its stochastic counterpart that fits the (first-order) timeseries per se (i.e., stochastic 

DCM; Li et al., 2011).  

The construct validity of spectral DCM has been established using both simulated and 

empirical data (Friston et al., 2014; Razi et al., 2015). Friston et al. (2014) simulated resting 

state fMRI timeseries for a network with three regions. Their results showed that spDCM 

estimates extrinsic effective connectivity with high accuracy, but tends to underestimate 

intrinsic connectivity (i.e., the inhibitory influence regions exert on themselves). In a subsequent 

in silico validation study, (Razi et al. 2015) demonstrated a similar accuracy for a network 

consisting of four regions. Interestingly, both studies showed that the root mean squared error 

(between the true and estimated connectivity) decreases with the number of scans. Both studies 

also showed that spDCM is sensitive for detecting group differences in effective connectivity. 

Most research using empirical data has focused on effective connectivity within the default 

mode network (e.g., Razi et al., 2015; Sharaev et al., 2016; Ushakov et al., 2016; Zhou et al. 

2018). Both Razi et al. (2015) and Sharaev et al., 2016 estimated connectivity within the ‘core’ 
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DMN, which included left and right intraparietal cortices (IPC), medial prefrontal cortex (mPFC), 

and posterior cingulate cortex (PCC). Both studies found reciprocal positive connectivity 

between IPC, and positive projections from lateral to medial brain regions. Ushakov et al. (2016) 

showed that adding extra regions (i.e., left and right parahippocampal gyri) to the four-region 

DMN did not have a substantial impact on its effective connectivity pattern. Zhou et al. (2018) 

showed that the salience and dorsal attention network have a negative influence on the core 

DMN, while the converse influence was slightly positive. Moreover, within the core DMN the 

same pattern of connectivity was found as in other spectral DCM studies.  

In summary, studies that have applied spectral DCM to the DMN have yielded quite 

consistent results. However, these studies generally focused on group-averaged connectivity. 

While group studies are very useful to establish predictive validity, a thorough examination of 

subject and session-specific differences in effective connectivity during rest is an outstanding 

challenge. Quantifying within-subject stability is especially important in the context of single-

patient diagnostics and predictions (Stephan et al., 2017). For other DCMs (e.g., DCM for task 

fMRI) test-retest reliability has been assessed between a few sessions, and was found to be good 

to excellent (e.g., Frässle, Paulus, Krach, & Jansen, 2015; Schuyler et al., 2010).  

Here, we wanted to assess within-subject reliability (and between-subject consistency) of 

effective connectivity estimated by spectral DCM across many resting state fMRI sessions 

acquired in longitudinal studies. Although effective connectivity during resting state fMRI 

should be sufficiently reliable to be used in a clinical context, it is likely to vary as a consequence 

of changes in physical, emotional and behavioural states (e.g., amount of sleep), and the sources 

of this variability need to be established. Assessment of these longitudinal variations in effective 

connectivity could yield important insights in the effects of behavioural and psychological states 

on macroscopic brain dynamics (see, e.g., Laumann et al., 2015). The goals of the present study 

were to assess whether, and to what extent, connectivity patterns in the default mode network 

are consistent both within and between subjects, and to investigate the sources of variability in 

effective connectivity. To meet these aims, we made use of four longitudinal datasets, with a 

minimum of ten resting state sessions for each subject. These datasets allowed us to quantify 

the stability of the posterior estimates of (effective) connectivity in the default mode network 

across sessions, and to generalize conclusions beyond specific datasets (e.g., subjects’ 

characteristics, scanning parameters, etc).  
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Methods 

Datasets and subjects 

 Data were obtained from four extensive longitudinal datasets acquired at different research 

institutions. The total sample consisted of 20 subjects (11 females, age range at start of studies: 

24 – 45 years) with a minimum of 10 resting state sessions for each subject. Altogether, the 

datasets contained 653 rsfMRI sessions. A summary of the datasets is shown in Table 1. 

Dataset 1. The first dataset (‘myconnectome’) was part of the MyConnectome project (see, 

Laumann et al., 2015). During this project, resting state fMRI scans were acquired from a single 

person (male, 45 years at the start of study) on 89 occasions over the period of 1.5 years. MRI 

data were obtained with a Siemens MAGNETOM Skyra 3T MRI scanner (Siemens, Erlangen, 

Germany), using a 32-channel head coil. Resting state fMRI was acquired using a multi-band 

echo-planar imaging (MBEPI) sequence (TR = 1160ms; TE = 30ms; voxel size = 2.4mm x 2.4mm 

x 2mm; FOV = 230mm; flip angle = 63 degrees; multi-band factor = 4). Functional images for the 

first 14 sessions contained 68 slices; images from remaining sessions comprised 64 slices. 

Resting state scan length was approximately 10 minutes (518 images). T1 images were acquired 

using a MPRAGE sequence (TR = 2400ms; TE = 2.14ms;  TI = 1000ms; voxel size = 0.8mm 

isotropic;  256 sagittal slices; flip angle = 8 degrees; GRAPPA factor = 2). Only the T1-weighted 

image acquired during the session prior to the first rsfMRI session was used in the present 

study (i.e., for coregistration and normalization). This dataset was obtained from the OpenfMRI 

database. Its accession number is ds000031.  

Dataset 2. The second dataset (‘Kirby’) contained data acquired from a single subject (40 

years at the start of study, male) on 156 occasions (3.5 years; see, Choe et al., 2015). The subject 

was scanned using a 3T Philips Achieva scanner (Philips Healthcare, Best, Netherlands), with a 

16-channel neurovascular coil. Functional resting state data were acquired using a multi-slice 

SENSE-EPI sequence (TR = 2000ms; TE = 30ms; voxel size = 3mm x 3mm x 3mm; flip angle = 75 

degrees; 37 axial slices; SENSE factor = 2). Scan length was approximately 7 minutes (200 

images). T1-weighted images were acquired using a MPRAGE sequence (TR = 6.7ms; TE = 

3.1ms;  TI = 842ms; voxel size = 1.0mm x 1.0mm x 1.2mm; flip angle = 8 degrees; SENSE factor = 

2). The T1-weighted image acquired during the first scan session was used in the present study.   

Dataset 3. The third dataset (‘day2day’) contained data acquired from eight subjects (6 

females; age range 24 - 32 years; Filevich et al., 2017). The number of scan sessions per subject 

ranged from 11 to 50 (sessions in total), and were acquired within a period of 2 to 13 months. 

Subjects were scanned using a 3T Magnetom Trio MRI scanner (Siemens, Erlangen, Germany) 

and a 12-channel head coil. RsfMRI data was acquired using a T2*-weighted echo planar 

imaging (EPI) sequence (TR = 2000ms; TE = 30ms; voxel size = 3mm x 3mm x 3mm; flip angle = 

80 degrees; 36 axial slices; GRAPPA acceleration factor = 2). The length of resting state scanning 
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was approximately five minutes (150 images). Structural MRI scans were acquired using a 

MPRAGE sequence (TR = 2500ms; TE = 4.77ms;  TI = 1100ms; voxel size = 1.0mm x 1.0mm x 

1.0m; flip angle = 7 degrees). Only the T1-weighted image acquired during the first scan session 

was used.  

Dataset 4. The fourth dataset (‘midnight scan club’) contained data from ten subjects (5 

females; age range 24 – 35 years; see, Gordon et al., 2017). Participants were scanned at 

midnight on twelve consecutive days with a 3T Siemens Trio MRI scanner (Siemens, Erlangen, 

Germany). On ten occasions, rsfMRI data were acquired with a gradient-echo EPI sequence (TR 

= 2200ms; TE = 27ms; voxel size = 4mm x 4mm x 4mm; flip angle = 90 degrees; 36 axial slices). 

Each session contained 818 volumes (approximately 30 minutes). Structural scans were 

acquired using a gradient-recalled inverse recovery (GR-IR) sequence (TR = 2400ms; TE = 

3.74ms;  TI = 1000ms; voxel size = 0.8mm x 0.8mm x 0.8mm; 224 sagittal slices; flip angle = 8 

degrees). The first structural image acquired from each subject was used for the analyses. This 

data was obtained from the OpenfMRI database. Its accession number is ds000224. 

 

Subject Dataset M/F Age1 Total 

sessions2 

Span3  Total scans (time)4 

1 MyConn M 45 89  ±1.5 years 518 (±10 min) 

2  Kirby M 40 156 ±3.5 years 200 (±7 min) 

3 Day2day F 24 50 ±5.5 months 150 (±5 min) 

4 Day2day F 28 13 ±3.5 months 150 (±5 min) 

5 Day2day F 31 50 ±13 months 150 (±5 min) 

6 Day2day M 32 11 ±2 months 150 (±5 min) 

7 Day2day F 29 45 ±7 months 150 (±5 min) 

8 Day2day F 24 47 ±5.5 months 150 (±5 min) 

9 Day2day M 30 43 ±7 months 150 (±5 min) 

10 Day2day F 29 49 ±7.5 months 150 (±5 min) 

11 MSC M 34 10 17 days 818 (±30 min) 

12 MSC M 34 10 10 days 818 (±30 min) 

13 MSC F 29 10 12 days 818 (±30 min) 

14 MSC F 28 10 15 days 818 (±30 min) 

15 MSC M 27 10 14 days 818 (±30 min) 

16 MSC F 24 10 15 days 818 (±30 min) 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 2, 2018. ; https://doi.org/10.1101/273565doi: bioRxiv preprint 

https://doi.org/10.1101/273565
http://creativecommons.org/licenses/by/4.0/


7 

 

17 MSC F 31 10 39 days 818 (±30 min) 

18 MSC F 27 10 18 days 818 (±30 min) 

19 MSC M 26 10 16 days 818 (±30 min) 

20 MSC M 31 10 21 days 818 (±30 min) 

Table 1: subject information. 
1
Age at the start of study, 

2
Total number of sessions initially included in the 

present study (these differ slightly from the original studies because some low-quality images were not shared, 

duplicates were encountered, or initial pilot sessions were not included), 
3
Span = approximate time over which 

all rsfMRI scan sessions took place. 
4
Total number of scans in each session. Abbreviations: MyConn = 

Myconnectome, MSC = Midnight Scan Club. 

 

 

Data Analyses 

Preprocessing. Preprocessing was performed using the SPM12 software package (revision 

6906; Wellcome Centre for Human Neuroimaging; www.fil.ion.ucl.ac.uk/spm/software/spm12). 

The first five images of each session’s rsfMRI sequence were discarded to allow for T1 

equilibration. First, resting state fMRI images were corrected for differences in slice timing 

(using the central slice of each volume as a reference). Next, images were realigned to the first 

functional volume of each session. Images were then coregistered to the skull-stripped 

anatomical image. Finally, images were normalized to MNI space (Montreal Neurological 

Institute) and smoothed using a Gaussian kernel (6mm FWHM).  

Time-series extraction. Session-specific DMN voxels were identified by specifying and 

estimating a GLM containing: (1) a discrete cosine basis set as principal regressor (frequency 

range: 0.0078 – 0.1Hz), (2) six head motion regressors (three translational, three rotational), (3) 

a regressor for CSF signal (principal eigenvariate of 5mm ROI within CSF circulation system), 

and (4) a regressor containing WM signal (principal eigenvariate of 7mm ROI within 

brainstem). The number of cosine components was related to the number of scans within a 

session. An F-contrast was specified across all DCT components to produce an SPM, which was 

masked using ROIs (sphere radius = 10mm) extracted from template ICA maps (Smith et al., 

2009). ROI centre coordinates were (x=2; y=-58; z=30) for precuneus, (x=2; y=56; z=-4) for 

medial prefrontal cortex, (x=-44; y=-60; z=24) for the left inferior parietal cortex, and (x=54; y=-

62; z=28) for the right inferior parietal cortex (see, Figure 1: left panel). Coordinates were 

labelled using the AAL atlas. Time-series were acquired by computing the principal eigenvariate 

of signals from voxels centered on the peak voxel of the aforementioned F-contrast (session-

specific; sphere radius = 8mm) within each ROI, which allowed session- and subject-specific 

differences in exact location of DMN regions. Voxels were only included if they survived an a 

priori specified threshold: if sessions contained less than 200 scans per session, voxels were 

included if they exceeded an uncorrected (full brain) alpha-threshold of 0.05. If sessions 
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contained more scans, a stepwise increase in alpha-threshold (alpha = 0.001, 0.01, to 0.05) was 

applied, until significant voxels were detected (using an upper boundary of alpha = 0.05). 

Importantly, the alpha-level specified here is used to detect voxels that contain low-frequency 

fluctuations, and is independent from the criterion used to infer connectivity.  

(Spectral) Dynamic Causal Modelling and Hierarchical Bayes. Fully-connected DCMs were 

specified and inverted for each session separately (DCM12; revision 6801), without the 

specification of exogenous (i.e., experimental) inputs. Sessions were excluded from all analyses 

if they did not meet five diagnostic criteria, namely (1) explained variance of predicted BOLD 

signals above 60%, (2) at least one connection with a connection strength greater than 1/8 Hz, 

(3) at least one effectively estimated parameter (based on Kullback-Leibler divergence of 

posterior from prior distribution), (4) maximum frame-wise displacement (FD) under 1.5mm, 

and (5) a maximum alpha-threshold of 0.05 for which significant voxels were found in all DMN 

regions for that session. Three subjects (i.e., S13, S18, and S19) were rejected because they had 

less than 8 sessions after rejection based on diagnostic checks. Additionally, thirty-one sessions 

(across subjects and datasets) were excluded because they did not meet diagnostic criteria, and 

three sessions were discarded because of other problems (e.g., incomplete volumes). A total of 

589 rsfMRI sessions were included after quality and diagnostic checks.  

To compute average connectivity at the subject-level we specified Parametric Empirical 

Bayes (PEB; Friston et al., 2016) models with one regressor (comprising a column of ones) that 

modelled average (within-subject) connectivity over sessions. The subject-specific PEB models 

were then included in a group-level PEB model, including again one regressor to compute 

average (between-subject) connectivity over subjects. Default settings were used for estimation 

at the subject and group level; i.e., the prior covariance of connections had the same form at the 

session, subject and group-level, where the within subject (between session) prior covariance 

was 1/16th of the prior covariance of (between-subject) group means. However, every 

parameter was equipped with a separate between-subject precision component. Only 

connectivity-related parameters (‘A-matrix’) were included as dependent variables in subject 

and group analyses. All inference was made using a posterior probability criterion of 90% for 

each connection.  

Stability criteria. Stability of the strength and direction of connections was assessed for three 

different network characteristics. (1) We tested hemispheric asymmetry for each session and 

subject by computing the posterior probability that the average outgoing connectivity (i.e., 

effluent or out-degree) from the left IPC differed from the average outgoing connectivity from 

the right IPC (posterior probability criterion = 90%). Between (resp., within) subject stability of 

asymmetry was evaluated by computing the ratio of subjects (resp., sessions) that showed most 

prominent influence from either right or left IPC. (2) We assessed stability of the estimated 
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connectivity matrices (i.e., over all connections) by calculating the average correlation between 

vectorised connectivity matrices for each pair of subjects and sessions. (3) We assessed 

between (resp., within) subject stability of the type of connection (i.e., excitatory, inhibitory, or 

no influence) by computing the percentage of subjects (resp., sessions) that showed either a 

positive, negative, or non-existent influence between regions (using the 90% posterior 

confidence criterion). The latter stability measure was computed for each connection 

separately.  

Effect of (pre)processing steps. The effect of three (pre)processing steps on connectivity and 

stability was assessed. (1) (Empirical) Bayesian model reduction was applied to assess the 

effect of using subject-specific and group connectivity as empirical priors for session- and 

subject-specific estimation, respectively. We compared stability with and without empirically 

optimising connectivity parameters at the session and subject level (as implemented by 

spm_dcm_peb.m). (2) To assess the effect of ROI size on connectivity and stability, we 

reanalyzed the data using spherical ROIs with radii of 4mm, 8mm, 12mm and 16mm. ROIs were 

cantered at the average coordinate of the (session-specific) voxels included in the previous 

‘basic’ analyses. To allow proper comparison, we calculated the eigenvariate of all significant 

voxels in the sphere (i.e., without using the conjunction with the ROI derived from the ICA 

template). The same subjects were excluded as in the basic analyses. To ensure proper 

comparison between analyses with different ROI sizes, sessions were excluded if they did not 

reach diagnostic thresholds for all ROI size. Consequently, 57 sessions were discarded, which 

yielded a total sample of 563 sessions. (3) Finally, we assessed the influence of global signal 

regression (GSR) on the reliability and connectivity. Therefore we repeated the ‘basic’ analyses 

with GSR, which was done by scaling (preprocessed) fMRI volumes with the inverse of the scan-

specific global mean intensity (in SPM: global normalization = ‘scaling’). All subsequent analyses 

(e.g., peak-value coordinate detection, time-series extraction) were performed using these 

scaled images. Again, same subjects were excluded as in the basic analyses. Forty-two sessions 

were excluded because they did not reach diagnostic thresholds for one or both analyses (i.e., 

with or without GSR), which left a sample of 578 rsfMRI sessions.  
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Results 

Group-level 

Estimated connectivity at the group level is shown in Figure 1. Clearly, connections from 

bilateral IPC were stronger compared to other connections. Moreover, the left IPC showed a 

stronger outgoing influence compared to right IPC (mean difference = 0.15; SD = 0.03; posterior 

probability > 0.99)  and the lowest self-inhibition. Between-subject variability for both extrinsic 

(i.e., between-regions) and intrinsic connections (i.e., self-inhibition) was greater for projections 

arising from left and right IPC compared to other regions.  

 

 

Between-subject variability and consistency 

Average connectivity for some exemplar subjects is shown in Figure 2. Most subjects showed 

a dominant influence from either left or right IPC. Post-hoc tests comparing average outgoing 

connectivity from left IPC to average connectivity from right IPC indeed confirmed our 

observations: ten subjects showed higher influence from left IPC, while six subjects showed 

greater influence from right IPC. The average difference between left and right IPC connectivity 

was 0.60Hz, indicating a non-trivial effect. The dominant IPC showed lowest self-inhibition in 

fifteen out of sixteen asymmetric subjects. To assess the similarity in general connectivity 

patterns between subjects, we calculated correlations between (vectorised) connectivity 

matrices for all possible pairs of subjects (136 pairs in total). We accommodated hemispheric 

asymmetry by swapping the columns and rows representing left and right IPC for all left-

asymmetric subjects. This yielded reordered matrices for which the second column and row 

represented the dominant hemisphere and the fourth column and row represented the non-

Figure 1. Left panel: location of ROIs used in the present study. Middle panel: Estimated effective 

connectivity (from columns to rows) at the group level. Diagonal elements reflect self-inhibition parameterised 

in log-scale (relative to the prior mean of -0.5Hz). A posterior probability criterion of 90% was used. Right 

panel: estimated between-subject variability for each connection (PEB.Ce). It is evident that the left and right 

IPC showed the greatest between-subject variability in self-inhibition (log-scale) and extrinsic connectivity 

(hertz). 
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dominant IPC in all subjects. The results of this analysis are shown in Figure 3. The ensuing 

average correlation was 0.56 (range: [-0.31 0.96]) for the original and 0.81 (range: [0.45 0.98]) 

for the reordered connectivity matrices. In short, casting effective connectivity in terms of (out- 

degree) dominant versus non-dominant, as opposed to right versus left, hemisphere markedly 

improved between-subject consistency. The predominance of asymmetry in between-subject 

variability was also confirmed with a principal component analysis (PCA) on effective 

connectivity across subjects. The first principal component showed highest (and opposite) 

loadings on left and right IPC, and explained approximately 62% of total variance. All 

subsequent between-subject analyses were performed using dominance-ordered connectivity 

matrices. To assess consistency in terms of connection type, we enumerated (for each 

connection separately) the number of subjects showing excitatory, inhibitory, or non-existent 

influence (i.e., with a posterior probability < 90%). The results are shown in Figure 4. The 

dominant IPC exerted a positive influence on all other regions for all subjects, while the 

influence of the non-dominant IPC varied between subjects. Moreover, influence from 

precuneus on mPFC was significantly positive in 11 out of 17 subjects (64.7%) and connectivity 

from the mPFC to dominant IPC was negative in 12 out of 17 subjects (70.6%). 
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Figure 2. Connectivity patterns for exemplar subjects. For extrinsic connections between regions, red lines 

denote positive connectivity and blue lines negative connectivity. For self-connections, red lines depict connectivity 

above the prior mean, while blue lines depict connectivity lower than the prior mean (i.e., -0,5 Hz). Across datasets, 

subjects showed most dominant influence from either left (e.g., S2 and S3) or right IPC (e.g., S16 and S17). 

Moreover, self-inhibition was lowest for the dominant IPC. Line thickness and brightness reflect the strength of the 

respective connection. 

S2 S3 

S16 S17 
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Figure 4. Left panel: Number of subjects with excitatory (positive) or inhibitory (negative) influences 

(posterior probability > 90%; effective connectivity from column to row regions). Connections showing positive 

influence for at least 75% (i.e., 13 out of 17) of subjects are shown in dark green, connections showing positive 

influence for at least 60% (i.e., 11 out of 17) of subjects are shown in light green. Connections showing negative 

influence for at least 60% of subjects are shown in red. Self-connections are omitted for simplicity. Right panel: 

Thresholded network showing consistent connectivity types (connections showing same influence for at least 

60% of participants are shown). Full lines depict connections with the same sign in all subjects, dashed lines 

depict connections showing same sign in at least 60% of participants. For visualization purposes the precuneus 

is shown more anteriorly than in reality. Anatomical labels: PRC = precuneus; mPF = medial prefrontal cortex; 

dIP = dominant inferior parietal cortex; ndIP = non-dominant inferior parietal cortex. 
 

Figure 3. Violin plots of correlations between original (left plot) and dominance-ordered (right plot) 

connectivity-matrices for all possible pairs of subjects. Horizontal green lines depict the mean correlation. 

Clearly, the consistency is much higher when hemispheric dominance is taken into account. 
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Within-subject variability and reliability 

The same tests for hemispheric asymmetry (i.e., comparing average connectivity from left 

versus average connectivity from right IPC) were performed on every session’s connectivity 

matrix. Results for all subjects are shown in Figure 5. On average, 72% (range: [0.4 0.93]) of 

sessions showed the same asymmetry as the respective subject-specific asymmetry. Most 

subjects showed reliable asymmetry, while some subjects showed a more variable asymmetry. 

PCA revealed that the first principal component of 8 subjects showed opposite loadings on left 

compared to right IPC, accounting on average for 40% (range: 24-73%) of between-session 

variance. Additionally, two subjects showed asymmetric loadings for the second or third 

principal component, accounting on average for 22% of variance (range: 20-23%). The 

reliability of general connectivity patterns was assessed by computing the average correlation 

across all possible pairs of sessions for both original and reordered matrices. Figure 6 shows the 

results of these analyses. The average correlation was 0.39 (range: 0.08 – 0.71) for the original 

matrices, and 0.51 (range: 0.13 – 0.79) for dominance-ordered matrices. In subsequent analyses 

we assessed the sign-stability of connections within subjects. Figure 7 shows connections that 

had the same influence (i.e., inhibitory or excitatory) in at least 75% of sessions for exemplar 

subjects. Subjects showed notably stable positive connectivity from either left or right IPC (e.g., 

subject 3 and subject 16, respectively), which nicely coincides with the average subject-specific 

hemispheric asymmetry reviewed in the previous paragraph. Additionally, each subject showed 

unique stable connections. 
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Figure 5. Upper panel: Session-specific hemispheric asymmetry for all subjects, in order of decreasing 

proportion of left hemisphere-dominant sessions. Dots represent the asymmetry index for each session of the 

respective subject (positive = left dominant; negative = right dominant); bars above the figure depict the 

number of sessions for each subject. Blue dots depict sessions without evidence for hemispheric dominance. 

Lower panels: Hemispheric asymmetry for the most stable left and right asymmetric subject. Black circles 

represent the average outgoing influence from left (x-axis) and right IPC (y-axis). Circles below the reference 

line indicate sessions with higher influence from left IPC, circles above the reference line depict sessions with 

higher influence from right IPC. Light-blue circles depict sessions for which asymmetry did not survive the 

posterior probability criterion. 
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Figure 6. Average correlation across all possible pairs of sessions, for each subject (represented with 

colored lines) using original (left) and dominance-ordered (right) connectivity matrices. For each subject, the 

correlation increased  slightly after accounting for hemispheric asymmetry. The bold black line represents the 

average correlation across subjects: 0.39 for the original and 0.51 for dominance ordered matrices.  
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Effect of (Pre)processing 

Bayesian Model Reduction (BMR). At the subject level, hemispheric asymmetry was not 

changed (i.e., from left to right or vice versa) in any subject after including empirical priors. 

Consistency of connectivity patterns between subjects increased after empirical BMR for both 

original and reordered matrices (increase in average correlation after empirical BMR was 

10.2% for original matrices and 5.6% for reordered matrices). The consistency of connectivity 

(within-subjects) increased for 15 out of 17 subjects using original connectivity matrices and for 

Figure 7. Upper panel: Connections having the same sign in at least 75% of sessions within the respective 

(exemplar) subject. The line colours depict the source of a connection (e.g., green lines depict connections 

from the lIPC to other regions). Clearly, stable connections arise from left or right IPC, which nicely coincides 

with the subject-specific asymmetry. For visualization purposes the precuneus is shown more anteriorly than 

in reality. Lower panel: Posterior estimates of the strongest connection for subject 3, plotted against session 

number.  

S16 S20 S3 S5 
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13 out of 17 subjects using reordered connectivity matrices (average increase in correlation 

was 15.4% for original and 9.8% for reordered matrices). 

Effect of ROI size. Next, we assessed the influence of ROI size on connectivity at the group- 

and subject-level, as well as its influence on reliability. Group-level results are shown in Figure 

8. Generally, connectivity patterns were very similar for different ROI sizes at the group-level 

(mean correlation = 0.980; range = 0.954-0.997). Asymmetry decreased with increasing ROI 

size (see Figure 8, lower panel), but was left dominant, even for larger ROI sizes (posterior 

probability > 0.90). At the subject level (not shown), hemispheric asymmetry did not change for 

any ROI size in 11 subjects (65%), while in three subjects (18%) hemispheric asymmetry 

flipped for some ROI sizes. The consistency of connectivity, assessed as the average correlation 

between effective connectivity matrices, was 0.40, 0.39, 0.43, and 0.41 for increasing ROI radii 

(i.e., 4, 8, 12, and 16mm).  

16mm 

r = 0.954 

Figure 8. Group-average connectivity for the smallest and largest ROI sizes. Upper panels: effective 

connectivity matrices for each ROI size at the group-level. Upper number indicates the correlation between 

(vectorised) matrices. Lower panels: asymmetry of the group-level network (positive = left dominant; negative = 

right-dominant). Clearly, larger ROI sizes yielded less asymmetry at the group level. However, even at bigger 

ROIs the network was left-dominant (see posterior probability).  
 

4mm 
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    Effect of Global Signal Regression. Connectivity with and without GSR is shown in Figure 9. 

At the group-level, extrinsic connectivity decreased slightly in magnitude after GSR (mean 

decrease = 0.05Hz), while intrinsic connectivity changed in either a negative or positive 

direction (depending on the specific region). Importantly, no sign flips were observed. At the 

subject level, 14 (82%) subjects’ asymmetry patterns were unaffected by GSR, although 

asymmetry was often less pronounced after GSR. The reliability of connectivity patterns was 

similar after GSR (average within-subject correlation was 0.39 and 0.37 without and with GSR, 

respectively).  

 

 

Discussion 

 

In this study, we combined fMRI data from multiple longitudinal studies to investigate within 

and between subject variability of effective connectivity. Collectively, spectral DCM  furnished 

robust connectivity estimates for each subject, enabled us to track changes in fluctuations 

across scan sessions, and allowed us to draw conclusions beyond participant groups, scanners, 

and scanning parameters. Our results revealed that, across datasets, individuals consistently 

show hemispheric asymmetry of effective connectivity in the default mode network. Previous 

studies using spectral DCM have also shown some levels of asymmetry at the group-level. Razi 

Figure 9. Group-average connectivity with GSR (blue bars), with narrow red bars showing 90% confidence 

intervals (i.e., Bayesian credible intervals) and without GSR (grey bars). Generally, extrinsic connectivity 

decreased in magnitude, while intrinsic connections changed in either positive or negative direction. 

However, no dramatic changes (e.g., significant changes in sign) were found. 
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et al. (2015) and Zhou et al. (2018) found larger influence from left compared to right parietal 

cortex, while Sharaev et al. (2016) found the opposite pattern (although the left-right difference 

was small). Moreover, all studies found that the parietal cortex has a driving influence in the 

core DMN (Zhou et al., 2018). The present study reproduced the latter result for individual 

subjects, and suggests that the (small) differences between studies might be attributed to a 

difference in lateralization patterns of the individual subjects studied. It is worth mentioning 

that we found that self-inhibition was lowest for the dominant IPC in almost all subjects. This 

makes sense from a network perspective, since a region that dominates the network should 

indeed show prolonged (i.e., disinhibited) activity. This observation suggests that the 

parameters estimated by spectral DCM covary in an intuitive and consistent way.  

Lateralization of the default mode network has also been found in other studies using 

functional connectivity (e.g., Agcaoglu et al., 2015; Nielsen et al., 2013). Agcaoglu et al. (2015) 

applied independent component analysis to a large group of subjects (n = 603) and found that 

almost all default mode network components were left lateralized. Similarly, Nielsen et al. 

(2013) showed that many left-lateralized resting state hubs are part of the default mode 

network. Our results complement these studies, in showing that hemispheric asymmetry is 

expressed in terms of effective connectivity, and that the asymmetry is mainly present for 

interhemispheric connections and connections from lateral to medial areas. Moreover, we have 

shown that hemispheric asymmetry of effective connectivity is the main source of between-

subject variability.  

The pattern of hemispheric asymmetry was reliable for many subjects. Furthermore, 

individual connections arising from either right or left IPC showed high sign-stability, which 

coincided with the individual’s asymmetry. Longitudinal studies assessing the reliability of 

functional connectivity (e.g., Choe et al., 2015; Gordon et al., 2017) do not often focus on 

hemispheric asymmetry. However, hemispheric specialization is an important issue in cognitive 

neuroscience (see, e.g., Hervé et al., 2013). Crucially, a change in DMN lateralization has been 

associated with psychiatric syndromes (see, e.g., Swanson et al., 2011). The overall stability of 

the asymmetry of effective connectivity in the DMN could speak to its use as a biomarker for 

future studies. We also found that some subjects showed more variable hemispheric 

asymmetry. Within-subject variations in connectivity patterns have also been observed in 

longitudinal functional connectivity studies. Gordon et al. (2017) found that one specific 

participant showed considerable lower reliability compared to the others, which they attributed 

to a higher level of drowsiness. Although this precise subject was left out of the present 

analyses, it is likely that subject or session specific characteristics (e.g., emotionality) might 

have caused more variable asymmetry in some subjects compared to others. 
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To assess the effect of processing methods on connectivity and reliability, the analyses were 

repeated using global signal regression, varying ROI sizes, and (empirical) Bayesian model 

reduction. Generally, processing techniques had little effects on our results. Global signal 

regression had no effect on hemispheric asymmetry for most subjects and did not alter the 

(within-subject) stability of effective connectivity. Such robustness is quite remarkable, given 

that the global signal is an important subject of debate in many functional connectivity studies 

(see e.g., Murphy & Fox, 2017). The robustness of spectral DCM to global confounds is probably 

explained by the fact that global fluctuations in fMRI signal are modelled explicitly. In other 

words, parameters representing different sources of noise that are included in DCM can capture 

fluctuations in global signal that is not mediated by changes in effective connectivity.  

 Similarly, ROI size had no effect on asymmetry for most subjects and did not have an impact 

on the reliability of connectivity patterns. Importantly, Bayesian model reduction (BMR; Friston 

et al., 2016) increased both within- and between-subject consistency of effective connectivity 

patterns. This suggests that the use of subject and group-specific priors to update the 

parameters at the session and subject level may enhance reliability, by increasing the 

probability that parameters are drawn out of local extrema towards the subject or group mean. 

Generally, the results raise the question of what might explain the differences between 

subjects (e.g., hemispheric asymmetry, connection types) and fluctuations within subjects. 

Variability between subjects might be explained by several factors. First, variability might be 

related to subject-specific characteristics such as age, gender, and intelligence level. Agcaoglu et 

al. (2015), for example, showed that age and gender are related to a difference in asymmetry in 

some resting state networks, most notably the visual network. Similarly, Joliot, Tzourio-

Mazoyer, and Mazoyer (2016) showed a relationship between language lateralization and 

lateralization of resting state connectivity. Our sample comprised participants with a wide age-

range (between 24 and 45 years) and was balanced with respect to gender (55% females). 

Possibly these subjects’ characteristics might have played a role in the extent of asymmetry or 

at the level of individual connections. Second, differences in scan procedures and sequences 

might explain observed differences between subjects. Resting state scans are acquired when 

subjects have either their eyes open or closed; however, no consistent paradigm has been 

adopted. Studies have shown that a difference in ‘eyes open’ versus ‘eyes closed’ conditions 

might have an impact on connectivity and reliability during rest (e.g., Zhang et al., 2015; Zou et 

al., 2015). In our study, the ‘day2day’ dataset was acquired under ‘eyes closed’ conditions and 

showed a higher proportion of left dominant subjects compared to the ‘MSC’ dataset, which was 

acquired during ‘eyes open’ conditions. Such procedural differences might thus explain 

observed differences among subjects. Although several accounts can be offered for between-
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subject differences, our sample size was too small (n = 17 after exclusion) to support robust 

explanations. Future studies using datasets with more subjects could try to address possible 

sources of between-subject variability in effective connectivity, while accounting for within-

subject variability.  

Fluctuations within individuals might also be explained by several factors. First, fluctuations 

in effective connectivity might be related to day-to-day changes in mood, behaviour (e.g., 

amount of sleep), or physiology (e.g., hormonal cycle). Some studies have shown that functional 

connectivity within the DMN is related to sleepiness (Ward et al., 2013) and is diminished after 

sleep deprivation (De Havas, Parimal, Soon, & Chee, 2012). Other studies found an influence of 

female hormones on functional connectivity during rest (e.g., Pletzer, Crone, Kronbichler, & 

Kerschbaum, 2016). Second, between-subject fluctuations in connectivity might be explained by 

differences in regional or global noise. Although we did not find a notable difference in 

parameter estimates with and without GSR, this is not explicit evidence for an influence of 

global signal on connectivity (or its absence). Similarly, if region-specific noise levels change 

across sessions, parameter estimates might be affected by conditional dependencies between 

connectivity and (scale free) noise estimates. Third, Park et al. (2017) have shown that effective 

connectivity during resting state fluctuates on a short time scale. These faster fluctuations might 

cause differences among scanning sessions, and therefore explain longitudinal variability in 

effective connectivity. Indeed, Park et al. (2017) showed that between-session consistency 

increased when within-session fluctuations were taken into account.  

Longitudinal datasets afford the opportunity to test the above hypotheses. Such analyses 

however fall outside the scope of the present study. Our aim was to provide a framework to test 

both between- and within-subject variability and consistency of effective connectivity in a single 

design. The use of PEB, upon which this framework was build, allows researchers to assess 

relations between connectivity patterns (e.g., asymmetry) and other measures (e.g., physiology), 

which is of great importance for neuroscience. Future studies could address more refined 

accounts of between and within subject variability in further detail.  
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