
	 1 

Psychophysical reverse correlation reflects both sensory and decision-making processes 
 
Gouki Okazawa1, Long Sha1, Braden A. Purcell1, Roozbeh Kiani1,2,3 

 

1 Center for Neural Science, New York University, New York, NY 10003 
2 Department of Psychology, New York University, New York, NY 10003 
3 Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016  
 
 
Corresponding Author: 
Roozbeh Kiani 
Center for Neural Science 
New York University 
4 Washington Pl, Room 809, New York, NY 10003 
roozbeh@nyu.edu 
 
 
 
 
Abstract 
 
Goal directed behavior depends on both sensory mechanisms that gather information from the outside 
world and decision-making mechanisms that select appropriate behavior based on that sensory 
information. Psychophysical reverse correlation is commonly used to quantify how fluctuations of 
sensory stimuli influence behavior and is generally believed to uncover the spatiotemporal weighting 
functions of sensory processes. Here we show that reverse correlations also reflect decision-making 
processes and can deviate significantly from the true sensory filters. Specifically, changes of decision 
bound and mechanisms of evidence integration systematically alter psychophysical reverse correlations. 
Similarly, trial-to-trial variability of sensory and motor delays and decision times causes systematic 
distortions in psychophysical kernels that should not be attributed to sensory mechanisms. We show that 
ignoring details of the decision-making process results in misinterpretation of reverse correlations, but 
proper use of these details turns reverse correlation into a powerful method for studying both sensory 
and decision-making mechanisms.  
 
 
Introduction 
 
Accurate characterization of behavior is key to understanding neural computations1,2. Not only do we 
want to know which behaviors arise from sensory inputs in an environment, but also we need to 
understand the mechanisms through which sensory inputs lead to behavioral outputs. Over the past 
decades, several system identification techniques have been developed to address these needs. Among 
the most commonly used is psychophysical reverse correlation3-5, a technique that aims to estimate how 
sensory information is weighted to guide decisions. The core idea is that by quantifying the stimulus 
fluctuations that precede each choice (i.e., reverse correlation), one can infer the spatiotemporal filter 
implemented by the sensory processes (Fig. 1). It can be shown mathematically that under the 
assumptions of signal detection theory (SDT) for the decision-making process, psychophysical reverse 
correlation does recover the true sensory weights6,7. In SDT, a linear filter is applied to a sensory 
stimulus and the outcome is compared to a decision criterion. The result of this comparison (higher or 
lower than the criterion) dictates the choice8,9. If stimuli on different trials are drawn from a symmetric 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/273680doi: bioRxiv preprint 

https://doi.org/10.1101/273680


	 2 

distribution (e.g., Gaussian) reverse correlation will accurately estimate the linear sensory filter of SDT 
by averaging the stimuli that precede a particular choice.  
 
The technique can also be extended to the temporal domain to recover the dynamics of the weighting 
function when choices are based on filtering a sequence of observations and comparing the results to a 
criterion5,10. These temporal extensions resemble spike-triggered averaging techniques, which derive 
spatiotemporal receptive fields (linear kernels) of spiking neurons11-16, under the assumption that firing 
rates are determined by filtering sensory inputs followed by application of a static nonlinearity. In 
general, when a discrete outcome arises from a sequence of linear and nonlinear computations, reverse 
correlation is a recommended method for estimating the linear component of the computation. How well 
does this recommendation work in practice for sensory decisions?  
 
Studies of the decision-making process over the past decade have revealed that the simple assumptions 
of SDT do not adequately capture the complexity of perceptual decisions. We now know that for many 
decisions, subjects integrate sensory evidence in favor of different choices, and the final decision is 
made when the integrated evidence reaches a satisfactory threshold17-22. Several key features of this 

Figure 1. Psychophysical reverse correlation has been developed to recover sensory weights in perceptual 
tasks but it could also be influenced by decision-making mechanisms. (a) In a typical reverse correlation 
experiment, subjects receive a sequence of randomly fluctuating sensory information and make a binary 
choice. Experimenters can directly observe the stimulus and choice, but not the sensory weights and decision-
making process (gray box). When choices are made by applying a sensory filter (weighting function) to the 
stimulus and comparing the result against a criterion, as proposed by signal detection theory, psychophysical 
reverse correlation will recover the sensory filter. However, it is unknown how well the analysis generalizes to 
more complex decision-making mechanisms. (b) Reverse correlation calculates the average stimuli preceding 
each choice and subtracts the results for the two choices. The outcome is a “psychophysical kernel.” 
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process are absent in simple temporal extensions of SDT. First, subjects can flexibly adjust their 
decision bound within and across trials to change how much evidence to integrate, and thereby trade off 
accuracy and speed of their decisions23,24. Second, neural implementation of the decision-making 
process relies on a competition or race between multiple integrators, rather than reaching a decision 
bound in a single integrator. Third, realistic implementations of these computations in neural networks 
require taking into account biophysical constraints (e.g., lower limit of firing rates at zero25 ,26,27) and 
network mechanisms of integration (e.g., mutual inhibition21,22,25). Finally, applying theory to real 
experimental data requires taking practical limitations into account. A key factor that has been largely 
ignored thus far is the sensory and motor delays (non-decision time). The sum of the non-decision time 
and the time spent on integration of evidence (decision time) determine experimentally measured 
reaction times (RTs)28-30. Because the non-decision time limits the relevant stimulus history for the 
choice, it could distort the outcome of reverse correlation. How much do these factors influence the 
estimation of sensory filters with psychophysical reverse correlation? Except for scant examples in the 
past literature that studied basic properties of the integration of sensory evidence (e.g., bounded or leaky 
accumulation)25,31-33, the answer is largely unknown. A systematic exploration is timely because 
mechanistic studies of sensory and decision-making processes have become a cornerstone of modern 
neuroscience and because accurate methods for quantifying the relationship between experimental 
stimuli and behavior provide a critical foundation for these investigations2. 
 
We show that psychophysical reverse correlation deviates qualitatively and quantitatively from sensory 
weights under several variants of decision-making models. Experiments in which stimulus viewing 
duration is controlled by the experimenter often do not allow distinguishing these variants, leaving the 
mechanistic cause of observed kernel dynamics obscure, unless special measures are implemented (e.g., 
variation of stimulus durations across trials). RT tasks, where the stimulus-viewing duration is 
controlled by the subject and reaction times can be directly measured by experimenters, offer much 
more leverage, especially when a model-based approach is adopted to correct for expected deviations of 
the reverse correlation from sensory weights. We show that these deviations are not caused by the 
presence of a decision bound. Rather, they emerge from the presence of variable sensory and motor 
delays, changes of decision-bound within and across trials, lower limits for accumulated evidence, 
integration time constants, and mutual inhibition of competing accumulators. Knowing about these 
deviations enables us to correct for them, when possible, and prevents false conclusions about temporal 
variation of sensory weights. We demonstrate this point in a series of experiments by showing that the 
mechanism that underlies decisions predicts temporal dynamics of psychophysical kernels and 
quantitatively explains experimentally derived kernels.  
 
 
Results 
 
In a typical reverse correlation experiment, subjects observe a sequence of noisy sensory stimuli and try 
to detect the presence of a target or categorize a stimulus3,4,32-35 (Fig. 1). The stimuli could be a random 
dot kinematogram31,32, oriented gratings or bars5,36, or any other sensory inputs that randomly vary 
within or across trials along one or more stimulus attributes. For example, in the random-dot direction 
discrimination task, motion energy for a 0% coherence stimulus fluctuates from moment to moment 
according to a bell-shaped distribution centered on zero32 (positive and negative values correspond to net 
motion in the two discriminated directions). The reverse correlation analysis calculates the relationship 
between subjects’ choice and moment-to-moment stimulus fluctuations by averaging over the stimuli 
that precede a particular choice. A common observation is that when there happens to be more rightward 
motion in a trial, subjects are more likely to choose right and vice versa31,32,37. For two-alternative 
decision tasks, the analysis yields two kernels, one for each choice. Because of symmetry of the two 
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choices, the kernels tend to be mirror images of each other32,38. Therefore, it is customary to subtract the 
two kernels and report the result (Fig. 1b): 
K t( ) = E s t( ) | choice1⎡⎣ ⎤⎦ − E s t( ) | choice2⎡⎣ ⎤⎦    Eq. 1 

where E s t( ) | choice1⎡⎣ ⎤⎦  indicates the trial average of the stimulus at time t  conditional on choice 1, 
s t( )  is the stimulus drawn from a stochastic function with symmetric noise (e.g., Gaussian), and K t( )  
is the magnitude of the psychophysical kernel at time t .  
 
Psychophysical kernels are guaranteed to match the sensory filters when decisions are made by applying 
a static nonlinearity6,7,11,39, for example, comparison to a decision criterion, as suggested by SDT8,9. 
However, recent advances suggest that SDT offers an incomplete characterization of the decision-
making process. In particular, many perceptual decisions depend on integration of sensory information 
toward a decision bound17-20,25,33,40,41, the decision bound can vary based on speed-accuracy tradeoff23,24, 
the integration is influenced by urgency42-44 and prior signals40,45-47, and experimentally measured RTs 
consist of a combination of decision times and non-decision times28-30.  
 
A simple and commonly used class of decision-making models that takes these intricacies into account 
and provides a quantitative explanation of behavior in perceptual tasks is the drift diffusion model 
(DDM)17,18,48 and its extensions24,26,49,50. In these models, weighted sensory evidence is integrated over 
time until the integrated evidence (the decision variable, DV) reaches either an upper (positive) or a 
lower (negative) bound (Fig. 2), where each bound corresponds to one of the choices. We begin our 
exploration with the most basic model but will focus on more complex implementations later in the 
paper. Our conclusions in this section are not limited to a specific implementation and generalize to a 
wide variety of models in this class. 
 

Figure 2. The drift diffusion model (DDM) captures the core computations for perceptual decisions made by 
integration of sensory information over time. We use variants of this model and more sophisticated extensions 
to explore how the decision-making mechanism influences psychophysical kernels. In DDMs, a weighting 
function, , is applied to the sensory inputs to generate the momentary evidence, which is integrated over 
time to form the decision variable (DV). The DV fluctuates over time due to changes in the sensory stimulus 
and neural noise for stimulus representation and integration. As soon as the DV reaches one of the two 
decision bounds  (  for choice 1 and  for choice 2), the integration terminates and a choice is made 
(decision time). However, reporting the choice happens after a temporal gap due to sensory and motor delays 
(non-decision time). Experimenters know about the choice after this gap and can measure only the reaction 
time (the sum of decision and non-decision times) but not the decision time. 
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Neither the integration process nor the boundedness of the integration per se causes a systematic 
deviation between the psychophysical kernels and true sensory weights. We define true sensory weights 
as the weights applied to the sensory information to create the momentary evidence that will be 
accumulated over time for making a decision. Psychophysical kernels are the best approximation of 
these weights under the assumptions of SDT. We explore how close this match is under DDM. In 
Methods, we provide a mathematical proof that in a plain version of the DDM where decision bound and 
noise are constant over time and behavioral responses are generated as soon as the DV reaches one of 
the bounds (non-decision time = 0), psychophysical kernels are proportional to the sensory weights: 

K t( ) = 2σ s
2

B
w t( )    Eq. 2 

where w t( )  is the time-dependent weight applied to sensory inputs prior to integration, σ s
2  is the 

variance of stimulus fluctuations, and B  is the height of the decision bound. Similar results can be 
obtained for unbounded DDMs (Eq.	14, see Methods). Fig. 3 shows simulations that confirm our proofs. 
Reverse correlation for an unbounded integration process with constant or sinusoidally varying weights 
recovers the true weighting function (Fig. 3a-c, S1). Similarly, it yields the true weights for a bounded 
DDM, (Fig. 3d-e, h), regardless of the decision bound height.     
 
Although the proportionality in Eq. 2 may suggest that psychophysical kernels can be successfully used 
to recover spatiotemporal dynamics of sensory weights, critical limitations prevent that in practice, as 
we explain below. The most common limitation is experimenter’s lack of knowledge about decision 
time, which is caused by asynchrony between the time that the DV reaches a decision bound (bound-
crossing time or decision time) and the subject’s report of the decision (when the choice becomes known 
to the experimenter). Such asynchronies stem from two sources: delays in neural circuitry and 
experimental design.  
 
In many experiments subjects are exposed to the stimulus for a duration determined by the experimenter 
and can report their choice only after a Go cue. In these “fixed-duration” designs, the exact decision 
time and its trial-to-trial variability are unknown to the experimenter, and decision times are likely to be 
prior to the Go cue32,51. Because stimuli presented after the bound-crossing time do not contribute to the 
choice (or contribute less)31,52,53, including that period in the calculation of psychophysical kernels leads 
to a progressive underestimation of sensory weights31,32,54, causing a systematic deviation from Eq. 2 
(Fig. 3g-h), compatible with past studies55. The diminishing kernel (Fig. 3g) correctly characterizes the 
effective reduction of the influence of the sensory stimulus on choice. However, note that from an 
experimenter’s perspective, the shape of the kernel is inadequate to tell whether the reduced influence of 
the stimulus on choice is caused by a change in sensory weights, by early termination of the decision 
during stimulus viewing, by a combination of both, or by another mechanism in the decision-making 
process (see below). Such a mechanistic understanding could be achieved only if the experimental 
design is enriched and a model-based approach is adopted. Although there are successful examples of 
achieving such goals31,32, fixed-duration tasks impose significant limitations on experimenters’ ability to 
determine the beginning and end of the decision-making process (cf. ref. 51), which would be necessary 
for separating sensory and decision-making mechanisms that shape psychophysical kernels.  
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Figure 3. Psychophysical kernels deviate from sensory weights in DDM because of incomplete knowledge 
about decision time. (a-c) Integration of evidence per se does not preclude accurate recovery of sensory 
weights. For an unbounded DDM that integrates the momentary evidence as long as sensory inputs are 
available, the psychophysical kernel matches the true sensory weights. In this simulation, the weight is 
stationary and fixed at 1, but similarly matching results are obtained for any sensory weight (c). Distortion 
quantifies root mean square error between the psychophysical kernel and the true sensory weights (Eq. 17). 
See Fig. S1 for additional examples. Unbounded DDMs are unrealistic for RT tasks because they lack a 
termination criterion. (d-h) The decision bound does not preclude accurate recovery of sensory weights. In a 
bounded DDM without non-decision time, RTs are identical to decision times (d). Model simulations for RT 
tasks result in stimulus-aligned kernels that match sensory weights of the model (e) and response-aligned 
kernels that rise monotonically (f), as expected for termination with bound crossing. However, stimulus-
aligned kernels in fixed-duration tasks show a monotonic decrease because later stimuli are less likely to bear 
on the choice (g). This deviation from sensory weights gets smaller as the decision bound rises and 
commitment to a choice before termination of the stimulus becomes less likely (h). (i-m) Variability of non-
decision time makes reaction time an unreliable estimate of decision time, causing systematic deviations 
between psychophysical kernels and true sensory weights. After including non-decision time in the bounded 
DDM, stimulus-aligned kernel in RT tasks show a monotonic decrease because stimuli that immediately 
precede the choice do not contribute to it (j). Response-aligned kernels show a peak, whose time is dependent 
on the distribution of non-decision times (k). Kernels for fixed-duration tasks are not affected by non-decision 
time, if there is a long enough delay between the stimulus onset and response cue (l). However, they still show 
the decline caused by bound crossing, similar to g. Deviation of stimulus-aligned kernels in the RT task 
increases with variability of non-decision time (m). Standard deviation of non-decision time is assumed to be 
1/3 of its mean in these simulations. All kernels are normalized according to Eq. 2 or Eq. 14 to allow direct 
comparison with the true sensory weights (see Methods). 
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Experimental designs in which subjects respond as soon as they make their decision (RT tasks; Fig. 3e) 
enable measurement of decision times and can be used to address the problem. However, RT tasks come 
with their own challenges for psychophysical reverse correlations. Sensory and motor delays are among 
them (Fig. 3i). Although the presence of such delays is widely appreciated, their effect on 
psychophysical kernels is unexplored. These delays effectively create a temporal gap between bound 
crossing and the report of the decision, making stimuli immediately before the report inconsequential for 
the decision. Fig. 3j shows that non-decision times pull down the psychophysical kernel. These 
systematic reductions can cause the illusion of non-stationarity for stationary sensory weights (Fig. 3j, 
m) or distort the dynamics of time-varying weights (Fig. S2).  
 
What makes the psychophysical reverse correlation especially vulnerable to non-decision times is the 
variable nature of the sensory and motor delays56-58. A fixed non-decision time would cause a readily 
detectable signature (Fig. S3) and is easy to correct for by excluding the last stimulus fluctuations in 
each trial that corresponded to the non-decision time. Similarly, if the non-decision time was variable 
but we could know the exact delay on each trial we could easily discard the corresponding period at the 
end of the stimulus before calculating the kernels to correct for the artificial dynamics caused by the 
non-decision time. In practice, the non-decision time is not a fixed number30. Further, the variability of 
non-decision time is often in the same order of magnitude as the decision time26,41,59-61, making it 
challenging to thoroughly scrub away the effect of non-decision time just by trimming the stimuli. A 
more efficient solution is to embrace the distortion caused by the non-decision time, develop an explicit 
model of both the sensory and decision-making mechanisms, and compare the predictions of such a 
model with experimentally derived kernels (see the next section).  
 
The fixed-duration design is not affected by the non-decision time, if there is a long enough delay 
between the stimulus and Go cue or if the stimulus duration is long enough to exceed the tail of the 
reaction time distribution in an equivalent RT task design (Fig. 3l-m). However, as mentioned above, 
lack of knowledge about the beginning and end of the integration process in fixed-duration tasks 
impedes mechanistic studies of kernel dynamics. 
 
So far, we have focused on psychophysical kernels aligned to the stimulus onset. In a RT task, the 
stimulus viewing duration varies from trial to trial and we can choose to align the kernel to subjects’ 
responses. Such an alignment is informative both about the termination mechanism of the decision-
making process and about the distribution of non-decision times. When the decision-making process 
stops by reaching a decision bound, the kernel is guaranteed to show a steep rise close to the decision 
time (Fig. 3f) because stopping is conditional on a stimulus fluctuation that takes the DV beyond the 
bound. This rise of the kernel does not indicate an increase of sensory weights immediately before the 
decision. Further, the magnitude of this rise is not always fixed and depends on the decision bound and 
distribution of non-decision times (see below; Fig. S3). In the presence of a variable non-decision time 
(Fig. 3k), response-aligned kernels peak and then drop down to zero before the response. The drop 
happens because the non-decision time causes later fluctuations in the stimulus not to bear on the 
choice52,60,62. The difference between the peak of the kernel and the reaction time is dependent on the 
mean and standard deviation of the non-decision time, as well as the skewness of its distribution (Fig. 
S3). Since it is known that the distribution of non-decision times can be quite diverse, depending on the 
experimental design63, the shape of the response-aligned psychophysical kernels can provide an 
important clue about the distribution of non-decision times and also verification of model-based 
attempts to discover the non-decision time distribution63. Overall, psychophysical kernels aligned to the 
response are influenced by sensory weights, termination criterion of the decision, and the non-decision 
time. Consequently, they reflect both sensory and decision-making mechanisms. 
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Experimentally measured psychophysical kernels confirm model predictions 
 
The results of the previous section suggest that psychophysical kernels reflect a mixture of sensory and 
decision-making processes. By embracing this complexity, one can leverage psychophysical kernels to 
gain insight about both processes. The key is to develop explicit models for both and to compare model 
predictions against experimentally derived kernels. Below we highlight two experiments designed to 
achieve this goal. 
 
The first experiment is an RT version of the direction discrimination task26,64,65. On each trial, subjects 
viewed a random dot stimulus and made a saccadic eye movement to one of the two targets as soon as 
they were ready to report their choice (Fig. 4a). Consistent with previous studies, subjects’ accuracy 
improved and RTs decreased monotonically with motion strength (Fig. 4b-c)26,64,65. We quantified 
moment-to-moment fluctuations of motion in each trial by calculating the motion energy32,66,67 (see 
Methods). Fig. 4d shows the average and standard deviation of motion energies across all 0% coherence 
trials (solid black line) and four single-trial examples (dashed black lines). As expected, single trial 

Figure 4. Psychophysical kernels in the direction discrimination task match predictions of a bounded DDM 
with non-decision time. (a) RT task design. Subjects initiated each trial by fixating on a central fixation point. 
Two targets appeared after a short delay, followed by the random dots stimulus. When ready, subjects 
indicated their perceived motion direction with a saccadic eye movement to a choice target. The net motion 
strength (coherence) varied from trial to trial, but also fluctuated within trials due to the stochastic nature of 
the stimulus. (b-c) Choice accuracy increased and RTs decreased with motion strength. Data points are 
averages across thirteen subjects. Accuracy for 0% motion coherence is 0.5 by design and therefore not shown. 
Gray lines are fits of a bounded DDM with non-decision time. Error bars denote s.e.m across subjects. (d) 
Motion energy of example 0% coherence trials (dotted lines), and the average (solid black line) and standard 
deviation (shading) of motion energy across all 0% coherence trials. Positive and negative motion energies 
indicate the two opposite motion directions in the task. (e-f) The bounded DDM predicts psychophysical 
kernels (gray lines), which accurately match the dynamics of subjects’ kernels (red lines). Because the model 
sensory weights are stationary, kernel dynamics in the model are caused by the decision-making process and 
non-decision times. Kernels are calculated for 0% coherence trials. Shading indicates s.e.m across subjects. All 
kernels are shown up to the minimum of the median RTs across subjects.  
	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/273680doi: bioRxiv preprint 

https://doi.org/10.1101/273680


	 9 

motion energies departed from 0 with a short latency66 (see Methods) and then fluctuated between 
positive and negative values, which corresponded to the two motion directions discriminated by 
subjects. Across all 0% coherence trials, these fluctuations canceled each other out, resulting in a zero 
mean (solid black line) but the standard deviation (gray shading) remained large, indicating short bouts 
of varying motion strengths in either direction throughout the trial (see Fig. S4 for motion energies of 
other coherences). The stochastic nature of the stimulus and the known effect of motion energy on the 
choice32,52,67 provided an excellent opportunity to quantify how stimulus dynamics shaped the behavior.  
 
We calculated psychophysical kernels using motion energy fluctuations of the 0% coherence trials. 
Experimentally derived kernels aligned to the stimulus onset or saccade onset (Fig. 4e-f, red lines) were 
not constant over time and showed a clear non-stationarity. However, their dynamics bore remarkable 
resemblance to the kernels expected from a DDM with non-decision time and stationary sensory weights 
(Fig. 3j-k). The main notable difference was a delayed rise in the psychophysical kernel aligned to the 
stimulus onset (Fig. 4e). As explained above, this delay was inherent to the motion energy calculation, 
as shown in Fig. 4d.  
 
The qualitative match between experimental and predicted model kernels based on simulations 
supported the hypothesis that the dynamics in the psychophysical kernels could indeed reflect 
characteristics of the decision-making process (bound crossing and non-decision time), rather than time-
varying sensory weights. We quantitatively tested this hypothesis by fitting the DDM to subjects’ 
choices and RTs and generating a model prediction for the psychophysical kernels (see Methods). 
Consistent with past studies, the distribution of RTs and choices across trials provided adequate 
constraints for estimating all model parameters26,42,44,62, evidenced by the quantitative match between 
subjects’ accuracy and RTs with model fits (data points vs. solid gray lines in Fig. 4b-c; R2, 0.97±0.01 
for accuracy and 0.98±0.01 for RTs, mean±s.e.m across subjects). After estimating the model 
parameters, we used them to predict the shape of the psychophysical kernel for the 0% coherence 
motion energies used in the experiment. These predicted kernels (Fig. 4e-f, solid gray lines) closely 
matched the experimentally derived ones (R2, 0.57), establishing that the dynamics of the kernels were 
both qualitatively and quantitatively compatible with stationary sensory weights and a decision-making 
process based on bounded accumulation of evidence.  
 
In a second experiment, we focused on a more complex sensory decision that required combining 
multiple spatial features over time (Fig. 5a). Subjects categorized faces based on their similarity to two 
prototypes. Each face was designed to have only three informative features (eye, nose, and mouth) (Fig. 
5b). On each trial, the mean strengths (percent morph) of these three features were similar and randomly 
chosen from a fixed set spanning the morph line between the two prototypes. However, the three 
features fluctuated independently along their respective morph lines every 106.7 ms (Fig. 5c; see 
Methods). All other parts of the faces remained fixed halfway between the two prototypes during and 
across all trials and, therefore, were uninformative. Further, each frame of the face stimulus was quickly 
masked to prevent subjects from consciously perceiving the small fluctuations in eyes, nose, and mouth. 
Subjects reported the identity of the face (closer to prototype 1 or 2) with a saccadic eye movement to 
one of the two targets, as soon as they were ready. Therefore, we could measure both the choice and RT. 
The key difference with the direction discrimination task was that instead of one stimulus attribute that 
fluctuated over time (motion energy), there were three attributes that fluctuated independently. The three 
informative features could support the same or different choices in each stimulus frame and across 
frames. This task provided a richer setting to test how humans combine multiple spatial features to make 
a decision. 
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Figure 5. Psychophysical reverse correlation in a face discrimination task with multiple informative features 
reveals relative weighting of features and kernel dynamics similar to the direction discrimination task. (a) Task 
design. Subjects viewed a sequence of faces interleaved with masks and reported whether the face identity 
matched one of two prototypes. They reported their choice with a saccadic eye movement to one of the two 
targets, as soon as ready. (b) Using a custom algorithm, we designed intermediate morph images between the 
two prototype faces such that only three facial features (eyes, nose, and mouth) could be informative. These 
features were morphed independently from one prototype (+100% morph) to another (−100% morph), 
enabling us to create stimuli in which different features could be biased toward different identities. All regions 
outside the three informative features were set to half-way between the prototypes and were uninformative. (c) 
The three informative features underwent subliminal fluctuations within each trial (updated with 106.7ms 
interval). The mean morph levels of the three features were similar but varied across trials. Fluctuations of the 
three features were independent (Gaussian distribution with standard deviations set to 20% morph level). (d-e) 
Choice accuracy increased and RTs decreased with stimulus strength. Data points are averages across subjects. 
Error bars are s.e.m across subjects. Gray lines are model fits. (f) The DDM model used to fit subjects’ choices 
and RTs extends the model in Fig. 2 by assuming different sensitivity for the three informative features. 
Momentary evidence is a weighted average of three features where the weights correspond to the sensitivity 
parameters. The momentary evidence is integrated toward a decision bound. (g) Psychophysical kernels 
estimated from the model (gray lines) match subjects’ kernels for the three features. Shaded areas are s.e.m 
across subjects.  
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Consistent with the simpler direction discrimination task, as the average morph level of the three 
features increased and the stimulus better resembled one of the prototypes, choices became both more 
accurate and faster (Fig. 5d-e). The psychophysical kernels of the three features (Fig. 5g) had rich 
dynamics. First, the eye kernels had larger amplitude than the mouth and nose kernels, suggesting that 
choices were more strongly influenced by fluctuations in the eye region68,69. Second, the stimulus-
aligned kernels dropped gradually over time, and the saccade-aligned kernels showed a characteristic 
peak a few hundreds of milliseconds prior to the choice. Had we not introduced these characteristic 
dynamics earlier, one might have been tempted to interpret the kernel dynamics as changes in 
spatiotemporal weighting of facial features for our task. However, as we explained above, such kernel 
dynamics could also arise from a decision-making process based on fixed weights and bounded 
accumulation of evidence.   
 
Therefore, we explored whether a multi-feature integration process with stationary weights for eyes, 
nose, and mouth regions could quantitatively explain our results. For each stimulus frame, the model 
calculated a weighted sum of the three features to estimate the momentary sensory evidence and then 
integrated this momentary evidence over time in a bounded diffusion model (Fig. 5f, see Methods). 
Fitting the model to the choice and RT distributions provided a quantitative match for both (gray lines in 
Fig. 5d-e are model fits; R2, 0.998±0.001 for accuracy and 0.98±0.01 for RTs) and the resulting 
parameters led to kernels that well matched the dynamics of experimentally observed kernels for the 
three features (R2, 0.74).  
 
Overall, bounded integration of sensory evidence during decision-making introduces characteristic 
dynamics in the psychophysical kernels that quantitatively match the data both for simple, one-
dimensional sensory decisions (direction discrimination), and for more complex, multi-dimensional 
decisions (face discrimination). Knowing these signature dynamics enables experimenters to understand 
their results in a more comprehensive framework that accommodates nuances of both sensory and 
decision-making mechanisms. More generally, a model that is fit to choices and RTs can generate exact 
predictions about the shape and time course of psychophysical kernels. Comparison of these predictions 
against experimentally derived psychophysical kernels, as we did above, provides a powerful test for the 
validity of models, beyond those offered by psychometric and chronometric functions. 
 
 
Testing for temporal dynamics of sensory weights 
 
Our exploration of the model and fits to experimental data in the previous sections focused largely on 
cases in which sensory weights were static and the dynamics of the psychophysical kernel were solely 
due to the decision-making process. However, as discussed earlier, changes of sensory weights could 
also be a major factor in shaping psychophysical kernels (e.g., Figs. 3c, S1, and S2). In theory, a model-
based approach to understanding kernel dynamics should be able to distinguish changes of sensory 
weights from decision-making processes because of their distinct effects on the choice and RT 
distributions. To test this prediction, we simulated a direction discrimination experiment in which 
decisions were made by accumulation of weighted sensory evidence toward a bound in the presence of 
non-decision time and various dynamics of sensory weights (Fig. S5). Then, we used the simulated 
choice and RT distributions to fit an extended DDM that allowed temporal dynamics of sensory weights. 
The model recovered the weight dynamics and accurately predicted psychophysical kernels of the 
simulated experiments in each case (Fig. S5). A few thousand trials, similar to those available in our 
experimental datasets, were adequate to achieve accurate fits and predictions. Therefore, there does not 
seem to be critical limitations in the ability of a model-based approach to detect sensory weight 
dynamics, when such dynamics are present.  
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Knowing about the model’s ability, we extended the DDMs used in the previous section to explore 
dynamics of sensory weights for human subjects that participated in the direction discrimination and 
face discrimination tasks. The extended models included linear and quadratic terms to capture a wide 
variety of temporal dynamics (Eq. 23 and Eq. 25 for direction discrimination and face discrimination, 
respectively). The results did not support substantial temporal dynamics of sensory weights in either task 
(12 out of 13 subjects of the direction discrimination task and all subjects of the face discrimination task 
showed static weights). Overall, the addition of temporal dynamics to the weight function did not 
significantly improve the fits or the match between model and experimental psychophysical kernels (for 
direction discrimination, Eq. 23, β1 , −3.0±1.6, p=0.10, median, −0.65, and β2 , −2.1±2.3, p=0.36, 
median, 0.17; for face discrimination, Eq. 25, β1 , −0.19±0.10, p=0.09, median, 0.10, and β2 , 
0.055±0.028, p=0.08, median, 0.028). These results about static sensory weights are in agreement with 
previous electrophysiological recordings in area MT, which suggest largely stable neural responses 
during stimulus viewing70. Because similar models could accurately recover weight dynamics in the 
simulated data, we do not think our observation about the experimental data is caused by a low power 
for the detection of weight dynamics in the model or a fundamental bias to attribute changes of 
psychophysical kernels to the decision-making process.  
 
 
Characteristic dynamics of psychophysical kernels for decision bound, noise, input correlation, 
inhibition, and leak in the decision-making process 
 
Although a simple DDM for accumulation of evidence captures several key aspects of behavior in 
sensory decisions, it is only an abstraction for the more complex computations implemented by the 
decision-making circuitry. More complex and nuanced models are required both to explain details of 
behavior and to create biologically-plausible models of integration in a network of neurons. We use this 
section to explore a non-exhaustive list of key parameters commonly used in various implementations of 
evidence integration models. For clarity, all simulations are for models without non-decision time to 
isolate the effects of these model parameters from the effects of non-decision time.  
 
First, we focus on how changes of decision bound influence the shape of psychophysical kernels. The 
effect is best demonstrated by our mathematical proof that the kernel is proportional to sensory weights 

in a simple DDM without non-decision time (Eq.	2). The constant of this proportionality is 2σ s
2

B
, where 

B  is the bound height and σ s
2  is the variance of stimulus fluctuation. As a result, if subjects increase the 

decision bound to improve their accuracy23,47,71, psychophysical kernels will shrink (Fig. S6a-b). 
Conversely, when they reduce the decision bound to emphasize speed over accuracy, the kernels are 
amplified. These changes are expected because a lower decision bound boosts the effect of stimulus 
fluctuations on choice and vice versa. This scaling with bound height can be corrected by estimating the 
decision bound from behavior and multiplying the kernels by it, as we did for the experimental results in 
the previous sections. 
 
Changes of decision bound, however, are not limited to adjustments of speed-accuracy tradeoff across 
trials. They can also happen within a trial. Recordings from the frontoparietal neurons that represent 
integration of evidence supports the presence of a stimulus-independent signal that pushes the 
integration process towards the decision bound23,24,42,44. This urgency signal can be formulated as a 
reduction of decision bound over time (Fig. 6a)44,72. Therefore, a strong urgency signal would lead to an 
inflation of the psychophysical kernel, as shown in Fig. 6b. The intuition behind kernel inflation with 
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urgency is similar to that explained above. A growing urgency gives small stimulus fluctuations a higher 
chance to cause a bound-crossing event, increasing the influence of later stimuli on the choice. This 
larger influence shows itself as a rise in the psychophysical kernel.  
 

The proportionality constant explained above ( 2σ s
2

B
) also points at another interesting possibility in 

which changes of stimulus variance over time, if present, could systematically distort psychophysical 
kernels: larger stimulus noise inflates the kernel (Fig. S6c-e). It is customary in most experiments to 
keep stimulus noise fixed. However, one should be aware of the possibility that fluctuations in the 
stimulus noise across trials73 or a time-varying stimulus noise within trials may distort behaviorally 
measured psychophysical kernels, as suggested by our equations. This contrasts with the effects of 
internal (neural) noise for the representation of sensory stimuli or the DV. We show in Methods that in a 
bounded DDM, internal noise does not have a systematic effect on psychophysical kernels of RT tasks 
(but compare to unbounded DDM in Methods).  
 
Electrophysiological recordings from motor planning regions of the primate brain suggest that 
integration of sensory evidence is best explained with an array of accumulators, rather than a single 
integration process44,49,50,74-80. A class of models that match this observation better than the simple DDM 
is competing integrators—one for each choice—that accumulate evidence toward a bound20,25,26,50,79,81-

83. Our mathematical proof for the shape of the kernel does not exactly apply to these models. However, 
many of these models can be formulated as extensions of the DDM with new parameters added to 
provide more flexible dynamics22. For example, a DDM is mathematically equivalent to two integrators 
that receive perfectly anti-correlated inputs (correlation = −1) and, consequently, are anti-correlated with 
each other22,26. We use these links and our understanding of the psychophysical kernels in the DDM to 
provide intuitions for kernel distortions in more complex models with competing integrators. 
 
One can adjust the noise correlation in the input of the two competing integrators to achieve a more 
realistic neural implementation of the evidence integration. Neurons representing different choices tend 
to be negatively correlated84 but it is rare for them to be perfectly anti-correlated. Perfect anti-correlation 
in neural responses is not expected because even when signal correlations are negative, noise 
correlations tend to be close to zero or slightly positive85-87. Fig. 6d-f show that the shape of the 
psychophysical kernel is only minimally affected by a wide range of correlations in the input of two 
competing integrators. Sizeable distortions arise only when the input correlation approaches 0, in which 
case the kernel is initially inflated but later drops below the true sensory weight (Fig. 6e and S7a). The 
inflation is caused by an effective increase in the diffusion noise because for low input correlations the 
noise in either integrator can facilitate a bound crossing. However, as time passes, the mean DV of 
unterminated decisions becomes increasingly more negative due to diffusion noise and attrition of trials 
whose DV exceeds the bound. The more negative DVs reduce the effect of new input for determining 
the outcome of the process, shrinking the kernel below the true sensory weights.  
 
Another commonly used feature of a biologically plausible implementation of the integration process is 
a lower reflective bound that limits how low the DV of each integrator can go21,25-27,50. Such reflective 
bounds are inspired by the observation that the spike count of neurons is limited from below and cannot 
become negative. When the reflective bounds are far enough from the starting point of the integrators 
they tend to have only a modest effect on the psychophysical kernel (Fig. 6g-i and S7b). However, their 
effect grows quickly as the reflective bound approaches the starting point. Unlike the input correlation, 
reflective bounds cause the psychophysical kernel to begin lower than the true sensory weight but 
exceed it later. The initial underestimation happens because reflective bounds limit movements below 
the starting point and, thus, reduce both the effective noise and the effective counter-evidence for each 
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choice. Later in the integration process, the integrators are on average closer to their decision bounds 
compared to a model without lower reflective bounds. This amplifies the psychophysical kernel because 
input fluctuations are more likely to lead to a decision bound crossing.  
 
 
 

Figure 6. Psychophysical kernels are susceptible to changes of decision bound, input correlation, mutual 
inhibition, integration time constant, and limited dynamic range. The figure shows extensions of DDM and 
systematic deviations that additional realism to the model can cause in psychophysical kernels. Conventions 
are similar to Fig. 3, except that we focus only on RT tasks. Also, to isolate the effects of different model 
parameters from the effect of non-decision time, we use zero non-decision time in these simulations. (a-c) 
Collapsing decision bound (urgency signal) inflates psychophysical kernel over time. The rate of bound 
collapse is defined by — the time it takes to have a 50% drop in bound height. (d-f) Extending DDM to a 
competition between two bounded accumulators reveals that input correlation of the accumulators has only 
modest effects on psychophysical kernels, causing an initial overshoot followed by an undershoot compared to 
true sensory weights. (g-i) The presence of a lower reflective bound in the accumulators causes an opposite 
distortion: an initial undershoot followed by a later overshoot. (j-l) Balancing the effect of mutual inhibition by 
making the integrators leaky causes the model to behave like a DDM, eliminating the effects of both the 
inhibition and leak on the psychophysical kernels (black curves in m). Any imbalance between leak and 
inhibition, however, causes systematic deviations in the kernels from the true sensory weights (brown, red, and 
blue curves in k). See Fig. S7 for more examples. 	
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Another parameter to consider is mutual inhibition between the integrators. Several models incorporate 
such inhibition either through direct interactions between the integrators25,50 or indirectly through 
intermediate inhibitory units21,53,88. When the activity of one integrator grows, it suppresses the other 
one, creating winner-take-all dynamics that amplify the difference of the two integrators and effectively 
prevents the losing integrator from gaining the upper hand21,53,88. This suppression can cause dramatic 
distortions in psychophysical kernels, especially early in the integration process, because the mutual 
inhibition magnifies the effect of early sensory evidence on the state of the two integrators (Fig. 6j-l 
brown lines and S7c). As the integration process continues and the losing integrator drops far enough 
from its decision bound to exert significant inhibition on the other integrator, the behavior of the model 
converges to a simple DDM and the kernel converges on the true sensory weights.  
 
Mutual inhibition is often combined with decay (leak) in the integration process (Fig. 6j) to create richer 
dynamics and curtail the effects of inhibition22,25. The balance between the leak and mutual inhibition in 
the model defines whether it implements bistable point attractor dynamics or line attractor dynamics22. 
When mutual inhibition dominates (leak/inhibition ratio<1), psychophysical kernels show an early 
amplification but later converge on the true sensory weights (Fig. 6k, red lines), for the same reasons 
explained in the previous paragraph. When leak and inhibition balance each other out, the model acts 
similar to a line attractor and the psychophysical kernels resemble those of a DDM (Fig. 6k, black lines). 
Finally, when leak dominates, the integrators lose information and decisions are influenced less by input 
fluctuations, especially for early sensory evidence in the trial. Consequently, stimulus-aligned 
psychophysical kernels systematically underestimate the sensory weights (Fig. 6k, blue lines). However, 
the dynamics of the kernel qualitatively resemble the true sensory weight, except for the earliest times. 
On the other hand, the response-aligned kernels are distorted and accelerated compared to a DDM, 
reflecting the shorter integration time constant and stronger influence of later evidence on the 
decision25,32. 
 
The presence of bias in the decision-making process is another factor that can cause distortions in 
psychophysical kernels. Two competing hypotheses have been suggested for implementation of bias in 
the accumulation to bound models. One hypothesis is a static change in the starting point of the 
accumulation process (or an equivalent static change in decision bounds)40,47,48,89, which would cause an 
initial inflation in the psychophysical kernels without a lasting effect (Fig. S8a). A second hypothesis is 
a dynamic bias signal that pushes the decision variable toward one of the decision bounds and away 
from the other45. This dynamic bias signal can be approximated by a change in the drift rate of DDM, 
which would cause a DC offset in the psychophysical kernels (Fig. S8c).  
 
Overall, when the parameters of the decision-making process are adjusted to implement linear 
integration of sensory evidence, non-decision time and changes of decision bound (urgency) have the 
largest effects on the kernel. Input correlation, lower reflective bounds, and balance of leak and 
inhibition tend to have smaller effects, unless these parameters take extreme values. Interestingly, and 
perhaps by luck, applying these more complex models to the experimental data of the previous section 
resulted in model parameters that closely resembled linear integration of evidence, which is why the 
DDMs in the last section performed so well. Because of this parameterization, these more sophisticated 
models would produce predictions similar to the simple DDM about the dynamics of the psychophysical 
kernel. However, we note that this observation may not generalize to other experiments and should, 
therefore, be tested for new behavioral paradigms on a case-by-case basis. 
 
More generally, different parameters of decision-making models have different and even opposing 
effects on the expected shape of psychophysical kernels. As a result, a mixture of these features can, in 
principle, generate a variety of kernel dynamics, depending on their exact parameters. To illustrate this 
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point, we consider models with two competing integrators that have different levels of mutual inhibition, 
leak, collapsing bounds, and sensory and motor delays (Fig. 7a). For static sensory weights over time, 
this class of models can generate monotonically decreasing kernels (Fig. 7b), monotonically increasing 
kernels (Fig. 7c), or kernels that exactly match the true sensory weights (Fig. 7d), depending on the 
model parameterization. To understand this diversity, consider for example the opposing effects of 
collapsing bounds (urgency) and non-decision time on the kernels. The gradual reduction of the kernel 
due to non-decision time can cancel out the increase of the kernel due to urgency. Alternatively, one of 
the two effects may overpower the other one. Complementary to the examples in Fig. 7, one can also 
imagine parameterizations that would result in a flat psychophysical kernel in the presence of non-
stationary true sensory weights. The presence of mutual inhibition and leak further complicate the 
relationship of sensory weights and psychophysical kernels and expand the space of possible dynamics 
for the kernels.  
 
This diversity of plausible kernel dynamics without meaningful fluctuations in true sensory weights 
cautions about ignoring the mechanisms of the decision-making process for interpretation of 
experimentally derived psychophysical kernels. One needs a model-based approach to decipher the true 

Figure 7. A decision-making model that has a mixture of parameters with opposing effects on psychophysical 
kernels can create a diversity of kernel dynamics for static sensory weights. (a) A model composed of two 
competing integrators that allows different ratios of leak and inhibition, collapsing decision bounds, and non-
decision times. The model also has input correlation >−1 and reflective lower bounds, but they are fixed for 
simplicity. (b) When bound collapse is small and non-decision times are long, the kernel drops monotonically 
over time. (c) When bound collapse is large and non-decision times are short, the kernel rises monotonically. 
(d) When these opposing factors balance each other, the kernel becomes flat.	
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meaning of fluctuations in psychophysical kernels and the information they impart about spatiotemporal 
filters of sensory processes.  
 
 
Discussion  
 
A key goal of systems neuroscience is to explain behavior as a sequence of neural computations that 
transform sensory inputs to appropriate motor outputs. For perceptual decisions, this sequence includes 
sensory processes that form neural representations of a stimulus in sensory cortices and decision-making 
processes that plan the best choice based on these sensory representations. Psychophysical reverse 
correlation has been originally developed to infer sensory filters that approximate sensory processes3-5. 
Recent studies, however, have begun to use the technique for inferring the properties of the decision-
making process31,32,37,64,90,91. Here, we show that an isolated perspective is vulnerable. To ensure correct 
interpretation of psychophysical kernels, one has to adopt an integrative perspective that sees 
psychophysical kernels as a product of both sensory and decision-making processes.  
 
We arrived at our conclusion through a systematic exploration of how psychophysical reverse 
correlation is influenced by the decision-making process and under what conditions it provides a good 
approximation of sensory filters. We showed that neither the integration of sensory evidence nor the 
termination of the integration process by reaching a decision bound fundamentally limits the recovery of 
sensory weights. However, nuances that are fixtures of real experiments but often receive little attention 
can be major sources of deviation between psychophysical kernels and sensory weights. Examples 
include sensory and motor delays or input correlation of the integration process, which cause kernels 
with a downward trend unrelated to sensory weights, or urgency and lower reflective bounds in the 
integration process, which can cause upward trends in the kernels. Previous theoretical explanations of 
reverse correlation have ignored these nuances and have caused confusion about what can be gleaned 
from psychophysical kernels. We also showed that the kernels are susceptible to how the integration 
process is implemented. Bistable point attractor or line attractor dynamics, which are implemented 
through different combinations of mutual inhibition, self-excitation, and decay of activity (leak) in 
neural networks, yield different kernel dynamics. We conclude that psychophysical kernels are 
influenced by both sensory and decision-making processes and show how they can be used to provide 
information about both types of processes. 
 
Making the interpretation of psychophysical reverse correlation dependent on the decision-making 
process is likely to face opposition because of the historical influence of signal detection theory8,9 and 
the fact that under the assumptions of SDT, reverse correlation matches the true sensory weights. 
However, we note that this match is misleading. In particular, SDT explains the dynamics of 
psychophysical kernels by simplifying the decision-making process and shifting its complexity to the 
sensory processes. This shift is inaccurate both because it depends on unsubstantiated sensory processes 
and because it ignores the known complexity in the decision-making process. The perspective offered by 
SDT is also insufficient because it fails to explain changes of psychophysical kernels that stem from 
flexibility of the decision-making process. For example, setting the speed and accuracy of choices23,24 or 
adjustment of behavior following feedback42,92,93 often depends on rapid alterations in the decision-
making process. These alterations also change psychophysical kernels, as explained in Results. The 
integrative framework proposed here would correctly identify the source of changes, whereas SDT 
would have to misattribute them to changes of sensory weights.  
 
Proper partitioning of the contribution of sensory and decision-making processes enables testing 
hypotheses about neural mechanisms of behavior. We provide key signatures of psychophysical kernels 
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for a variety of different mechanisms and implementations. Matching these signatures to the patterns 
observed in an experiment enables hypothesis formation. To quantitatively test those hypotheses, one 
can implement computational models of sensory and decision-making processes, fit them to some aspect 
of behavior, and then generate predictions about another aspect of behavior. For example, by fitting the 
DDM to the distribution of choices and RTs, we could accurately predict the dynamics of 
psychophysical kernels in our experiments. Further, our mathematical proofs and simulations provide a 
comprehensive framework for predicting changes of psychophysical kernels under various experimental 
manipulations. For example, when a manipulation leads to improved accuracy, one can use our method 
to distinguish the two potential sources of the improved performance: increased sensitivity (e.g., 
attentional mechanisms) or changes of decision bound (speed-accuracy tradeoff). Whereas increased 
sensitivity is expected to increase the magnitude of the psychophysical kernel, increased decision bound 
or reduced urgency is expected to reduce the kernel magnitude. Such contrasting predictions highlight 
the ability of psychophysical reverse correlation to separate models that may not be easily distinguished 
by more conventional measurements, including changes in psychometric function or its derivatives such 
as overall accuracy.  
 
However, psychophysical kernels on their own are inadequate to determine the nuances of the sensory 
and decision-making processes. As we show in Figs. 6 and 7, multiple mechanisms can have similar 
effects on the shape of psychophysical kernels. Some of these mechanisms with opposing effects on the 
kernels can even cancel each other out and lead to a flat kernel, complicating a model-free interpretation 
of experimentally derived kernels. To reduce interpretational errors, one should always assess 
psychophysical kernels in conjunction with the choice and RT distributions. Mechanisms that have a 
similar effect on the kernel often have contrasting effects on choices and RTs. For example, variability 
of non-decision times, input correlation, and mutual inhibition can all lead to stimulus-aligned kernels 
that shrink with time. However, these three mechanisms (i) have different effects on the shape of the tail 
of RT distribution, (ii) make different predictions about accuracy for the same sensitivity function (Fig. 
S9a), and (iii) differ in the exact shape of the psychophysical kernels (note the small but detectable, 
qualitative and quantitative differences in the dynamics of the kernels in Fig. S9a). The combination of 
these signatures enables separation of different mechanisms. A similar contrast in kernel dynamics and 
RT and choice distributions exists for dropping bounds and reflective bounds, which both cause an 
inflation of psychophysical kernels over time. Along the same lines, when combinations of different 
mechanisms with opposing effects lead to a flat kernel (e.g., Fig. 7d), the distribution of RT and choice 
is often different compared to when the kernel is flat because none of those mechanisms contribute to 
the decision-making process or a different combination of parameters flattens the kernel (Fig. S9b). A 
three-pronged approach based on the shape of the kernel, and RT and choice distributions makes a 
powerful technique for uncovering the mechanisms that shape behavior. However, there are also 
important limitations on what and how much can be learned just from behavior. For example, when tails 
of RT distribution play a key role in distinguishing different mechanisms, the amount of available data 
and presence or absence of experimental manipulations that may encourage fast responses will influence 
our ability to arrive at the correct conclusions. 
 
To maximize the information gained from psychophysical kernels, it is important to set up the model 
fitting and model prediction in such a way that minimizes overlap between the fitted and predicted 
aspects of the data. For example, using stimulus fluctuations on individual trials to predict the choice 
and calculating model kernels for the same stimulus fluctuations is unlikely to provide new insights 
because any model that fits the choices well could also replicate the kernels. However, by leaving the 
specific stimulus fluctuations aside for fitting the choices or by predicting kernels for a non-overlapping 
group of trials one can reveal potential discrepancies between the model and data. 
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A key piece of information for proper interpretation of psychophysical kernels is to know which part of 
the stimulus is used for the decision-making process. Fixed duration tasks with long stimulus durations 
are generally unsuitable because the start and termination times of the decision-making process are 
opaque to the experimenter. When subjects commit to a choice by integration of sensory evidence 
toward a bound, they tend to ignore later evidence, causing a downward trend in the kernels. However, 
if the integration process also begins at variable times, the downward trend can be masked. Overall, the 
presence or absence of temporal dynamics in psychophysical kernels in fixed-duration tasks does not 
have a unique interpretation. It is more suitable to use tasks in which stimulus duration is controlled by 
the experimenter and varies randomly from trial to trial because they enable the experimenter to 
determine which part of the stimulus is used for the decision. However, one should be careful in using 
those designs because just the variability of stimulus duration in itself can introduce temporal dynamics 
in kernels (Eq. 14). Reaction time task designs are most suitable because they minimize ambiguity about 
which part of the stimulus was used for the decision-making process. 
 
We also note that tasks that use very brief stimulus presentations are not immune to the influence of the 
decision-making process on psychophysical kernels. Brief stimulus presentations are often used to infer 
the spatial structure of sensory filters at the cost of ignoring their temporal dynamics. However, brief 
stimulus presentations do not guarantee instantaneous decisions. Several studies have demonstrated that 
accumulation of evidence to a bound is at work even for brief stimuli94,95, as evidenced by large RT 
differences for different stimulus strengths. Even brief stimulus presentations produce extended trails of 
activity in sensory and action-planning neurons60,96,97. An extended decision-making process for a 
briefly presented stimulus makes the kernel susceptible to the deviations explained above. For example, 
a change in speed-accuracy tradeoff can amplify the inferred spatial filters without a real change in 
sensory processes.  
 
In light of our results, past studies that relied on psychophysical reverse correlation can teach us more 
than most of them were designed for. It is still valid to interpret psychophysical kernels as the best 
approximation of a linear-nonlinear model, such as SDT, to the behavior. However, it is important to 
keep in mind that such an interpretation is about effective associations between sensory information and 
choice98, which should not be confused with the spatiotemporal filters that shape sensory representations 
or readout of sensory representations to form the evidence used in the decision-making process. It is also 
important to note that these effective associations do change under various conditions that do not change 
sensory representations (e.g., changes of decision bound), while the model-based approach suggested 
here is likely to recover the true dynamics of sensory weights. The results of our paper do not refute 
careful use of psychophysical reverse correlation in past studies. Rather, we try to elevate 
psychophysical reverse correlation from a technique that reveals only effective associations of stimulus 
and choice to a technique that reveals the inner working of the sensory and decision-making processes 
that underlie the choice.  
 
Using a fixed-duration design, several studies have found monotonically decreasing psychophysical 
kernels32,36,54,99. Kernel dynamics in those studies could have a sensory origin or be due to static sensory 
weights and a decision-making mechanism that terminates according to some criterion (e.g., Fig. 3g). It 
has been common to assume one possibility and ignore the other. Testing these two possibilities 
explicitly is likely to yield new insights and trends across experiments. Several other studies have 
reported a flat psychophysical kernel in fixed-duration designs and interpreted it as a signature of perfect 
integration of sensory evidence. This interpretation could be correct if subjects set their decision bound 
too high to reach during stimulus viewing, as shown in Brunton et al.33. However, a static kernel could 
also arise from a variety of sensory and decision-making mechanisms and does not uniquely support 
perfect integration of sensory evidence. Also, in addition to the mechanisms explained in Results, a 
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static kernel in a non-RT task could be produced with probabilistic sampling of evidence rather than its 
integration. In general, it is best not to rely solely on qualitative patterns of psychophysical kernels. As 
we suggest above, these qualitative signatures should be just a starting point for building mechanistic 
hypotheses, which should then be tested with detailed, quantitative modeling of behavior and 
electrophysiological studies of its underlying neural responses.  
 
 
Methods 
 
We examine how well psychophysical reverse correlation recovers sensory weights in perceptual tasks 
where decisions are based on accumulation of sensory information25,48,100,101. First we prove that the core 
computations for integration of evidence or termination of the decision-making process based a decision 
bound do not cause any deviation of psychophysical kernels from true sensory weights. Then, we 
demonstrate that non-decision times, urgency, reflective bounds, and interactions between accumulators 
are substantial sources of deviation. Finally, we show how one can accurately interpret the complexity 
of psychophysical kernels by explicit modeling of both sensory and decision-making processes. 
 
Psychophysical reverse correlation for bounded accumulation models 
 
Drift diffusion models are commonly used to approximate integration of evidence in two-alternative 
sensory decisions17-19. In these models, a weighting function is applied to momentary sensory evidence 
and the result is integrated over time until the integrated evidence (the decision variable, DV) reaches 
either an upper (positive) or a lower (negative) bound. Each bound corresponds to one of the choices. 
The sensory weighting function is assumed constant in some experiments such as direction 
discrimination of random dots where sensory neurons show more or less constant activity proportional 
to stimulus strength throughout the stimulus presentation period70. However, the exact form of the 
weighting function is usually unknown in most experiments and could change dynamically depending 
on context. We prove below that in the absence of sensory and motor delays, reverse correlation 
accurately recovers the weights applied to sensory evidence in a drift diffusion model (DDM).  
 
In a reaction time task, where subjects report their choices as soon as ready, the psychophysical kernel is 
K(t) = E s t( ) |CT ≥t

1⎡⎣ ⎤⎦ − E s t( ) |CT ≥t
2⎡⎣ ⎤⎦    Eq. 3 

where CT ≥t
i  indicates all trials in which choice i  is made at times equal or larger than t , and  

E s t( ) |CT ≥t
i⎡⎣ ⎤⎦  is the average stimulus at time t  conditional on the choice being made at a later time (

T ≥ t ). The intuition for this formulation is that a trial contributes to the calculation of the kernel at time 
t  only if the choice on that trial is not recorded by the experimenter before t . For an unbiased decision-
maker and a stimulus distribution symmetric around zero, E s t( ) |CT ≥t

1⎡⎣ ⎤⎦ = −E s t( ) |CT ≥t
2⎡⎣ ⎤⎦ , leading to

K t( ) = 2E s t( ) |CT ≥t
1⎡⎣ ⎤⎦ . Therefore, we need to calculate only one of the two conditional averages.  

 
In a DDM, the choice is made through integration of sensory evidence:  

vi t( ) = w τ( )si τ( ) +ηi τ( )⎡⎣ ⎤⎦dτ
0

t

∫     Eq. 4  

where vi t( )  indicates the DV on trial i  at time t , w τ( )  is the weight applied on the stimulus at times 
τ ≤ t , si τ( )  are stimuli sampled from a Gaussian distribution with mean 0 and variance σ s

2 , and ηi τ( )  
represents internal (neural) noise for the representation of sensory and integration processes. We assume 
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that the internal noise does not bias the representation and can be approximated with a Gaussian 
distribution with mean 0 and variance ση

2 . 
 
Because integration continues until vi t( )  reaches one of the two bounds (+B  or −B ),  

E s t( ) |CT ≥t
1⎡⎣ ⎤⎦ = si t( ) p si t( ) |CT ≥t

1( )i∑
      = si t( ) p si t( ) | vi t( ),ηi t( ),CT ≥t

1( ) p vi t( ),ηi t( ) |CT ≥t
1( )dvdη

D
∫∫i∑   Eq. 5 

where the integration domain D  is −B,+B[ ] . Using Bayes rule and by plugging Eq. 5 in Eq. 3, we get 

K t( ) = 2
p CT ≥t

1( ) si t( ) p si t( )( ) p CT ≥t
1 | si t( ),vi t( ),ηi t( )( ) p vi t( ),ηi t( )( )dvdη

D
∫∫i∑   Eq. 6 

where p CT ≥t
1 | si t( ),vi t( ),ηi t( )( )  is the probability of reaching the upper bound after time t , when the 

decision maker observes stimulus si t( )  and has an existing decision variable vi t( ) . This bound-crossing 
probability has an analytical solution in DDM48. Note that after observing stimulus si t( ) , the distance of 

the accumulated evidence from the upper bound is χ1 = B − w t( )si t( ) + vi t( ) +ηi t( )( ) , and the distance 

from the lower bound is χ2 = B + w t( )si t( ) + vi t( ) +ηi t( )( ) . Because s t( )  and η t( )  have zero mean, the 
overall drift is zero and the bound-crossing probability is: 

p CT ≥t
1 | si t( ),vi t( ),ηi t( )( ) = χ2

χ2 + χ1

=
B + w t( )si t( ) + vi t( ) +ηi t( )( )

2B   Eq. 7

  

 
Therefor, Eq. 6 can be written as: 

K t( ) = 1
Bp CT ≥t

1( ) si t( ) p si t( )( )
B +w t( )si t( )( ) p vi t( ),ηi t( )( )dvdη

D
∫∫ +

vi t( ) +ηi t( )( ) p vi t( ),ηi t( )( )dvdη
D
∫∫

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

i∑

=
p CT ≥t( )
Bp CT ≥t

1( ) si t( ) p si t( )( ) B + si t( )w t( )( )i∑
  Eq. 8

 

where p CT ≥t( )  is the combined probability of reaching either of the two decision bounds after time t . 
The second equality in Eq. 8 stems from two equations. First, 

vi t( ) +ηi t( )( ) p vi t( ),ηi t( )( )dvdη
D
∫∫ = 0     Eq. 9  

because for a neutral stimulus, the DV is symmetrically distributed around the starting point. Second,  
p vi t( ),ηi t( )( )dvdη

D
∫∫ = p CT ≥t( )     Eq. 10  

because p vi t( )( )dv
−B

+B

∫  reflects the total probability of the DV between the decision bounds at t , and 

because this unabsorbed probability mass is guaranteed to be fully absorbed by the decision bounds in 
finite time T ≥ t 102.  
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For an unbiased decision-making process and a stimulus with zero mean p CT ≥t( ) = 2p CT ≥t
1( ) . As a 

result, Eq. 8 simplifies to 

K t( ) = 2
B

B si t( ) p si t( )( )i∑ +w t( ) si t( )2 p si t( )( )i∑⎡⎣ ⎤⎦   Eq. 11 

For a Gaussian stimulus with zero mean, si t( ) p si t( )( )i∑ = 0  and  si t( )2 p si t( )( )i∑ =σ s
2 . Therefore, 

K t( ) = 2σ s
2

B
w t( )    

This equation, which we highlight in Results (Eq. 2), shows that the result of psychophysical reverse 

correlation is proportional to the sensory weights. The proportionality constant is 2σ s
2

B
, which explains 

how reverse correlation is modulated by properties of the stimulus (stimulus variance) and parameters of 
the decision-making process (decision bound). Eq. 2 also shows that psychophysical kernels are 
independent of internal noise in a DDM. Internal noise does not cause a systematic deviation in 
estimated kernels, although it could affect the confidence interval of the estimated kernels in real 
experiments, where a limited number of trials are available for measuring the kernels.  
 
Based on Eq. 2, the outcome of psychophysical reverse correlation is expected to change if the decision 
bound is not constant. For example, urgency in the decision-making process is often equivalent to a drop 
in the decision bound42,44,72, which should lead to a gradual increase of the reverse correlation kernel 
even in the absence of changes in sensory weights (Fig. 6a-c). Note that we define urgency as an 
additive signal for competing accumulation processes, which under certain conditions (e.g., anti-
correlated input to the accumulators) can be translated to collapsing bounds in the DDM. This is 
different from the alternative definition of urgency based on gain in the accumulation process43,61, which 
cannot be easily translated to a bound change in DDM. 
 
The proof above holds only if the choice can be recorded as soon as the decision-making process 
terminates. In practice, one has to take into account sensory and motor delays that postpone initiation of 
action. These delays imply that the stimuli presented immediately before the behavioral response do not 
influence the choice52,62. As a result, the psychophysical kernel drops to zero prior to the choice. Due to 
trial-to-trial variability of these delays, it is not possible to know purely based on behavior, which part of 
the stimulus did or did not contribute on any individual trial, but on average one can expect a descending 
trend in psychophysical kernel close to the time of the response (Fig. 3i-m).  
 
In addition to the bound height and non-decision time, other factors can cause deviation of 
psychophysical kernels from sensory weights. DDM is a simplified model of the more complex 
computations implemented by the neural circuit that underlies the choice. In the simplest case, one 
should consider an array of accumulators that interact and compete with each other21,31,50,88,103,104, 
forcing us to consider correlation between accumulators, mutual inhibition, and leak which can cause 
systematic deviations in the kernels (Fig. 6d-f, 6j-l). Further, real neurons do not accommodate negative 
firing rates. A lower reflective bound in each accumulator can introduce additional systematic biases in 
the kernel (Fig. 6g-i). A closed form, mathematical solution for the psychophysical kernel in the 
presence of all these factors is complex and beyond the scope of this paper. Therefore, we use 
simulations to explore the parameter space of different model variations and demonstrate how different 
factors change the kernel (see “Model simulation” below).  
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Psychophysical reverse correlation for unbounded accumulation of evidence in fixed-duration 
tasks 
 
If decisions in a fixed-duration task are made by unbounded integration of evidence psychophysical 
kernels will correctly reflect the dynamics of sensory weights (Fig. 3a-c, S1). The proof is as follows. If 
integration begins with stimulus onset and continues for the whole stimulus duration, Ts , the decision 
variable at the end of the stimulus in trial i  will be 

vi Ts( ) = w τ( )si τ( ) +ηi τ( )⎡⎣ ⎤⎦dτ
0

Ts

∫           Eq. 12 

  
If the sensory input, s t( ) , is drawn from a Gaussian distribution with mean 0 and variance σ s

2 , v Ts( )  

will have a mean of 0 and variance  σ tot
2 = Tsση

2 +σ s
2 w τ( )2 dτ
0

Ts

∫ . The model selects choice 1 for the 

positive DV and choice 2 for the negative DV. Therefore, the psychophysical kernel will be  
 
K(t) = E s t( ) | v T( ) > 0⎡⎣ ⎤⎦ − E s t( ) | v T( ) < 0⎡⎣ ⎤⎦

= 2E s t( ) | v Ts( ) > 0⎡⎣ ⎤⎦
= 2 si t( ) p si t( ) | v Ts( ) > 0( )i∑
= 2
p v Ts( ) > 0( ) si t( ) p si t( )( ) p v Ts( ) > 0 | si t( )( )i∑

= 2
p v Ts( ) > 0( ) si t( ) p si t( )( ) N x,w t( )si t( ),σ tot( )dx

0

+∞

∫
⎡

⎣
⎢

⎤

⎦
⎥i∑

= 4 si t( ) p si t( )( )Φ w t( )si t( ) /σ tot( )i∑
= 4 sp s( )

−∞

+∞

∫ Φ w t( )s /σ tot( )ds

     Eq. 13  

where Φ x( )  is the cumulative distribution function of a standard normal probability density function 
with mean 0 and standard deviation 1. The last equality in the equation is due to the i.i.d. property of 
s t( )  within and across trials. 
 
The kernel equation can be further simplified as 

K(t) = 4 sp s( )Φ w t( )s /σ tot( )ds
−∞

+∞

∫

=
4σ s

2w t( )
2π w t( )2σ s

2 +σ tot
2⎡⎣ ⎤⎦

≈ 4σ s
2

2πσ tot

w t( )

         Eq. 14 

   
where the approximation in the last line is based on  w t( )2σ s

2 ≪σ tot
2 , which is usually true unless 

stimulus durations are very short.    
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Based on Eq. 14, the kernel is proportional to the sensory weight function, and the constant of 
proportionality scales with stimulus variance (σ s

2 ), similar to Eq. 2 for bounded accumulation.  
 
However, note that the kernel is inversely proportional to σ tot , which is a function of the stimulus 
duration. Dependence of kernels on stimulus duration calls for caution in interpretation of results when a 
mixture of stimulus durations are used in an experiment. The kernel for each stimulus duration is scaled 
differently, inducing artificial dynamics in the average kernel across all durations.  
 
Even when stimulus durations are the same across trials, subjects can begin integration at variable times 
across trials and commit to a choice at different times during stimulus viewing, causing temporal 
dynamics in the kernel that do not reflect the true dynamics of sensory weights (see Results and 
Discussion for a more detailed explanation). 
 
 
Model simulation  
 
We simulated four different classes of bounded accumulation models: (i) DDM without non-decision 
time, (ii) DDM with non-decision time18,28,48, (iii) DDM with non-decision time and urgency24,42,44; and 
(iv) Competing accumulators with different input correlation, reflective bound, mutual inhibition, and 
leak20,25,26,50,79,81,82.  
 
For each class and parameter combination, 106 trials were simulated to obtain an accurate estimation of 
the psychophysical kernel. Sensory input for each trial was a sequence of independent draws from a 
Gaussian distribution with mean 0 and σ s = 1 . This input was multiplied with a weight function, w t( ) , 
which could be constant (Fig. 3, 6, 7, S3, S6-9) or vary over time (Fig. S1-2, S5). This weight function 
dictated the significance that each sample played in shaping the decision. The outcome (termed 
momentary evidence) was passed to each integration model to calculate the DV and generate a choice 
for each trial. As explained above, the presence or absence of internal noise did not bear strongly on the 
measured kernels in RT tasks, as long as enough trials were available for the measurement. We 
calculated psychophysical kernels based on the simulated choices and sensory stimuli according to Eq. 3 
and compared the results against the weight function used in the simulation (Fig. 3, 6, 7, S1-2, S6-9). 
 
Drift diffusion models. In these models momentary evidence was integrated over time until the DV 
reached a lower bound (−B ) or an upper bound (+B ), which corresponded to the two choices. For 
models without non-decision time, integration stopped immediately and a choice was registered after the 
bound crossing. For models with non-decision time, the integration process stopped after bound crossing 
but the choice was registered after a random time, drawn from a Gaussian distribution. The stimuli 
presented between bound crossing and the choice were included in the calculation of psychophysical 
kernels to emulate realistic experimental conditions, where experimenters do not know the exact non-
decision time on each trial. The mean and standard deviation of the distribution of non-decision time in 
Fig. 3j-l and S2 were 300 ms and 100 ms, respectively, compatible with past studies28,41,42,61. In Fig. 3m, 
the mean varied between 0 and 800ms, and the standard deviation was equal to 1/3 of the mean. In Fig. 
S3, we tested the effects of different means, variance, and skewness of the non-decision time distribution 
on the measured psychophysical kernels. 
 
For DDMs with urgency, we reduced the decision bound according to a hyperbolic function:  
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B t( ) = b − u∞
t

t +τ1/2
   Eq. 15  

where b  is the initial bound height, u∞  is the asymptotic reduction in bound height, and τ1/2  is the time 
to reach 50% of the reduction. We set b = 60 , u∞ = 60 , and τ1/2 = 400ms  for Fig. 6b. In Fig. 6c, τ1/2  
varied while the other model parameters were kept constant.  
 
For the simulation of fixed-duration tasks (Fig. 3b, 3g, 3l, S1), we incorporated past experimental 
observations that the decision-making process could effectively stop before the termination of the 
stimulus32,51,54,91. Stimulus durations were 1 s on all trials. The full stimulus duration was used for the 
calculation of psychophysical kernel to reflect the standard practice and experimenters’ lack of 
knowledge about the exact time of the decision on each trial. 
 
Competing accumulator models. DDM is a low-parameter model and by design lacks the sophistication 
of a biologically plausible neural network that implements the integration process21,105-107. A more 
biologically plausibility alternative is a model with a bank of accumulators that interact and compete 
with each other50,108. For a two-alternative decision, the simplest instantiation of such a model has two 
accumulators, each integrating sensory evidence in favor of one of the two choices25,26,88. The model 
reaches a decision when one of the accumulators crosses its bound. In addition to the DDM parameters 
(bound height and non-decision time), the competing accumulator model has the following parameters 
(see Eq. 16):  
 
1. Input correlation ( ρ ) determines the correlation between sensory inputs of the two accumulators. The 
inputs are explained by a two-dimensional Gaussian distribution with mean 0 and covariance matrix 

ψ =
1 ρ
ρ 1

⎛

⎝
⎜

⎞

⎠
⎟ σ e

2 , where σ e
2  reflects the combined variance of weighted stimulus noise and internal 

noise.     
 
2. The second parameter is a reflective bound ( R ) that defines a lower limit for the DV of each 
accumulator.  
 
3. The third parameter is the strength of inhibitory interactions between the accumulators ( I ). This 
mutual inhibition is widely assumed to be a key component of biological circuits of decision-making 
and a key factor in shaping neuronal response dynamics21,25,104. When I > 0 , the strength of mutual 
inhibition for accumulators 1 and 2 at time t  is Iv2 t( )  and Iv1 t( ) , respectively, where v1  and v2  are the 
DVs of the two accumulators. Because the magnitude of inhibition is proportional to the accumulated 
evidence, even small I  can have dramatic effects on the decision-making process.  
 
4. The fourth model parameter is “leakage” in the integration process ( L ). In the absence of mutual 
inhibition, the leak makes the model behave as an Ornstein-Uhlenbeck process102, causing the DVs to 
decay faster as they get farther from their starting point. In the presence of mutual inhibition, the balance 
of leak and inhibition creates a variety of attractor dynamics. When the leak and inhibition parameters 
are equal ( L = I ), the difference of the DVs of the two accumulators implements a DDM: a line 
attractor that reflects the accumulated difference of momentary evidence of the two accumulators22. 
When mutual inhibition exceeds leak ( L < I ), a saddle point emerges in the state space of the model, 
which exponentially amplifies small initial differences of the DVs of the two accumulators over time. 
This amplification boosts the effect of early stimulus fluctuations on the decision25. Conversely, when 
the leak parameter exceeds mutual inhibition ( L > I ), a point attractor emerges in the state space, 
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causing differences in the DVs of the two accumulators to decay over time. This decay reduces the 
effect of early stimulus fluctuations on the choice. 	
 
The equation that governs our simulations of competing accumulator models in Fig. 6, 7, and S7 is: 

d
v1
v2
⎡

⎣
⎢

⎤

⎦
⎥ = w t( )S t( )− L v1

v2
⎡

⎣
⎢

⎤

⎦
⎥ − I

v2
v1
⎡

⎣
⎢

⎤

⎦
⎥ + v0 L + I( )⎛

⎝⎜
⎞
⎠⎟
dt + dW

v1 0( ) = v2 0( ) = v0
      Eq. 16 

  
where dv  denotes the change in v  over a small time interval dt , L  is the leak term, I  is the mutual 
inhibition, and v0  is the starting point of decision variables. S t( )  is a vector that represents the sensory 
inputs to the two accumulators. For the simulations in Fig. 6, 7, and S7, we assumed that that two 

accumulators were driven in opposite directions by the input stimuli, that is S t( ) =
s t( )
−s t( )
⎡

⎣
⎢

⎤

⎦
⎥ . dW  is a 2D 

Gaussian noise term with mean 0 and covariance ξdt , where ξ =
1 ′ρ
′ρ 1

⎛

⎝
⎜

⎞

⎠
⎟ ση

2 . We adjusted ′ρ  to 

achieve a desired input correlation ( ρ ) as defined above. v1  and v2  started at v0 . v0 L + I( )  created a 
stable point at v0 . The decision variables were subjected to two non-linearities: a lower reflective bound 
( R ) and an upper absorbing bound (B ).  
 
Fig. 6e-f demonstrate distortions in the psychophysical kernels for different input correlations ( ρ  was 
set to −0.2 in Fig. 6e and varied between −1 and 0 in Fig. 6f; B = 30 , R = −∞ , I = 0 , L = 0 , ση

2 = 1, 
v0 = 0 ). In the absence of a lower reflective bound, inhibition or leak, the model became mathematically 
equivalent to a DDM whenever ρ = −1 . In Fig. 6h-i, we tested the effect of a lower reflective bound ( R  

was set to −10 in Fig. 6h and varied between −20 and 0 in Fig. 6i; ρ = −1 , B = 30 , I = 0 , L = 0 ,ση
2 = 0

, v0 = 0 ). Fig. 6k-l show how the balance of leak and mutual inhibition distorted psychophysical kernels. 

For these simulations, we kept L + I = 0.006  and systematically changed the ratio L I  between 0.5 and 

2 ( ρ = −1 , B = 60 , R = 0 , ση
2 = 0 , v0 = 30 ). We also show the shape of the kernel in the absence of a 

leak (brown lines, I  was set to 0.003). For these simulations the lower reflective bound was set to 0 to 
ensure that negative DVs in one accumulator did not excite the other accumulator. To best isolate the 
effect of individual parameters of the model, we set the non-decision time and urgency to zero in Fig. 
6d-l. Fig. 7 shows the effect that conjunctions of different parameters have on the psychophysical kernel. 
The standard deviation of non-decision time was set to 1/3 of its mean in this figure.  
 
Comparison of model kernels and sensory weights. For each model we calculated the psychophysical 
kernel as explained by Eq. 3. To directly compare the kernels with the sensory weights implemented in 

the model, we divided the kernels by the scaling factor of Eq. 2 ( 2σ s
2

B
). For models with dynamic 

bounds (Fig. 6a-c, 7), we used the average bound height from the stimulus onset to the median RT to 
calculate the scaling factor. For unbounded models (Fig. 3a-c), we used the scaling factor in Eq. 14 (
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4σ s
2

2πσ tot

). After scaling the kernels and making them comparable to the sensory weights, we quantified 

the difference between the stimulus-aligned weight and kernel functions using root mean square error: 

distortion = 1
Tm

w t( )− K t( )( )2t=1

Tm∑    Eq. 17 

where Tm   is the stimulus duration in simulations of fixed duration tasks or the median RT in 
simulations of RT tasks.  
 
 
Psychophysical tests 
 
We performed two experiments to test our model predictions: direction discrimination with random dots, 
and a novel face discrimination task. All subjects were naïve to the purpose of the experiments and 
provided informed written consent before participation.  All procedures were approved by the 
Institutional Review Board at New York University. Throughout the experiments, subjects were seated 
in an adjustable chair in a semi-dark room with chin and forehead supported before a CRT display 
monitor (refresh rate 75Hz, viewing distance 52-57 cm). Stimulus presentation was controlled with 
Psychophysics Toolbox109 and Matlab. Eye movements were monitored using a high-speed infrared 
camera (Eyelink, SR-Research, Ontario). Gaze positions were recorded at 1kHz. 
 
Direction discrimination. Thirteen human subjects performed a RT version of the direction 
discrimination task with random dots26,28,42. Data from six subjects have been previously reported in 
Kiani et al.26 and data from the remaining subjects have been reported in Purcell & Kiani42. Both studies 
used a similar trial structure. Subjects initiated each trial by fixating a small red point at the center of the 
screen (FP, 0.3° diameter). After a variable delay, two targets appeared on the screen, indicating the two 
possible motion directions. Following another random delay, the dynamic random dots stimulus110 
appeared within a 5-7° circular aperture centered on the FP. The stimulus consisted of three independent 
sets of moving dots shown in consecutive frames. Each set of dots was shown for one video frame and 
then replotted three video frames later (Δt   = 40 ms; density, 16.7 dots/deg2/s). When replotted, a subset 
of dots were offset from their original location (speed, 5 deg/s), while the remaining dots were placed 
randomly within the aperture. The percentage of coherently displaced dots determined the strength of 
motion. On each trial, motion strength was randomly chosen from one of six possible values: 0%, 3.2%, 
6.4%, 12.8%, 25.6%, 51.2% coherence. Subjects reported their perceived direction of motion with a 
saccadic eye movement to the choice target in the direction of motion. Once the motion stimulus 
appeared, subjects were free to indicate their choice at any time. RT was recorded as the difference 
between the time of motion onset and eye movement initiation. For the calculation of psychophysical 
kernels, motion energy of the random dot stimulus was calculated for each trial over time (see below). 
 
Face discrimination task. Nine human subjects performed a novel experiment designed to test our model 
predictions for more complex decisions on multi-dimensional sensory stimuli. Subjects reported the 
identity of a face on each trial as soon as they were ready (Fig. 5a). The stimuli were drawn from morph 
continuums between photographs of two faces (MacBrain Face Stimulus Set111, 
http://www.macbrain.org/resources.htm). We developed a custom algorithm that morphed different 
facial features (regions of the stimulus) independently between two prototype faces. Our algorithm 
started with 97 manually-defined anchor points on each face and morphed one face into another by 
linear interpolation of the positions of anchor points and textures inside the tessellated triangles defined 
by the anchor points. The result was a perceptually seamless transformation of the geometry and internal 
features from one face to another. The anchor points also enabled us to morph different regions of the 
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faces independently. We focused on three key features (eyes, nose, and mouth) and created independent 
series of morphs for them. The faces that were used in the task were composed of different morph levels 
of these three features. Anything outside those features was set to the halfway morph between the 
prototypes. The informativeness of the three features (stimulus strength) was defined based on the 
mixture of prototypes, spanning from -100% when the feature was identical to prototype 1 to +100% 
when it was identical to prototype 2 (Fig. 5b). 0% morph corresponded to the middle of the morph line, 
where the feature was equally shaped by the two prototypes.  
 
By varying the three features independently we could study spatial integration through creating 
ambiguous stimuli in which different features could support different choices. We could also study 
temporal integration of features by varying the three discriminating features within each trial (Fig. 5c). 
The three discriminating features for each stimulus frame were drawn from independent Gaussian 
distributions. The mean and standard deviation of these distributions were equal and fixed within each 
trial, but the means varied randomly from trial to trial. We tested seven mean stimulus strengths (−50%, 
−30%, −14%, 0%, +14%, +30%, and +50% morph level). The standard deviation was 20% morph level. 
Sampled values that fell outside the range [−100% +100%] (0.18% of samples) were replaced with new 
samples inside the range. 
 
Changes of the stimulus within a trial were implemented in a subliminal fashion such that subjects could 
not consciously perceive variation of facial features and yet their choices were influenced by these 
variations. We achieved this goal using a sequence of stimuli and masks within each trial. The stimuli 
were morphed faces with a particular combination of the three discriminating features. The masks were 
created by phase randomization of the intermediate face between the two prototypes112. For the majority 
of subjects (7/9), each stimulus was shown without a mask for one monitor frame (13.3ms). Then, it 
gradually faded out over the next 7 frames as a mask stimulus faded in. For these frames the mask and 
the stimulus were linearly combined, pixel-by-pixel, according to a half-cosine function, such that in the 
last frame the weight of the mask was 1 and the weight of the stimulus was 0. Immediately afterwards, a 
new stimulus frame with a new combination of informative features was shown, followed by another 
cycle of masking, and so on. For a minority of subjects (2/9), we replaced the half cosine function for 
the transition of stimulus and mask with a full cosine function, where each 8-frame cycle started with a 
mask, transitioned to an unmasked stimulus in frame 5, and transitioned back to a full mask by the 
beginning of the next cycle. We did not observe any noticeable difference in the results of the two 
presentation methods and pooled their data. The masks ensured that subjects did not perceive minor 
changes in key features over time within a trial. In debriefings following each experiment, all subjects 
noted that they saw one face in each trial but the face was covered with various masks over time. 
 
 
Analysis of behavioral data 
 
Motion energy. Due to the stochastic nature of the random dot motion stimuli, the strength of motion of 
a stimulus with a fixed coherence fluctuated from one frame to another. We quantified these stimulus 
fluctuations by calculating motion energy66. Details are described elsewhere32. Briefly, we used two 
pairs of spatiotemporal filters, each selective for one of the two motion directions discriminated by the 
subject. Each direction-selective filter was formed by summation of two space-time separable filters. 
The spatial filters were even and odd symmetric fourth-order Cauchy functions: 
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   Eq. 18  

where α = tan−1 x
0.35( )  and ω g = 0.05 . The two temporal filters were: 
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    Eq. 19 

The two pairs of direction-selective filter were constructed by combining the two spatial filters with the 
two temporal filters: f1g1 + f2g2  and f2g1 − f1g2  were selective for one motion direction, whereas 
f1g1 − f2g2  and f2g1 + f1g2  were selective for the opposite direction. The parameters of Eq. 18 and 
Eq.	 19 were chosen to (i) match spatial and temporal bandpass properties of MT neurons, (ii) to 
maximize selectivity of the directional filters for the speed of coherent motion in the stimulus (5 deg/s), 
and (iii) to reproduce the width of direction-selectivity tuning curves of MT neurons. We convolved the 
3D spatiotemporal pattern of the stimulus in each trial with these four filters, squared the results, and 
then summed them for each pair of filters to measure local motion energies at each stimulus sub-region 
over time. The local energies were summated across space and subtracted from the energy of the 
opposing pair of filters to obtain fluctuations of the net motion energy in one direction over time.  
 
Average motion energies increased linearly with stimulus coherence (Fig. S4b). However, the lag in the 
temporal filters caused the effect of stimulus fluctuations to show up in the motion energies with ~50ms 
delay (Fig. 4d and S4a), as shown before32,66. 
 
 
Psychophysical kernels. For the direction discrimination task, we used motion energies of 0% coherence 
trials to perform reverse correlation (Eq. 3) on the responses of human subjects (3389 trials). For Fig. 
4e-f, we first computed each subject’s psychophysical kernel and then averaged the kernels across 
subjects. Each subject’s stimulus- and response-aligned kernels were calculated up to the subject’s 
median RT, ensuring that at least half of trials contributed to the calculations. When averaged across 
subjects, the kernels were shown up to the shortest median RT. For the response-aligned kernels (Fig. 
4f), we rounded the RT to the onset of the last stimulus frame on the monitor. The temporal resolution of 
kernels (13.3ms) was dictated by the refresh rate of the monitor (75 Hz). 
 
For the face discrimination task, we used fluctuations of eyes, nose, and mouth morph levels in the 0% 
morph trials to calculate psychophysical kernels of individual features (Fig. 5c) (3530 trials). Similar 
conventions to the direction discrimination task were used for averaging kernels across subjects and 
plotting them, except that because of the longer stimulus frame durations in the face discrimination task 
(106.7ms), the kernels were temporally coarser.  
 
We did not perform any smoothing of the psychophysical kernels of the two tasks to avoid obscuring 
their dynamics. 
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Model fits to the behavioral data and prediction of psychophysical kernels 
 
Direction discrimination task. We used a simple DDM to fit subjects’ choices and RTs in order to 
predict their psychophysical kernels. The model had four degrees of freedom: decision bound height ( B
), mean non-decision time (T0 ), standard deviation of non-decision time (σ T0

), and a sensitivity 
parameter (γ ). The sensitivity parameter determined the mean of momentary evidence ( µ = γC ) 
conferred by a motion stimulus with coherence C . The bound height and sensitivity were in units of the 
standard deviation of the momentary evidence per unit time (σ e ), which we set to 1. This formulation of 
DDM, which has been used widely in the past, directly maps to the formulation presented earlier in 
methods:  
w t( ) = γ
σ e
2 = γ 2σ s

2 +ση
2             Eq. 20 

    
The probability of crossing the upper and lower decision bounds at each decision time was calculated by 
solving the Fokker-Planck equation102,113:  
∂p v,t( )
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= − ∂
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⎦
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where p v,t( )  is the probability density of the DVs at different times. The boundary conditions were  
p v,0( ) = δ v( )
p ±B,t( ) = 0

   Eq. 22  

where δ v( )  denotes a delta function. The first condition enforced that the DV always started at 0 and 
the second condition guaranteed that the accumulation terminated when the DV reached one of the 
bounds. RT distributions for each choice were obtained by convolving the distribution of bound crossing 
times with the distribution of non-decision times (Fig. 2).  
 
We fit model parameters by maximizing the likelihood of the joint distribution of the observed choices 
and RTs in the experiment. For a set of parameters, the model predicted a distribution of RTs for each 
possible choice for the stimulus strength used in each trial. These distributions were used to calculate the 
log-likelihood of the observed choice and RT on single trials. These log-likelihoods were summed 
across trials to search for the best set of model parameters that maximized this sum. The model 
parameters were fit separately for each subject. To avoid local maxima, we repeated the fits from 10 
random initial points and chose the parameters that maximized the likelihood function. Fig. 4b-c show 
the average fits across subjects. The high quality of fits for individual subjects and the average subject 
indicated that the DDM provided an adequate explanation for the computations underlying behavior in 
the direction-discrimination task. Compatible with past studies, adding urgency to the model, or 
replacing the DDM with a competing accumulator model did not fundamentally change the fits because 
the parameterization of these more complex models stayed in a regime that approximated the line 
attractor dynamics of the DDM22,26. 
 
To test if a time-varying weighting function provided a better fit to the behavioral results, we modified 
Eq. 20 by adding linear and quadratic temporal modulations to the drift rate: 
µ t( ) = γ × 1+ β1t + β2t

2( )           Eq. 23 
where β1  andβ2  are additional degrees of freedom in the model. 
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Prediction of psychophysical kernels in the direction discrimination task. We used the best model 
parameters that fit the RT and choice distributions to predict subjects’ psychophysical kernels. We use 
the term prediction because moment-to-moment fluctuations of motion energies were not used to fit the 
model parameters and the fitting procedure did not create any explicit link between these fluctuations in 
the stimuli used in the experiments and single trial choices and RTs. Using the model parameters we 
predicted choices and RTs for 105 simulated trials with 0% motion coherence and calculated motion-
energy kernels for the model choices. Because the sensitivity parameter of the model was calculated for 
motion coherence, we first divided motion energies by the slope of the line that related average motion 
coherence to the average motion energy (Fig. S4). This division converted motion energy fluctuations 
within a trial to equivalent stimulus coherence fluctuations, which were directly passed to the model to 
generate a choice and a reaction time for each simulated trial. We used these choices and RTs to 
calculate the model prediction for the kernels and superimposed them on subjects’ kernels (Fig. 4e-f).  
 
Face discrimination task. We extended the simple DDM explained above to include three different 
sensitivity parameters for the three facial features ( γ e  for eyes, γ n  for nose, and γ m  for mouth), 
increasing the total number of parameters to 6 (the other parameters were B , T0 , and σ T0

). The mean 
momentary evidence at each time in a trial was: 
µ t( ) = γ ese t( ) + γ nsn t( ) + γ msm t( )           Eq. 24 
    
where se t( ) , sn t( ) , and sm t( )  were the morph levels of eyes, nose, and mouth at time t   on the trial. 
Note that µ t( )  is a time-varying drift rate based on the exact fluctuations of stimulus strengths on 
individual trials, unlike the drift rate in the model for the direction discrimination task. Our goal was to 
obtain the relative sensitivity for the three informative facial features. Because the average morph levels 
of the three features were identical in each trial, using the average morph to derive the drift rate would 
have made the three sensitivity parameters redundant. The fitting procedure to subjects’ choices and RTs 
were as explained for the direction discrimination task, except that we used Eq. 24 to include a time-
varying drift rate, µ t( ) . Also, note that because we used the exact stimulus fluctuations in the Fokker-
Plank equation, σ s  was excluded from the definition of noise (σ e

2 =ση
2 = 1 ). The model parameters 

were fit separately for each subject using the maximum-likelihood procedure explained above. 
 
To test if a time-varying weighting function provided a better fit to the behavioral results, we modified 
Eq. 24 to allow linear and quadratic temporal modulations to the drift rate, similar to what we did for 
Eq.	23: 
µ t( ) = γ ese t( ) + γ nsn t( ) + γ msm t( )( )× 1+ β1t + β2t 2( )    Eq. 25  
 
 
Model psychophysical kernels for the face discrimination task. The procedure for deriving the model 
kernels was similar to that for the direction discrimination task. We simulated 105  trials with 0% morph 
and passed the fluctuations of the three informative features to get model choices and RTs for individual 
trials. We then used these choices to calculate the model kernels for the three features and superimposed 
the result on subjects’ psychophysical kernels for comparison (Fig. 5g). Because we used the stimulus 
fluctuations for fitting the model parameters, the kernels derived from the model were not pure 
predictions, unlike the direction-discrimination task. However, note that the model kernels were not 
directly fit to match the data either. They were calculated based on an independent set of simulated 0% 
morph trials, making the comparison in Fig. 5g informative.  
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Supplementary Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure S1. For an unbounded DDM, psychophysical kernels recover the true sensory weights. Related 
to Fig. 3a-b. This figure shows three simulated models with sensory weights that fluctuated at 0.2, 1, and 
4 Hz. Any frequencies of weights could be accurately recovered by the psychophysical kernel. See Fig. 
3c for the quantification of kernel distortions as a function of temporal frequency of weights. 
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Figure S2. Psychophysical kernels deviate from sensory weights because of incomplete knowledge 
about decision time. Related to Fig. 3i-m. The figure shows four simulated bounded DDMs with non-
decision time and time varying sensory weights. The mean and standard deviation of non-decision time 
are set to 300ms and 100ms, respectively, and decision bound is set to 30. The non-decision time causes 
the psychophysical kernels to systematically underestimate the true sensory weights.  
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Figure S3. The distribution of non-decision times determines the peak time of response-aligned 
psychophysical kernels. Sensory and motor delays in a RT task cause the stimulus fluctuations 
immediately prior to the response not to bear on the choice. As a result, response-aligned kernels tend to 
show a peak before the response (Figs. 3-5). The time and shape of this peak are informative about the 
distribution of non-decision times. Here, we simulate DDMs with various distributions of non-decision 
time to illustrate how changes in mean, variance, and skewness of non-decision times influence the peak 
of psychophysical kernels. Each row illustrates three sample distributions (left column), their 
corresponding kernels (middle column), and systematic effects on peak time as the non-decision time 
distribution changes (right column). (a-c) When the distribution of non-decision times is a delta function 
(constant non-decision time), response-aligned kernels show an abrupt drop before the response. The 
temporal gap between this drop and response is identical to the non-decision time. (d-f) When non-
decision time is variable (e.g., a Gaussian or truncated Gaussian distribution), changes in mean non-
decision time shifts the kernel peak time, without changing its shape. Standard deviation and skewness 
of the distributions are set to 100 and 0, respectively. (g-i) Larger variance of non-decision time widens 
the kernel and shifts its peak away from the response. Mean and skewness of non-decision time are set 
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to 300ms and 0, respectively. (j-l) Skewness of non-decision time creates asymmetries in the peak. More 
positive skewness pushes the peak toward the response. Mean and standard deviation of non-decision 
time are set to 300ms and 100ms, respectively. In all simulations the sensory weight function is static (
w t( ) = 1 ) and decision bound is set to 30. 
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Figure S4.  Mean motion energy is a linear function of net motion strength (coherence). (a) Time course 
of average motion energy for different coherence levels in the direction discrimination task. To calculate 
the scaling between motion coherence and motion energy, we computed the average motion energy 200-
1000ms after stimulus onset (pink rectangle). (b) Average motion energy as a function of motion 
coherence.  
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Figure S5. An extended DDM can recover changes of sensory weights, when such changes are present. 
The figure shows four simulations with different weight dynamics and the recovered weights of the 
model. For each panel, we simulated a direction discrimination dataset with 5000 trials. Like the real 
task explained in the paper, motion strength on each trial was selected randomly from a fixed set (0%, 
3.2%, 6.4%, 12.8% or 25.6%). The weights in each trial could change according to a second order 
polynomial function. Simulated sensory evidence at each moment in a trial was a random draw from a 
Gaussian distribution with s.d. = 1 and mean = w τ( )s , where s is the motion coherence on the trial. 
Momentary evidence was accumulated until a positive or negative bound was reached (bound height, 
30). The bound dictated the choice and time to bound was decision time. Reaction time was the sum of 
decision time and a random non-decision time drawn from a Gaussian distribution with mean = 300ms 
and s.d. = 100ms. We fit the extended DDM model with polynomial weight dynamics (Eq. 23) to the 
distribution of choices and RTs of the 5000 simulated trials in each panel. 
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Figure S6. Scaling of psychophysical kernels by bound height and stimulus noise in a bounded DDM. 
As we prove in Methods, the psychophysical kernel of a bounded DDM without non-decision time is 

proportional to the sensory weight and the constant of proportionality is 2σ s
2

B
 (Eq. 2). Here we confirm 

this relationship by simulating the model. (a-b) Higher decision bounds produce lower amplitudes of 
psychophysical kernel (a). The mean amplitude of the kernel is proportional to the inverse of decision 
bound (b). The gray line shows expected kernel amplitude based on Eq. 2 and the black lines and points 
show simulated amplitudes. σ 2

s  is set to 1 in these simulations. (c-d) Higher standard deviation of 
stimulus fluctuation raises the amplitude of psychophysical kernel (c). The kernel amplitude is a 
quadratic function of σ s  (d). B  is set to 30 for these simulations. (e) When stimulus noise (σ s ) changes 
within the trial, the psychophysical kernel co-varies with it, causing deviation from the true sensory 
weight. Note that in Figs. 3, 6, 7, S1-2, and S7-9, we normalized the kernel based on Eq. 2 and Eq. 14 to 
remove the effect of bound height and stimulus variance in order to compare the kernel directly with the 
sensory weight. 
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Figure S7. Additional examples of psychophysical kernels for various parameterizations of the 
competing accumulator model. To provide better intuition for the effects of model parameters in Fig. 6, 
we have plotted psychophysical kernels for multiple parameter values. a-d correspond to rows 2-4 in 
Fig. 6. 
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Figure S8. The effect of bias and variability of the starting point of the DDM on psychophysical 
kernels. Conventions are similar to Fig. 6, where the first column shows the model variation, the second 
column shows example parameterizations of the model, and the third column shows the magnitude of 
distortion of the psychophysical kernel as a function of the parameter of interest. Decision bound is set 
to 30 in all simulations. (a-c) When choice bias is implemented by a shift of the starting point toward a 
decision bound, the kernel shows a small inflation around stimulus onset, because the closer distance of 
the starting point to one of the bounds increases the likelihood of bound crossing due to early stimulus 
fluctuations. (d-f) When choice bias is implemented by a constant change in drift rate, the kernel shows 
a DC offset. (g-i) Trial-to-trial variability of the starting point of the DDM does not cause a systematic 
distortion of psychophysical kernels, if the starting point distribution is centered on zero.  
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Figure S9. A three-pronged approach based on the shape of psychophysical kernels and the distribution 
of choices and RTs can distinguish different mechanisms that contribute to the decision-making process. 
(a) A diversity of mechanisms can lead to similar trends in psychophysical kernels but they usually lead 
to contrasting psychometric and chronometric functions, different RT distributions, and quantitative 
differences in the shape of kernels. The figure shows three mechanisms that cause a downward trend in 
stimulus-aligned kernels. The top row shows a DDM with mean non-decision time set to 300ms and s.d. 
of non-decision time to 100ms (B = 30). The middle row shows a competing accumulator model where 
the input correlation of the two accumulators is −0.1 (Leak and inhibition are set to 0; non-decision time, 
mean, 100ms, s.d., 33ms; B = 50). Bottom row shows a competing accumulator model where the leak to 
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inhibition ratio is 0.8 ( L , 0.0027; I , 0.0033; input correlation, −1; non-decision time, mean, 100ms, 
s.d., 33ms; B = 80, v0 = 30 ). RT distributions in the right column are for trials with stimulus strength of 
0, the same trials used for making the psychophysical kernels. The parameters of the three simulations 
are adjusted to have a more or less similar drop in psychophysical kernels. Kernels are normalized 
according to Eq.	2. (b) A flat psychophysical kernel can emerge from a diversity of mechanisms, which 
often cause contrasting psychometric and chronometric functions, and different RT distributions. Top 
row shows a DDM with urgency (τ1/2 , 5,000ms, b , 50, u∞ , 50 in Eq.	15; non-decision time, mean, 
100ms, s.d., 33ms). Bottom row show the competing accumulator model of Fig. 7d. 	
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