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Summary 

The ability of proteins to adopt multiple conformational states is essential to their 

function and elucidating the details of such diversity under physiological conditions has 

been a major challenge. Here we present a generalized method for mapping protein 

population landscapes by NMR spectroscopy. Experimental NOESY spectra are directly 

compared to a set of expectation spectra back-calculated across an arbitrary 

conformational space. Signal decomposition of the experimental spectrum then directly 

yields the relative populations of local conformational microstates. In this way, averaged 

descriptions of conformation can be eliminated. As the method quantitatively compares 

experimental and expectation spectra, it inherently delivers an R-factor expressing how 

well structural models explain the input data. We demonstrate that our method extracts 

sufficient information from a single 3D NOESY experiment to perform initial model 

building, refinement and validation, thus offering a complete de novo structure 

determination protocol. 
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Introduction 

 In order to function, proteins must adopt a distinct three-dimensional fold. 

However, a vast range of protein functions, including catalysis, molecular recognition and 

allosteric signalling, also rely on their ability to adopt various local conformations within 

this structural scaffold. Understanding these processes therefore requires not only 

accurate descriptions of protein structures, but also their conformational diversity. NMR 

spectroscopy is uniquely placed to address these issues, offering atomic-resolution data 

on samples in native-like physical states. Time averaging of NMR parameters has long 

been exploited to localise and characterize the timescales of internal dynamics (1). 

However, the data is also ensemble-averaged over all molecules in the sample volume 

and should thus provide information on the nature and population of underlying 

conformational microstates. Accessing this data has long been a goal in NMR 

spectroscopy (2-5). 

Here we aim to elucidate the propensities of individual microstates by means of 

spectral decomposition. Systematic back-calculation of expectation spectra across a 

conformational space allows reconstruction of the experimental spectra. In NMR 

spectroscopy, the richest source of structural data are NOESY spectra, which report on 

inter-proton distances within a detection limit of 5 to 6 Å. Due to this short spatial range, 

a large fraction of NOESY intensity can be explained within short, linear sequence 

fragments. Each such fragment thus represents a sub-space that could be searched 

systematically to provide detailed information on local dihedral angles and their 

distributions. Moreover, comparison of the back-calculated and experimental data would 

provide a quantitative quality measure: an NMR R-factor. 

A difficulty in realising this approach lies in the nature of NOESY data itself. The 

information content of NOESY spectra is very unevenly distributed across the observed 

intensities, thus small, informative peaks can be overwhelmed by inaccuracies in back-

calculation and spectral artefacts. For this reason, quantitative comparison of back-

calculated and experimental spectra has been far less applicable in NMR structure 

determination than equivalent measures used in crystallography (6-8). Here we show that 

these obstacles can be largely averted in the 3D CNH-NOESY experiment (9). This is an 
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implementation of a 13C-HSQC-NOESY-15N-HSQC where the indirect proton dimension 

has been omitted, thus displaying contacts to backbone amide protons in a well-resolved 
13C dimension. It exploits the higher dispersion and more homogeneous effective 

linewidths of the heteronuclei, while suppressing water-exchange cross-peaks and 

obviating the need for stereospecific proton assignments. Crucially, it intrinsically lacks 

large, uninformative diagonal peaks and the associated baseline and truncation artefacts. 

Combined, these represent decisive advantages in the accuracy of back-calculation. 

In this work we demonstrate that a single 3D CNH-NOESY spectrum contains 

sufficient information to define population maps of local dihedral sub-spaces. Analytical 

decomposition expresses the experimental spectra as a linear combination of elements 

of a features set of back-calculated spectra. In this way, both the reliance on a 

knowledge-base and the interpretation of spectra in terms of peak or assignment lists 

can be eliminated. This conformational mapping provides highly detailed data for model 

building and refinement, with progress monitored by a quantitative R-factor. We validate 

this method against human Ubiquitin (hUb), widely considered the gold standard for 

NMR-based protein structure determination (5, 10-12). We further demonstrate the 

generality of the method by solving the structures of four example proteins. 

Results 

An R-factor from CNH-NOESY data 

We have adapted existing routines to back-calculate CNH-NOESY spectra, 

obtaining 1D 13C strips for each backbone amide proton. These are compared directly to 

equivalent strips extracted from the experimental 3D matrix. An R-factor expressing the 

discrepancy between experimental and expectation spectra is readily calculated as the 

fractional root mean squared residual (see Experimental Section). This R-factor is 

analogous to its crystallographic counterpart, except that it is calculated on a per-residue 

basis. Our back-calculation routines very accurately reproduce the intensities and line-

shapes of experimental CNH-NOESY data collected for hUb (Figure 1a). The back-

calculated spectra are also highly sensitive to backbone and sidechain dihedral angles 

(Figure 1b and Supplementary Figure S1), a prerequisite for conformational mapping. 
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NOESY intensities are time and ensemble averages over the conformational 

microstates sampled during the measurement. For this reason, R-factors improve with an 

accurate and comprehensive description of the ensemble. We demonstrate this for hUb 

using three reference ensembles that have been compiled according to different metrics. 

Two have been compiled to elucidate internal motions: the 2KOX ensemble using a large 

set of residual dipolar coupling (RDC) data (11), and the 2NR2 ensemble according to 

minimum under-restraining, minimum over-restraining criteria and including S2
NH order 

parameters derived from relaxation data (5). The third, 2MJB, provides a static control 

ensemble close to the average structure (12). High R-factors are obtained where these 

ensembles either over- or under-estimate the conformational diversity. Moreover, the 

use of a residue-wise R-factor in evaluating the ensemble can localize such diversity 

(Figure 1b). 

Mapping local conformational spaces 

For the CNH-NOESY, the vast majority of cross-peak intensity can be explained by 

intra-residue contacts and those to the immediately preceding residue. The R-factor for 

residue i is thus strongly dependent on conformation in a shifted Ramachandran space 

defined by the backbone dihedral angles yi-1 (here denoted ui) and fi. This is extended by 

including the relevant sidechain rotamers up to c1
i and c2

i, representing a periodic space 

within a dipeptide fragment that can be searched exhaustively (Figure 2a). The back-

calculated spectra for these systematically sampled conformers constitute a features set 

that can be used to decompose the experimental spectra (Figure 2b). Here we 

characterize the solution ensemble as a linear combination of elements of the features 

set, weighted by their respective populations. Calculating these weights is analogous to 

parts-based representation of complex spectral mixtures often encountered in other 

fields of spectroscopy (13). 

Decomposition of the experimental spectrum can be framed as a positive matrix 

factorisation problem (14). The features matrix is represented by W comprising back-

calculated spectra for l conformers, resolved to m points along the 13C dimension. A 

solution can thus be found for a vector of weights H in order to reconstruct the observed 

experimental spectrum V: 
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where n=1 if one spectrum is considered per residue. To map the energetic landscape of 

the conformational space, the yielded estimates of the population weights can in turn be 

expressed via a Boltzmann factor relative to a reference conformer (Materials and 

Methods). Examples of these conformational maps for hUb are shown in Figure 3. 

An inherent question in factorization methods is the uniqueness of the solution. 

Here uniqueness is limited by cross-peaks that cannot be explained within the dipeptide 

space, but overlap with peak positions in the features set. The larger the fraction of such 

contamination, the more difficult finding a unique solution becomes. Given the low 

intensity of potentially contaminating peaks and the high dispersion of the 13C 

dimension, the extent of contamination is usually minor. The extreme case of 

contamination is the coincidence of 15N-HSQC positions for two or more residues, 

resulting in overlap of the experimental strips. Such a situation can be solved by 

concatenation of the features sets of the overlapped residues and solving in a multiple-

dipeptide space. Figure 2c shows a typical example of this situation, where 

conformational maps have been obtained for two overlapped residues. 

Structure determination with conformational maps 

The conformational maps obtained from spectral decomposition provide rich 

information for structure determination. At the simplest level, global minima can provide 

local torsion angles sufficient for model building. These initial dihedrals constitute an 

agnostic starting point, as they are derived directly from the data without recourse to 

heuristics or conformational databases. A unique feature of this method is the 

deployment of R-factors as an objective convergence test that captures both local and 

long-range contacts. The latter can be isolated by examining the difference between R-

factors obtained for a linear peptide fragment and those from the full, folded model. We 

term this measure the fold factor (F), and it should be negative if the model explains 

long-range contacts well. Figure 4 shows that the average fold factor (Fmean) is a sensitive 

overall measure of correct folding, while the sequence profile can localize misfolded or 

poorly defined regions. Owing to this independent measure of convergence, any routine 

can be used to build initial models. Here we employ either a Rosetta-based protocol 

!	 ≈ $%,							! ∈ ℝ)*+×-,	$ ∈ ℝ)*+×.,	% ∈ ℝ)*.×- 1 
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(Materials and Methods) or a purpose-designed molecular dynamics routine: Simulated 

Annealing Replica Seilschaft (SARS) for initial model building (Materials and Methods). 

In order to construct high-resolution ensembles with accurate description of the 

underlying microstates, the experimental information contained in the conformational 

maps can be encoded in two possible representations. The first is a temporal equilibrium 

ensemble derived from molecular dynamics simulations. Here the conformer probability 

distribution is imposed via a grid-based dihedral energy correction term (15) (CMAP; 

Figure 3 and Materials and Methods). These override the standard force field CMAPs 

with bespoke ones on a per-residue basis, providing an experimentally augmented 

ensemble representation. The other is to aggregate a set of frames from a generalized 

ensemble using the standard force field, based on an R-factor selection criterion, 

providing a wider coverage of the phase space. 

We name this method of de novo structure determination CoMAND (for 

Conformational Mapping by Analytical NOESY Decomposition). In addition to hUb, we 

present examples for four structure determination projects from our Institute. U3Sfl (125 

amino-acids) is a protein designed as a chimera of sub-domain sized fragments, KH-S1 

(170 amino-acids) is a fusion construct of the KH and S1 domains of E. coli exosomal 

polynucleotide phosphorylase. MlbQ is a protein implicated in self-resistance to 

endogenous lantibiotics in actinomycetes (16). The final example, polb4, is a protein 

designed to reconstruct the polymerase beta N-terminal domain using two unrelated 

peptide fragments and is presented here as a de novo structure determination. 

For all five proteins, we first built starting models. For U3Sfl, KH-S1 and hUb, we 

extracted backbone dihedral angles from the factorization minima and used these for 

fragment picking in a Rosetta protocol (Materials and Methods). For MlbQ and polb4 we 

applied SARS, supplementing the CHARMM36 forcefield with bespoke conformational 

maps, starting from completely extended chains. For MlbQ, folding was accelerated by 

the addition of 10 unambiguous NOE distance restraints. We used the average R-factor 

across the full length of the protein as a criterion for selecting models, choosing a single 

Rosetta decoy or a single frame from the SARS runs. These models were very similar to 

respective reference structures (Figure 5). For U3Sfl this was a structure we had 

previously solved by manual analysis (RMSD over backbone atoms 1.98 Å). For KH-S1, 
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crystal structures are available for homologues of the individual domains (4AM3; 1.48 Å 

and 4NNG; 1.67 Å). For MlbQ, this was the published solution structure (2MVO; 1.92 Å). 

As no structure has previously been solved for polb4, we used the design target as a 

reference structure (RMSD over backbone atoms 1.48 Å). 

For refinement we conducted unrestrained molecular dynamics simulations in 

explicit solvent for microsecond timescales, seeded by the starting model. This was 

followed by a frame-picking procedure that employs a greedy optimizer to minimize the 

average R-factor across the ensemble. Given the wealth of structural and dynamics data 

available for hUb, we compiled such a refined ensemble and compared it to the 

reference ensembles (2KOX, 2MJB and 2NR2). The resulting ensemble of 20 conformers 

shows better correlation to experimental NH order parameters than the literature 

ensembles. It is also comparable in predicting experimental scalar couplings and RDCs to 

ensembles that have been built on one or more of these observables plus thousands of 

NOE restraints (Figure 6 and Supplement). This demonstrates the depth of the structural 

information captured when NOESY spectra are analysed holistically. 

Discussion  

NOESY spectra can be seen as an encoding of a proton-proton contact map with 

an approximate upper distance limit of 5 Å. If correctly decoded as a set of distance 

restraints, this information is sufficient to solve the structure with high accuracy and 

precision. However, crowded spectra and the consequent spectral overlap mean that the 

encoding is ambiguous. Spectral editing, for example via additional frequency 

dimensions, can only partially alleviate this problem, often at considerable cost in 

experiment time (17). The consequences of this ambiguity are not only that individual 

cross-peaks cannot be uniquely assigned – i.e. attributed to a specific proton-proton 

contact – but also that cross-peaks may comprise significant intensity from several 

contacts. Conventional NMR structure determination protocols interpret NOESY spectra 

through peak-picking, assignment and conversion into distance restraints under a 

paradigm of one peak; one assignment; one restraint. Even automated routines that 

specifically consider ambiguities will resolve to a single effective restraint per picked 

peak. This represents a compromise that is not justified by the underlying nature of the 

data, affecting either the accuracy or precision of distance estimates. In contrast, the 
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CoMAND method makes no interpretation of cross-peaks, and thus stands outside this 

conventional assignment paradigm. 

Given the ambiguity of NOESY data, the incorporation of unambiguous data from 

other sources is advantageous in NMR structure determination protocols. Particularly 

useful are data that define local dihedral angles (e.g. scalar couplings), as these are 

poorly defined by imprecise NOE-based distance estimates. Backbone dihedral angle 

predictions derived from chemical shift heuristics using the program TALOS are very 

widely used (18). For example, the CS-Rosetta approach exploits this data to build 

structural models within the Rosetta framework (19). In contrast to previous methods, we 

show that direct signal decomposition can yield backbone dihedrals unambiguously and 

without heuristics. Moreover, we demonstrate that the NOESY data can be leveraged to 

map the underlying conformational landscape in a systematic fashion. A further key 

advantage over existing methods is that the whole process of structure determination, 

including resonance assignment, model building, refinement and conformational mixture 

elucidation can be objectively assessed by the R-factor as a single metric. 

In recent years development of analysis methods in solution NMR of proteins has 

been driven by the need to make automation more reliable, while using less data and 

extending the range to larger proteins and more difficult cases, such as membrane 

proteins. CoMAND contributes to this effort in that it leverages a small set of spectra on 

a single sample into a high-resolution structure and is therefore applicable where protein 

concentration or stability are limiting. As the method involves minimum user 

intervention after the resonance assignment stage, it is also intrinsically suited to 

automation. However, the most unique feature of the method lies in the power to obtain 

accurate descriptions of protein conformational ensembles. We therefore anticipate that 

the method can be applied to studying ligand binding and allosteric processes, promising 

to elucidate subtle conformational changes in an unprecedented level of detail. 
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Materials and Methods 

NMR Spectroscopy 

Backbone and sidechain assignments for de novo structure determinations were 

obtained using standard triple resonance experiments. For human Ubiquitin literature 

values were used. Slight correction of 13C shifts against the respective CNH-NOESY 

spectra was necessary to account for calibration differences between spectrometers and 

spectrum types. 3D CNH-NOESY spectra were acquired at 800 MHz on a Bruker AvanceIII 

spectrometer equipped with room temperature probehead. Indirect 13C dimensions were 

typically acquired with ~100 time increments and processed with linear prediction and 

zero filling to 256 data points. The 13C sweep width was set to cover aliphatic carbon 

resonances; i.e. ~10-73 ppm, resulting in a resolution of ~30 Hz per point. At this 

resolution, 1JCC couplings are unresolved and the spectra were run in non-constant time 

mode. Broadband 13C pulses were used to excite aromatic resonances and these were 

folded into the aliphatic window without phase inversion.  

CNH-NOESY spectra were analysed by extracting one-dimensional 13C sub-spectra chosen 

from a search area centred on assigned 15N-HSQC positions (typically 1-3 points in each 

dimension). As these sub-spectra contain only cross-peaks to a specific amide proton, 

choosing the strip with highest integral maximises the signal-to-noise. Residues with 

overlapping search areas were examined separately. In most cases strips with acceptable 

separation of signals could be obtained. Where this was not possible the residues were 

flagged as overlapped and a joint strip constructed by summing those at the estimated 

maxima of the respective components. A set of strips well separated from assigned HSQC 

positions were averaged to define a global noise level for the spectrum. 

NOESY back-calculation 

In order to back-calculate 3D CNH-NOESY spectra we modified the program SPIRIT 
(20) by porting it to C++ and extending it to accommodate any combination of proton and 

heteronuclear dimensions. We name this program SHINE, for Simulation of Hetero-

Indirect NOESY Experiments. The calculations are based on a full relaxation matrix and 

thus account for spin diffusion in static structures. Internal motion of the protein is 

treated by ensemble averaging over n contributing microstates, effectively applying an n-
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state jump model of motion, where the life-time of a microstate is assumed to be long 

compared to the interconversion time. This does not account for true time-averaged 

phenomena, such as motion-mediated spin-diffusion, which are treated as negligible for 

the current application. Inputs for the calculations are a chemical shift list, a test 

structure and a set of simulation parameters. The latter are largely spectral details, such 

as spectrometer frequencies and sweep widths, which are extracted automatically from 

the corresponding experimental files (Bruker format), but also include an estimate of a 

global molecular correlation time. Resonances are modelled as gaussians, with 13C 

linewidths assigned on a class basis, taking into account unresolved 1JCC couplings. Here it 

should be noted that the short acquisition times in an indirect 13C dimension (<10 ms on 

an 800 MHz spectrometer) mean that effective lineshapes are largely governed by 

apodisation of the time domain. They are thus considerably more homogeneous than for 

a proton dimension. 

The computational demand of NOESY back-calculation depends on the number of 

protons in the relaxation network. For this reason, we employ sub-structures containing 

<150 atoms. These can be linear peptides or fragments of a folded structure. Linear 

peptides are typically tri- or penta-peptides where the test residue is in the second last 

position. Fragments are compiled at the residue level; residues are included in the sub-

structure if they contain a proton within a given radius (typically 5 Å) of a target residue 

proton. The output is a one-dimensional strip displaying contacts to a single backbone 

amide proton. In this mode, back-calculation typically takes less than 20 ms per 

conformer on a single processor core. The program also outputs a list of peak intensities 

that can be used to build multi-dimensional spectra suitable for viewing in SPARKY (21), 

with annotation of individual cross peaks. 

Calculation of features sets is performed for each residue for which an 

experimental spectrum is available. The starting structures are linear peptide fragments 

extracted from an arbitrary structural model. In the current work these were tripeptides 

centred on the test residue. For back-calculation of contacts to the amide proton of 

residue i this peptide is modified through a set of torsion angles in a shifted 

Ramachandran space: angles yi-1 (here denoted ui) and fi and up to two sidechain c 

angles. The backbone angles were searched at 10° granularity, while sidechain angles 
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sample all staggered rotamers. This results in a maximum of 11664 conformers. No 

checks for steric clashes are applied to test if a conformer is physically reasonable and 

bond lengths and angles remain constant throughout. An exception is for proline 

residues where the search space is restricted to a physically realistic range in fi. As 

proline residues lack an amide proton, their features sets are compiled by back-

calculation of the amide proton of the previous residue, which is the most sensitive 

reporter on the u angle of proline. The set of back-calculated spectra for each residue are 

stored as a single file. For residues flagged as overlapped, the features set files are 

concatenated to create a joint set. 

Calculation of R-factors 

We define the R-factor as the relative RMS residual between an experimental 

spectrum and the expectation spectrum back-calculated from a structural model. The use 

of RMS is in analogy to the quality factor (Q-factor) calculated for residual dipolar 

coupling data (22). The use of RMS tends to emphasize large outliers relative to the R-

factor used in crystallography, which averages absolute differences between 

experimental and back-calculated structure factors. It also provides a convenient 

definition of the optimum scaling factor for the back-calculated spectrum scalc, which can 

be calculated as: 

 

where vexp and vcalc are the experimental and back-calculated spectral intensities vectors, 

respectively. The R-factor is then calculated as:  

 

 

The theoretical range of the metric is from 0 to 1, however the maximum value can only 

be reached if there is no correspondence between peaks in the experimental and 
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expectation spectra, in which case the scaling factor, scalc, will approach zero. The 

practical minimum value is limited by the RMS noise on a per-residue basis. 

Calculation of fold factors 

Back-calculation for a structure can be carried out either on a linear peptide or as 

a fragment of the full structure. The R-factor can therefore be calculated on either basis. 

Calculation for peptides cannot explain any peaks outside the linear context, whereas all 

peaks should be explained in a fragment. The difference between fragment and peptide 

R-factors therefore reports on the fraction of cross-peak intensity that can only be 

explained in the folded structure. Here we report this difference as a per-residue fold 

factor, F: 

 

where Ri
full is based on a fragment from the full model and Ri

penta is the penapeptide 

based R-factor for residue i.  As R-factors should decrease as more of the cross-peak 

intensity is explained, the fold factor will be consistently negative for well-folded 

structures. High positive values are indications of misfolding, while continuous stretches 

of values close to zero should only be seen for unstructured regions. 

Factorisation and CMAP construction 

The dipeptide conformational space was sampled according to the following 

granularity: Du = 10°, Df = 10° Dc1 = 120°, Dc2 = 120°. The experimental vector v 

consisted of m = 256 data points of the acquired CNH-NOESY strip (i.e. NOE intensities vs. 
13C chemical shift), while W contained all of the back-calculated spectra of the l 

conformers sampled. With the aim of solving for the positive factors vector h that 

weights each column of W to best explain v. The principal solution can be defined as: 

 

and h can be also derived directly once the Moore-Penrose pseudo-inverse of the back-

calculated spectra matrix, W+, is computed as: 
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 The uniqueness of the solution in positive matrix factorization is limited by the 

ranks of the component matrices with the upper bound of min(m,n) (23). Here, as rank(W) 

>> rank(v) = rank(v) = 1, the limiting factor is the rank of v. Thus a 2-conformer block-wise 

factorisation was sought, being closest to this limit. The 2-conformer solution is also 

computationally tractable for handling the fine degree of conformational sampling 

described above. This solution offers a recovered spectrum that has a higher or equal 

weight against any single-conformer solution. The former two-component weight href 

was used as the highest propensity reference state for estimating the relative normalised 

propensities of every other available conformer hi. A Boltzmann factor can be directly 

used to estimate the energy of every conformer according to: 

 

The above procedure was performed across the (u, f) planes at every (c1, c2) 

combination. And lowest R-factor yielding plane was the one embedded into the 

CHARMM36 force field to generate MD ensembles with experimentally derived 

backbone dihedrals energy surfaces. 

Model building using Rosetta 

The Rosetta software package (24) was used to build structural models using 

backbone dihedral restraints derived from conformational mapping (version 3.6). First, a 

Rosetta dihedral angle constraint file (.cst) was compiled. For each residue position i, a 

MultiConstraint field was written to comprise both dihedral angles ui and fi. When 

multiple dihedral angles were possible for one residue position, an AmbigousConstraint 

field was used to include all possibilities. The Rosetta fragment picking program 

fragment_picker (25) was used to select 3mer and 9mer fragments satisfying the dihedral 

restraints from the PDB database. The DihedralConstraintsScore weight used was 500 

and the minimum allowed 100. The SecondarySimilarity (weight 150, minimum 1.5) and 

RamaScore (weight 150, minimum 1.5) both used psipred. FragmentCrmsd was not used. 

Other fragment_picker parameters were defaults. The fragment database vall.jul19.2011 

was searched and 200 3mer and 200 9mer fragments were picked for each position in 

the protein. The Rosetta ab initio folding program AbinitioRelax was then used to fold the 

ℎ"#$
ℎ%

= '
()*+,⟶.

/0  1 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/273607doi: bioRxiv preprint 

https://doi.org/10.1101/273607
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
                                                                            Page 14 
 

target proteins using these picked fragments (flag file: -ex1, -ex2 -use_input_sc, -

flip_HNQ, -no_optH false, -silent_gz 1). Typically, 20,000 decoys were generated for each 

target protein. 

SARS simulations 

The SARS framework was designed to provide robust and efficient conformational 

sampling without relying on any bioinformatic data, with the only input being CNH-

NOESY-acquired dihedral preferences encoded as residue-wise biasing potentials into a 

standard atomistic force field. The sampling acceleration scheme is based on the 

assumption that the native structure lies at the global minimum of the potential energy 

surface that is led to by successively deeper local minima. The algorithm initiates multiple 

replicas from the same fully extended peptide chain starting system. It then combines 

alternating rounds of simulated annealing between two temperature baths with 

conjugate gradient minimisation. Each such round constitutes a search step in a 

collective swarming behaviour that guides the configuration exchange between replicas 

whenever a new minimum is reached. In this way, all of the high-energy replicas follow 

the lead of the lowest energy one. The implementation details and convergence 

properties of the SARS method will be detailed in a separate publication. 

Molecular dynamics of human ubiquitin 

An initial low-resolution model generated by ROSETTA from the CNH-NOESY-

acquired dihedral restraints was taken as the input coordinates for molecular dynamics 

simulations. The standard trajectories were acquired from 10 independent replicas 

conducted using the standard CHARMM36 force field (26). In contrast, the guided 

trajectories were acquired from 10 independent replicas where the systems were built 

using an augmented CHARMM36 with bespoke CMAP potentials. The CMAP potentials 

were directly constructed on a per-residue basis, in the shifted Ramachandran space (ui, 

fi) from the energy maps as described above. The energy maps where scaled by an 

arbitrary factor depending on restraint level required, and the standard CMAPs were 

adopted wherever a bespoke one was not available. These residues with unmodified 

cross-terms were M1, Q2, G10, P19, E24, I30, P37, P38, G53 and G76. 
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All of the simulations were performed in explicit TIP3P water as solvent, 

containing 9226 solvent molecules each, and neutralised by 0.15 M Sodium Chloride in a 

cubic periodic unit cell. Energy minimisation was performed through 5000 steps of 

conjugate gradient minimisation, which was followed by 30 ns of NPT equilibration. The 

time step was set to 2 fs and a Langevin Piston was set to 1 Atm at oscillation period of 

200 fs and damping period of 50 fs and a temperature of 298 K. A Langevin thermostat 

was accordingly set with damping coefficient of 1 ps-1. A nonbonded interactions 

distance cutoff was set to 12.0 Å at a switching distance of 10.0 Å with all nonbonded 

force and pair list evaluations were performed every timestep, and long-range 

electrostatics were computed using the Smooth Particle Mesh Ewald method (27) as 

implemented in the NAMD engine (28). Data was collected from the ensuing NVT 

trajectories, dumping coordinates every 5 ps for analysis. Frame picking was done from 

the 10 production trajectories of 30 ns each based on the standard force field that would 

represent a steady state canonical ensemble. 

Ensemble building 

To compile the final CoMAND ensemble for hUb, we performed frame picking 

from an equilibrium ensemble, such that the compiled conformers belong to microstates 

of minimal free energy and maximal entropy at the target temperature. This should 

provide more physically realistic final models compared to those collected from 

constrained tempering schemes with unrealistic Hamiltonians. To pick frames from the 

production trajectories we applied a greedy algorithm aimed at minimising the average 

R-factor for all residues where experimental CNH-NOESY strips were available. For 

consistency, residues lacking experimental strips (M1, Q2, G10, P19, E24, I30, P37, P38, 

G53, G76) were excluded from the following comparisons with other datasets. 

Validation versus NMR observables 

Expectation NMR observables, R-factors and fold-factors were calculated for the 

CoMAND and reference hUb ensembles. For uniformity, only the first 20 conformers 

from each ensemble were considered for the comparisons shown in the figures. 

For backbone amide order parameters, frames were aligned into a singular molecular 

frame of reference that best fits backbone atoms of residues 1 through 70. The order 
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parameter, S2
NH, was directly computed according to the method described by 

Nederveen and Bonvin (29) through the following equation: 

 

where µi is the normalised internuclear NH bond vector in the molecular frame of 

reference and á*ñ represents the ensemble-averaged value. Expectation HN-H� scalar 

coupling constants were calculated according to the following Karplus function: 

 

where q is the HN – N – Ca - Ha dihedral angle. These were compared to literature 

experimental values (30). Deviations from experimental residual dipolar couplings and an 

overall Q-factor for the CoMAND ensemble were calculated using the program PALES (31) 

using 996 backbone coupling published for 2MJB across four alignment media (12). 
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Data availability: Coordinates for the CoMAND ensemble for human ubiquitin have been 

deposited in the Protein Data Bank under the accession number (TBC).  

  

Supplementary Materials 

Fig. S1. CNH-NOESY based R-factors are highly sensitive to local conformation. 

Fig. S2. The CoMAND ensemble independently reproduces NMR observables. 

Fig. S3. Fold-factors identify well-folded models for hUb. 

Fig. S4. The CoMAND ensemble for human ubiquitin. 

Movie S1. The SARS folding trajectory of polb4. 
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Figures 

 

Fig. 1. NOESY back-calculation in the CoMAND method.  

(A) An example comparison demonstrating the quality of back-calculation of CNH-NOESY spectra. 

The experimental spectrum for L67 in human ubiquitin (hUb) is in blue and the recovered 

spectrum back-calculated by averaging across the 640 models of the 2KOX structure ensemble (11) 

is in green. The residual signal is in red (R-factor = 0.071). (B) R-factors plotted across the 

sequence for three literature ensembles. These ensembles have been compiled to emphasise 

different aspects of the hUb structure: 2KOX to elucidate internal motions (11), 2NR2 via a minimal 

under-restraining, minimal over-restraining procedure (5) and 2MJB to represent a static average 

pose (12). The average structures for all three ensembles are very similar and differences in R-

factors are therefore attributable to the different representations of conformational diversity 

(see Supplemental Figure S1 for specific examples). These are compared to the CoMAND 

ensemble (green line). 
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Fig. 2. Conformational mapping in the CoMAND method.  

(A) The definition of the conformational search space. Note that in the shifted Ramachandran 

space, ui is equivalent to y(i-1). (B) The features matrix for L67 in hUb shown as a stacked plot 

where each row is a spectrum back-calculated via systematic conformational sampling, resulting 

in periodic intensity patterns. The order of sampling, from fastest to slowest, is c2, c1, u, f with 

10° steps for backbone and 120° steps for sidechain angles. The intensity of each peak in the 

spectrum displays a different dependency on the dihedrals, underlining the power of the data to 

discriminate individual conformations. The projection of this plot – i.e. all members of the 

features set overlaid - is shown above with individual peaks assigned. (C) Decomposing 

overlapped spectra. The top panel shows all members of the concatenated features set for Q2 

(orange) and I30 (purple) in hUb. Two-component factorization successfully decomposes the 

completely overlapped experimental spectra, yielding the correct conformations of the 

respective residues (middle panel). 
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Fig. 3. Conformation maps from spectral decomposition.  

Conformational maps are shown for six examples residues representing different secondary 

structural contexts in hUb. They are expressed as heat maps of conformer free energy change, 

relative to a two-conformer global minimum reference state. For non-glycine residues, a two-

dimensional (u, f) slice through the full three- or four-dimensional map at the minimum c1/c2 

position is shown. The map for G35 displays typical pseudo-symmetry about the f=0 axis due to 

the achiral nature of glycine residues. In each map, the minima agree very well with the 

corresponding crystallographic conformations (1UBQ; white diamonds). 
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Fig. 4. The R-factor as an objective target function. 

(A) Fold factors plotted across the sequence for hUb. Fold factors (F) are calculated on a per-

residue basis as the difference between the R-factor calculated for a linear peptide and that 

calculated for the full structure. This isolates the component of the R-factor not explained by 

local contacts. Negative values indicate residues in well-folded environments. Values are shown 

for an initial folded model from Rosetta runs plus a Rosetta structure misfolded by a strand swap 

in the N-terminal a-hairpin. These are compared to a representative of the final CoMAND 

ensemble (green line). (B) Comparison of the average fold factor (Fmean) versus the Rosetta score 

(Rosetta Energy Units) as selection criteria for well-folded hUb models. Both measures are 

plotted against the RMSD to the reference structure (1UBQ) for the same set of 7215 Rosetta 

decoys with sub-zero score. Structures with low Fmean are consistently close to the reference 

structure. 
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Fig. 5. The CoMAND structure gallery. 

(A) The CoMAND structure gallery. Models (orange) are shown superimposed on their respective 

reference structures. For U3Sfl and MlbQ the reference structures are previously solved solution 

structures. For KH-S1, the KH domain reference structure is 4AM3 (light purple) and the S1 

domain reference structure is 4NNG (dark purple). The de novo structure determined for polb4 is 

compared to the design target. A single model from the refined CoMAND ensemble for hUb is 

shown in yellow and the reference structure (1UBQ) in blue (RMSD over backbone atoms 0.49 Å). 
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Fig. 6. Validation of CoMAND ensembles. 

(A) Evolution of the average sequence R-factor and fold factor along the first replica of the SARS 

folding trajectory of polb4. The lowest R-factor structure (time point of 6.4 ns) was chosen as a 

low-resolution model (See also Supplemental Movie S1) (B) The RMSD from the native fold along 

the trajectory of the same SARS folding simulation. Traces for all five replicates are shown, 

illustrating the convergence of the protocol. (C) The CoMAND ensemble independently 

reproduces NMR observables. The correlation between residual RDC values back-calculated from 

the CoMAND ensemble and experimental values in four different alignment media is shown (12). 

The Q-factor expressing the agreement between prediction and experiment for this data set is 

0.24. Similarly good agreement is obtained between back-calculated and experiment 3JHNHa 

coupling constants (correlation coefficient = 0.95; Supplementary Figure S2). RDC values report 

on the orientation of various bond vectors to an external molecular alignment medium and are 

thus sensitive to both local and global structure. 3JHNHa coupling constants report on local f 

angles. Neither parameter was used in compiling the CoMAND ensemble. d) Calculated S2
NH order 

parameter values across the sequence of hUb using the first 20 models of the 2MJB, 2KOX, 2NR2 

and CoMAND ensembles. The CoMAND ensemble best reproduces experimental values derived 

from NMR relaxation analysis (29) (correlation coefficient=0.82). Correlations for the reference 

ensembles are shown in Supplementary Figure S2). 
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Figure S1: CNH-NOESY based R-factors are highly sensitive to local conformation. 

(A) Plots are shown of R-factors versus composition for idealised two-state conformational 

mixtures. The upper plot shows linear mixtures between a-helical (u = -40°, f = -62°) and 310-

helical (u = -10°, f = -95°) conformations, modelling a conformational transition by helical 
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unwinding. Traces are shown for selected residues in helical regions of human Ubiquitin (hUb). 

Some residues are best explained by pure conformers, e.g. K27 and Q40, while others have R-

factor minima for mixtures. The lower panel models transition between the two most populated 

sidechain rotamers for leucine residues: mt (c1 = -60°, c2 = 180°) and tp (c1 = 180°, c2 = 60°). 

Traces are shown for all leucine residues in hUb for which data is available. Residues sampling 

multiple conformations are clearly identified. (B) Validating conformational mixtures in the 

CoMAND ensemble. The chemical shifts of leucine Cd1 and C�2 carbons are sensitive to the 

c2 rotamer due to a “g-gauche effect” (32). The difference in these shifts correlates with the 

proportion of trans rotamer in leucine residues and thus provides an independent estimate of 

the conformational mixtures described in the lower plot of panel A. The plots show the shift 

differences (Dd) versus the proportion of trans rotamer for the CoMAND and three reference 

ensembles for hUb. These ensembles have been compiled according to different metrics: 2KOX to 

elucidate internal motions, 2NR2 according to minimum under-restraining, minimum over-

restraining criteria and 2MJB, which represents a static structure close to the average structure 

and is therefore not expected to explain conformational diversity well. The CoMAND ensemble 

best explains the observed chemical shifts. The expected shift difference (solid line) is based on 

the equation derived by Mulder (32). (C). Literature ensembles for hUb over- and under-estimate 

conformational diversity. The panels on the left show the distribution of c1/c2 rotamers for K48 in 

hUb in the CoMAND and reference ensembles. For 2KOX only the first 20 models of the ensemble 

are shown for clarity. The panels on the right show the comparison between experimental 

spectra and spectra back-calculated over the whole ensemble. The R-factors for these 

comparisons demonstrate its sensitivity to accurate representation of conformational diversity. 
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Figure S2: The CoMAND ensemble independently reproduces NMR observables. 

Correlations are shown between experimental and back-calculated 3JHNHa coupling constants (12) 

and backbone S2
NH order parameters (29) for the CoMAND and reference ensembles. Note that the 

2MJB ensemble was refined against 3JHNHa couplings, while 2NR2 was refined against order 

parameters. 
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Figure S3: Fold-factors identify well-folded models for hUb. 

Correlations are shown between the average fold-factor (Fmean) and Rosetta Score (Rosetta 

Energy Units) for a set of 7215 decoys with sub-zero score calculated for hUb. Each point is 

coloured according to the RMSD to the reference crystal structure (1UBQ). Agreement between 

the two measures is a very good predictor of well-folded decoys. 

 

 

Figure S4: The CoMAND ensemble for human ubiquitin. 

The refined ensemble for hUb (20 models) is shown superimposed over backbone atoms. Helices 

are in blue and b-strands in orange. The backbone RMSD to the average structure for the 

ensemble is 0.64 Å. The ensemble has been compiled by frame-picking structures from an 

unrestrained molecular dynamics simulation employing a greedy algorithm to minimise the 

overall average R-factor. 
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Movie S1 

The SARS folding trajectory of polb4. The movie shows the time evolution of the communicating 

replica performing a seilschaft search for lower energy minima. The inset shows the backbone 

RMSD from the design as a function of time. 
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