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Abstract 
The prevailing hierarchical view of the visual system consists of parallel circuits that begin in the 
retina, which then sum effects across sequential levels, increasing in complexity. Yet a separate 
type of interaction, whereby one visual pattern changes the influence of another, known as 
modulation, has received much less attention in terms of its circuit mechanisms. Retinal amacrine 
cells are a diverse class of inhibitory interneurons that are thought to have modulatory effects, but 
we lack a general understanding of their functional types. Using dynamic causal experiments in the 
salamander retina perturbing amacrine cells along with an unsupervised computational framework, 
we find that amacrine cell modulatory effects cluster into two distinct types. One type controls 
ganglion cell sensitivity to individual visual features, and a second type controls the ganglion cell’s 
output gain, acting to gate all features. These results establish three separate general roles of 
amacrine cells – to generate primary visual features, to use context to select specific visual features 
and to gate retinal output. 

 
 
 
Introduction 

 
Visual computations arise from the combination of basic elements known as visual features, 

which are stimuli that match specific spatiotemporal patterns selected by neural circuitry. These 
visual features are combined, subtracted and divided to generate more complex computations. The 
classical or linear receptive field of a neuron is typically considered to represent the primary visual 
feature about which the neuron communicates. Input to the linear receptive field is often modulated 
by other visual features that represent a context1. Context-dependent modulatory effects can be 
spatiotemporal including the specific computations of object motion sensitivity2, peripheral 
excitation3,4 and surround suppression in retina5,6 and cortex7,8. The context can also be purely 
temporal, with the previous history defining the response to a more recent stimulus, as in the case 
of the omitted stimulus response9 and retinal sensitization10. Context-dependent modulation also 
plays a more general statistical role in visual processing, including divisive normalization, which 
has been proposed to reduce statistical dependencies between visual features11 and in non-
sensory systems12. 

Mechanisms of context-dependent effects in the retina have focused on amacrine cells, a 
class of diverse inhibitory interneurons that participate in multiple forms of inhibitory interactions 
including feedback, feedforward and lateral inhibition, targeting bipolar cells, ganglion cells, and 
other amacrine cells13–15.  It has been proposed based on modeling of ganglion cell visual 
responses and pharmacology that amacrine cells could modulate the gain of ganglion cell visual 
responses16,17. Inhibition can reduce the gain of bipolar cells presynaptically18, and amacrine cells 
can modulate direction selective ganglion cells19, but how specific amacrine cells exert these 
influences on specific ganglion cell visual features has not been directly measured. As such, the 
computational role of amacrine cells in context-dependent modulation is not clear.  

Here we take a general approach to directly measure context-dependent modulation driven 
by an interneuron, defined quantitively as a visual feature that represents the context that changes 
in the slope of the response to an orthogonal visual feature. This definition allows us to cleanly 
separate amacrine contributions that create the ganglion cell linear receptive field from modulatory 
effects. We focus on purely temporal aspects of processing as a first step to understand general 
mechanisms of amacrine cell modulation.  

We used a causal manipulation approach to record from and inject current into single amacrine 
cells while simultaneously recording from multiple ganglion cells in the isolated retina of the 
salamander20–24. We then devised a computational framework to decipher the effect of individual 
amacrine cells on multiple visual features represented by a ganglion cell. We found a range of 
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effects from amacrine cells that include both mediating a component of the average visual feature 
encoded by ganglion cell, and diverse modulatory effects on the individual constituent visual 
features conveyed by other neural pathways to the ganglion cell. The range of modulatory effects 
on the ganglion response to visual features affected a number of different properties, including 
divisive gain control, shifting of threshold, changing of sensitivity, an additive inhibitory effect, and 
reversal of polarity. Furthermore, even amacrine cells with simple, linear responses under 
stimulation by a uniform visual field could create linear and diverse types of nonlinear effects on 
multiple different features of single target ganglion cells.  

We found unexpectedly that amacrine cell nonlinear modulatory effects clustered into two 
types, the first was a change in sensitivity and threshold that was specific to single visual features 
sensed by a ganglion cell, and the second was a change in the response amplitude that acted more 
uniformly on all features of a ganglion cell. These results show that an amacrine cell’s receptive 
field defines a modulatory context, and that stimuli matching this context drive two types of 
modulation – selecting among a ganglion cell’s input visual features, and exerting independent 
control over the saliency of the ganglion cell’s output. As context dependent modulation in the form 
of input-specific effects and control of output gain has also been observed in the visual cortex25 and 
auditory cortex26, our results give a quantitative definition and causal determination of a mechanism 
for a generalized sensory computation. 
 
 
Results 
 
The visual stimulus feature transmitted by an amacrine pathway 

When considering the sensory contribution of an interneuron, one can conceptually divide 
signals into two broad components, those flowing through the interneuron, and those traveling to 
the output cell through pathways parallel to the interneuron. The interaction between those two 
pathways has been divided into two classes, a linear or classical effect27–32, whereby an interneuron 
contributes to the linear or classical receptive field, and a modulatory effect whereby an interneuron 
interacts nonlinearly with the output of other parallel pathways2,33–41.  

To directly measure these two classes of effects from amacrine cells, we intracellularly 
measured (in control experiments) and then manipulated (in current stimulation experiments) the 
activity of individual Off-type amacrine cells including sustained (n = 8) and transient (n = 3) in the 
isolated salamander retina and simultaneously recorded the spiking activity of many ganglion cells 
(n = 153) in response to visual stimulation and amacrine perturbation using an array of extracellular 
electrodes (Fig. 1; see Methods).  

We first analyzed the visual feature transmitted by the amacrine cell, which is formed in two 
stages – the amacrine cell’s visual response, and its transmission. We measured the visual 
response of amacrine cells by fitting a linear-nonlinear (LN) model consisting of a linear temporal 
filter followed by a time-independent, or static nonlinearity (Fig. S1A). The linear filter represents 
the average effect of a brief flash of light on the amacrine cell membrane potential, or equivalently 
can be interpreted as the time-reverse of the visual stimulus to which the amacrine cell was most 
sensitive on average. 

To characterize the second stage of the interneuron pathway – how signals transmitted 
through individual amacrine cells contributed to the ganglion cell response – we injected white 
noise current into the amacrine cell while presenting a white noise visual stimulus. Because the 
inner retina adapts to the stimulus contrast by changing its sensitivity42,43, the visual stimulus was 
included to maintain the retina in a similar state of adaptation in the current injection and control 
conditions. We then computed an LN model between the amacrine current and the ganglion cell 
spike train (see Methods, Fig. S1B). In this transmission model, the transmission filter represents 
the average effect of a brief pulse of current on the ganglion cell’s firing rate. The linear transmission 
filters were mostly inhibitory with different time courses (Fig. S1C). The efficacy of transmission 
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between each pair of amacrine cell and ganglion cell was assessed based on a significant peak in 
the measured linear transmission filter as compared with a control filter computed by shuffling the 
ganglion cell’s spike train in time. Thirty-nine out of 153 measured transmission filters met this 
criterion (Fig. 1C).  

Because the input signal to this cascade has a Gaussian probability distribution, the overall 
linear feature conveyed by this pathway, referred to as the amacrine pathway filter, can be found 
by convolving the two linear filters whether the amacrine visual response is linear or nonlinear44. In 
combining these two filters, we avoided a double contribution from the membrane time constant by 
deconvolving an exponential filter representing that time constant22. The features conveyed by the 
amacrine pathway were typically monophasic and positive, consistent with previous 
measurements45, formed by a negative response to light (Off response) followed by an inhibitory 
transmission; there was diversity in the time course of the amacrine pathway features (Fig. S1D).  

Effects were seen on only a subset of ganglion cells (Fig. S1E-F). Consistent with previous 
results from steady current pulses21, transmission dynamics in some cases were specific to the 
amacrine–ganglion cell pair, with single amacrine cells showing different dynamics for different 
target ganglion cells (Fig. S2). In the following, the analysis of amacrine cells’ effect on the 
downstream ganglion cells is performed only on the amacrine–ganglion cell pairs for which a 
significant transmission filter could be measured.  

Signals traveling through parallel neural pathways 

To identify the visual input conveyed to a ganglion cell by neural pathways other than through 
the causally perturbed amacrine cell, we define the visual stimulus space that is the complement 
to the amacrine pathway visual feature that was captured by the amacrine pathway filter described 
above. To do this, we removed the amacrine pathway contribution out of the n-dimensional visual 
stimulus by computing the (n-1) dimensional stimulus space orthogonal to the amacrine pathway 
feature (see Methods, and 46,47). Within this new stimulus subspace, which represents the space of 
features within which the amacrine cell might exert modulatory effects, we computed the ganglion 
cell’s spike-triggered average (STA) feature, the orthogonal STA (oSTA) (Fig. 2A). This feature 
represents the average of other visual features encoded by the ganglion cell, that were not 
conveyed by (were orthogonal to) the amacrine pathway. This two-pathway model thus encodes 
two properties of the stimulus, one average feature that we causally measure is encoded by the 
recorded amacrine cell, and one average feature that is encoded by all other interneuron types. 
We confirmed that this two-pathway model–using the amacrine transmission filter measured in the 
‘current stimulation’ experiments, more accurately predicted ganglion cell responses than the LN 
model when applied to the ganglion cell’s spiking responses recorded during the ‘control 
experiments’. The correlation coefficient between model and data for the two-pathway model was 
greater than that for the LN model (0.10 ± 0.02 mean ± SEM, p = 1.65 x 10-5, Wilcoxon signed-rank 
test, n = 39) on held-out data not used for estimating the model (Fig. S3).  

The oSTA is the average feature of a subspace of the stimulus orthogonal to the amacrine 
contribution. Figure 2B shows the measured STA and oSTA for two example amacrine–ganglion 
cell pairs. The population of ganglion cell STAs had a very similar center-surround weighting (area 
under curve 0.22 ± 0.23 median ± MAD (mean absolute deviation)), consistent with previous 
results45. The oSTA was more diverse (area under curve -0.57 ± 0.65 median ± MAD; p < 0.001, 
paired ttest between MAD of bootstrapped STA and oSTA area under curve distributions), which 
likely arose because there is a range of the strength of the amacrine cell to the ganglion cell linear 
receptive field as previously described (Fig. 2C). 

For some cells, the oSTA was different from the STA (Fig. 2B, left), whereas for other cell 
pairs the oSTA and STA were highly similar (Fig. 2B, right), meaning that the amacrine cell’s 
contributed feature was orthogonal to the STA. On average, the distance between ganglion cell’s 
STA and oSTA was 25.14 ± 12.61 degrees median ± MAD across 39 amacrine–ganglion cell pairs 
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(Fig. 2D). The similarity of STA and oSTA was negatively correlated with the timing difference 
between the peaks of the amacrine feature and the STA, such that when the amacrine cell’s feature 
and the ganglion cell STA had similar peaks, the STA and the oSTA were more different (Pearson 
correlation: -0.4, p = 0.012) (Fig. 2E). Figure S4 provides more examples of the amacrine cells’ 
contribution that were used for the population analysis in figure 2D.  

A general analysis of modulation in amacrine pathways  

A ganglion cell receives input from multiple neural pathways, and each pathway conveys its 
own preferred stimulus feature. An interneuron could potentially affect each of these features 
differently. We were interested in understanding (1) what ganglion cell visual features are affected 
by the amacrine pathway? (2) what kind of nonlinear interaction exists between the amacrine 
pathway and other input pathways to a ganglion cell? and (3) are the amacrine modulatory effects 
different for different features? To address these questions, we examined further the stimulus 
space orthogonal to the amacrine preferred feature. The oSTA is the average of this orthogonal 
stimulus ensemble, but to analyze modulatory effects of the amacrine cell we decomposed this 
stimulus ensemble into its principal components, each representing a separate feature, with all of 
these features being orthogonal to the amacrine feature. We used the standard approach of spike 
triggered covariance (STC) analysis to recover this entire linear subspace orthogonal to the 
amacrine feature, representing the space spanned by the features of the multiple pathways feeding 
into the ganglion cell, and that is not linearly encoded by the amacrine pathway. We define this 
subspace as the modulated subspace of the amacrine cell. Using this orthogonal STC approach, 
for each ganglion cell, we recovered up to several modulated features that were orthogonal to the 
amacrine feature (Fig. 3A, Fig. S5-S6). Note that these features do not necessarily correspond to 
other specific neural pathways. 

To quantify how the amacrine feature modulated each of the ganglion cell features, we 
computed for each modulated feature a two-dimensional nonlinear function that combined the 
amacrine output and the modulated feature. The inputs to this 2D nonlinearity were the projection 
of the stimulus on the amacrine pathway feature, and the projection of the stimulus on the 
modulated ganglion cell feature (Fig. 3A). The output of the 2D nonlinearity was the ganglion cell 
firing rate as a function of the similarity of the stimulus and the modulated ganglion cell visual 
feature, for different levels of the amacrine pathway output (Fig. 3B).  

Several different categories of effects were observed in these 2D nonlinearities. Figure 3C 
shows the ganglion cell’s modulated features (Fig. 3C top row) for an example amacrine–ganglion 
cell pair, and the ganglion cell’s 2D response nonlinearity as a function of the stimulus projection 
onto the amacrine pathway feature and each of the modulated ganglion cell’s features (Fig. 3C 
middle row). Figure 3C bottom row shows a different view of these 2D nonlinearities as a series of 
input-output functions (ganglion cell modulated feature input and firing rate output), i.e., 1D 
nonlinear functions that change (are modulated) depending on the amacrine output. For different 
modulated visual features of the same amacrine–ganglion cell pair, this view revealed different 
qualitative types of amacrine effects on different ganglion cell features. These included 1) an 
additive effect on firing, such that the baseline level was high when the amacrine cell was 
hyperpolarized, 2) a change in sensitivity such that visual input that matched the visual feature 
caused a greater change in ganglion cell firing when the amacrine cell was hyperpolarized, 3) 
suppression of the ganglion cell visual feature by amacrine depolarization, either with or without a 
change in threshold to visual input. Some of the ganglion cell visual features exhibited 
nonmonotonic nonlinearities, possibly reflecting a combination of multiple pathways connecting to 
a ganglion cell. In addition, more complex effects were observed, including that as the amacrine 
cell changed from depolarized to hyperpolarized, the ganglion cell response changed from Off–
type to On–type (first column in Fig. 3C), consistent with previously reported polarity reversal during 
visual stimulation48. Our analysis shows that a local amacrine pathway can change the sign of a 
ganglion cell’s response to light on a fast time scale. Overall, these results illustrate how even under 
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a constant contrast white noise stimulus, inhibitory interneurons can rapidly and dramatically alter 
sensitivity to visual features in the course of a computation.  

Note that even though the amacrine effect on the overall firing rate is inhibitory for all of these 
features, in the sense that whenever amacrine cell is hyperpolarized there is greater firing, the 
nature of the interaction of the amacrine output with the ganglion cell preferred feature is very 
different. This analysis reveals that simply designating a cell as inhibitory is insufficient to account 
for the complexity of its effects. Furthermore, even in a single amacrine–ganglion cell pair multiple 
types of effects can occur, which suggests multiplexing at the level of a single inhibitory neuron. 
The diversity in nonlinear modulatory effects exists both for a single amacrine cell across different 
visual features of a single ganglion cell and for a single amacrine cell across multiple target ganglion 
cells (Fig. S7). Taken together, using white noise visual and current stimulation combined with a 
subspace cascade model approach enabled us to develop an unbiased methodology for dissecting 
the modulatory effects of an interneuron. Our approach yields a quantitative and precise definition 
of modulation – an interneuron’s linear feature defines the context, and that context modulates 
orthogonal visual features. 

We could identify five classes for the nonlinear modulatory effects of the amacrine pathway 
on the ganglion cell’s light response, which included changing the sensitivity, controlling the gain, 
changing the threshold, an additive inhibitory effect, and reversal of polarity, or alternating between 
Off– and On–type ganglion cell (Fig. 4). These classes do not represent separable types, but axes 
defining different effects. Figure 4A shows the computed response function for example amacrine–
ganglion cell’s feature pairs in our dataset, demonstrating the five categories of the amacrine 
pathway’s modulatory effects. The effects found for the pairs studied here were not specific for a 
particular amacrine cell or ganglion cell type, but were specific for each amacrine–ganglion cell’s 
feature pair. Figure 4B shows how these categories correspond to a shifting and scaling of the one-
dimensional nonlinear functions across different polarizations of the amacrine cell.  

Two types of modulatory effects on the ganglion cell population  

The dynamic perturbations to single amacrine cells during visual stimuli allowed us to directly 
measure and analyze diverse modulatory effects on the ganglion cell population. To further classify 
these effects across the population of amacrine-ganglion cell pairs, we parameterized the 2D 
nonlinearity for each amacrine–ganglion cell’s feature pair with a different sigmoidal function at 
each level of amacrine output. Because this 2D nonlinearity offers a snapshot of the changing 
relationship between a specific visual feature and ganglion cell firing, at different levels of amacrine 
output, analysis of the changing parameters of this sigmoid allowed a compact definition of the fast 
modulatory effects for each amacrine-ganglion cell pair.  

For the ganglion cell’s response at different levels of amacrine polarization, we fit a function 
with only four parameters to different one-dimensional response nonlinearities corresponding to 
each of these levels and analyzed how the amacrine cell changes these parameters. We fit the 
ganglion cell nonlinearity corresponding to each level of amacrine output to a piecewise linear 
approximation of a sigmoid function with parameters for the minimum, maximum, horizontal offset 
and slope. Parameters of this nonlinear model were optimized using the nonlinear least squares 
method with additional lower and upper bound values constraints for different parameters (for 
details refer to Methods).  

Characterizing the ganglion cell’s response function in terms of the parameters of the 
response nonlinearity enabled us to trace the changes in the response characteristics as a function 
of amacrine pathway output. Figure 4C shows the distribution of amacrine effects on ganglion cell 
nonlinearities. We computed the modulation of response sensitivity, gain, and threshold as a 
function of amacrine pathway output for 321 pairs of amacrine and ganglion cell features where the 
ganglion cell response function met the goodness of fit criteria for the nonlinearity. In addition, to 
aid in classifying different effect types, we computed a gain-sensitivity modulation (GSM) index, 
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defined as the correlation between amacrine output and the ratio of response gain to sensitivity. 
This index represents the extent that amacrine output changes ganglion cell response vertical 
scaling compared to horizontal scaling. As shown in figure 4C, the threshold modulation and gain-
sensitivity modulation index showed a bimodal distribution, whereas a skewed distribution was 
found for modulation of gain and sensitivity.  

When we examined the joint distribution of gain-sensitivity modulation index and threshold 
modulation, we observed that there were two clusters of effects (Fig. 4D, Fig. S8). During strong 
amacrine inhibition, one effect (Type I) showed a positive GSM index (associated with greater 
decrease in sensitivity) along with a significant decrease in threshold, whereas another effect (Type 
II) showed a negative GSM index (associated with greater decrease in gain) along with a significant 
increase in threshold. In addition, there was overall a strong negative correlation between the GSM 
index and change in threshold (Pearson correlation: -0.55, p < 10-26).  

Within each of these two clusters, amacrine inhibition either affected gain or sensitivity, but 
largely not both. For the Type I effect, the GSM index was correlated with a change in sensitivity 
but not with gain (r GSM index-gain = 0.01±0.07, r GSM index-sensitivity = -0.60±0.05; mean±SEM, Pearson 
correlation) (Fig. 4D, top left region). For the Type II effect, the modulation index was much more 
strongly correlated with a change in gain than with sensitivity (r GSM index-gain = 0.57±0.05, r GSM index-

sensitivity = -0.27±0.06; mean±SE, Pearson correlation) (Fig. 4D, bottom right region). Overall, these 
results indicate primarily two types of effects between amacrine and ganglion cell pairs, one that 
more strongly influenced sensitivity, and one that affected gain, with both effects occurring with a 
shift of threshold. 

We further analyzed whether modulatory control over different visual features might act 
separately on specific visual features or act more similarly on all features together. For each single 
amacrine cell-ganglion cell pair, we analyzed the similarity of effects on different affected visual 
features by computing the correlation coefficient across visual features of the change in parameters 
of sensitivity, gain and threshold for the sigmoidal visual response curve (Fig. 4E; see Methods). 
We found that for Type I effects, the change of parameters for different visual features was 
uncorrelated (r = -0.09±0.14_median±SEM, Pearson correlation, 19 cell pairs; p = 0.79 Wilcoxon 
signed-rank test against zero correlation), indicating that amacrine modulation was feature-specific 
– effects on different visual features were different. However, for Type II effects, the change in 
parameters were significantly more correlated across modulated visual features for the same 
amacrine-ganglion cell pair (r = 0.83±0.07_median±SEM, Pearson correlation, 13 cell pairs; p = 
0.006 one-sided Wilcoxon rank-sum test). This type of modulation acted more to control the gain 
of visual features together, consistent with modulation of the ganglion cell’s output. Thus overall, 
we quantitatively characterized two types of modulatory effects caused by an amacrine cell (Fig. 
5), one of input modulation that acts primarily to control the sensitivity of visual features in a feature-
specific manner, and one of output modulation that acts more to control the gain of visual features 
of a ganglion cell together.  
 
 
Discussion  

 
We have dissected the functional effects of an interneuron in a circuit using measurements of 

the interneuron’s response, dynamic causal perturbations of the interneuron, and simultaneous 
recording from a population of downstream cells. White noise analysis in a cascade and subspace 
model framework disentangled the linear and nonlinear contributions of the interneuron in an 
unsupervised and systematic manner. From these experiments and analyses, we have 
characterized different types of functional effects arising from the same amacrine cells. The first of 
these effects is the linear contribution in which the amacrine pathway helps to build the linear 
receptive field of the output neuron45. Such effects show that some amacrine cells contribute 
directly to the average ganglion cell stimulus selectivity. Secondly, by measuring the nonlinear 
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effects of the amacrine cells, we observed modulatory effects of these inhibitory interneurons on 
the ganglion cell’s response to specific visual features, with different effects occurring on different 
features. The visual feature conveyed by the amacrine cell served as a context to drive the 
modulation of other, distinct visual features. At the lowest level, these effects include a shift in 
threshold of the ganglion cell’s response to a visual feature, the control of input sensitivity and 
output gain. When we examined how these component effects occurred together, we saw two 
different types of effect combinations that could be observed even with the same amacrine–
ganglion cell pairs. Input modulation that primarily controlled sensitivity rather than gain, and acted 
specifically on individual visual features, and output modulation that primarily controlled gain, and 
acted more similarly across different visual features. These effects are modulatory, meaning that 
one feature – the amacrine feature – changes the response of the ganglion cell to other features. 
Across many amacrine cells with different effects, the amacrine cell population defines a context 
that modulates multiple other visual features conveyed by the ganglion cell population. 

Linking a Functional Pathway to a Neural Pathway  

Of central importance in the study of sensory processing are the stimulus features that drive 
the neural response. Numerous studies have shown that many neurons respond to more than one 
feature in a high-dimensional stimulus space49–58. Although dimensionality reduction approaches, 
such as spike-triggered covariance (STC) and its extensions59–64 or maximally informative 
dimensions (MID)65–67, have been successful to find a relevant linear subspace that causes a 
change in the neuron’s response, the resulting features cannot be easily interpreted in terms of 
functional computations. As a result, this subspace description provides little insight into the neural 
circuitry that gives rise to the neuron’s response. Moreover, it is not clear that dimensions extracted 
by these methods relate to neural pathways, and we only know that the space of these extracted 
dimensions encompasses the space of features encoded by all the neural pathways feeding into 
one neuron. Although other work has tried to rank these stimulus dimensions according to how 
much information they capture63, it is still difficult to link the resulting features to the neural pathways 
encoding those features.  

In this study, by directly measuring the amacrine pathway response and effects of 
transmission, we can assign a neural identity to those features and characterize modulatory effects 
in a way that would not be possible by modeling based on the ganglion cell response alone. We 
see for the first time using a direct, causal, general and assumption-free approach how the widely 
studied computation of context-dependent modulation is constructed by interneurons. 

Potential origin of modulatory types  

In our study we have identified that amacrine cell inhibition provides a mechanistic basis for 
two types of modulation of visual features. Looking down one level further, future studies will 
address the cellular basis for the two different modulation types. One might think that changes in 
sensitivity might occur prior to the strong threshold of the bipolar cell terminal, and thus might be 
presynaptic, and that changes in gain might arise from inhibition delivered after this threshold 
postsynaptically. Fitting with this idea, the feature-specific effects of Type I modulation are 
consistent with a presynaptic effect on individual bipolar cells, and the more feature-wide effect of 
Type II is more consistent with a postsynaptic effect. However, more complex effects of presynaptic 
adaptation could complicate this picture, coupling effects on sensitivity with effects on threshold or 
gain68. Our study nevertheless provides a testable hypothesis that the origin input modulation (Type 
I) is presynaptic and the origin of output modulation (Type II) is postsynaptic. Note that in other 
systems, the more relevant result may be the two types of modulation, rather that the specific 
underlying cellular basis. For example, in the cortex, because dendritic integration can be local and 
occur prior to spiking in dendrites, input modulation could be delivered to dendrites, and output 
modulation could be delivered closer to the soma69. 
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Implications of amacrine cell modulation for natural scene processing 

It has been suggested that neural representations of sensory stimuli are optimized to reduce 
redundancy based on the statistics of the natural environment, thereby creating a more efficient 
representation70–76. These theories of efficient coding have derived an optimal set of linear basis 
functions that have properties similar to receptive fields in the visual cortex77–79. However, the 
statistics of the natural signals are too complex to be optimally decomposed by only a linear 
transformation. Moreover, neural responses are highly nonlinear, for example due to rectification 
or saturation of responses80–87. Recent studies in primary visual cortex V1 and in the retina have 
shown that nonlinear properties play an important role in decorrelating the visual image and 
therefore in the efficient coding of natural signals11,88.   

One class of multidimensional nonlinear models that has linked natural scene statistics to 
neural response properties exhibits so-called divisive normalization89. The intuition behind this 
model is to divide the signal by its variance as predicted from a linear combination of the variance 
of other features to obtain a representation where different features are represented with similar 
variance. The divisive normalization model describes the firing rate responses of cortical neurons 
as the ratio between the output of a linear receptive field and the magnitude of a set of different 
visual features. Such models are consistent with responses found across cortical areas and 
sensory modalities90. If different visual features often occur together, in other words they are 
redundant, then if one feature suppresses the other it will tend to create a less redundant 
representation.    

Of the two nonlinear effects we observed, these effects are consistent with a key property of 
divisive normalization, namely that visual features reduce the sensitivity to other visual features. 
Our findings suggest that the normalizing directions are in fact the features encoded by the 
amacrine cells, and that the amacrine cell’s own preferred or optimal feature can be different from 
the preferred or optimal feature of the ganglion cell. We propose that a major function of amacrine 
cell circuits may be to undo the receptive field dependencies of multiple visual pathways by 
controlling the gain and sensitivity along the features encoded by each of these pathways.   

Future studies 

To test this redundancy reduction hypothesis, it will be necessary to measure amacrine nonlinear 
modulations when the features of amacrine pathway and other ganglion cell’s incoming pathways 
are coincident. Therefore, it will be necessary to repeat our experimental and computational 
procedure while presenting a spatiotemporal visual stimulus containing the type of structure 
observed in natural scenes. In our current analysis, because stimuli were composed of a uniform 
field, we only measured the contribution of the temporal component of the stimulus. However, all 
amacrine and ganglion cells were within < 200 µm, and thus are highly likely to have overlapping 
spatial receptive fields. It is thus likely that amacrine and ganglion cell features will be activated 
together by stimuli with sharp transitions such as an edge. Nevertheless, it will be important to 
directly measure the spatiotemporal filters of amacrine and ganglion cell features. Despite the 
limitations of temporal stimuli that we have used, there is sufficient complexity and generality in 
temporal processing10,68,91 to support our fundamental conclusions about amacrine modulation. 
Furthermore, our approach can be extended to spatial stimuli in a straightforward way. 

For application to other neural circuits, the techniques used in this study only require an 
intracellular recording and stimulation and an extracellular recording from an affected cell. Nothing 
in our recordings, analysis or conclusions require that amacrine and ganglion cells are 
monosynaptically connected, merely that one functionally affects the other. Newer technologies 
make it feasible for our approach to be used elsewhere in the nervous system using multielectrode 
recording to record affected cells. Opto-tagging could allow a presynaptic cell recorded with the 
multielectrode probe to be identified, and then this optogenetic stimulation would allow perturbation 
of those cells as we have done. Context-dependent modulation is studied widely in sensory 
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systems, and both input modulation and output modulation has been observed, either 
physiologically25,26, or based on anatomical evidence92,93. Our approach provides a way to identify 
these modulatory effects in an unbiased manner, and account for the responsible neural pathways. 

Here we have presented a systematic approach to understand the functional contribution of 
an interneuron. Although the anatomical diversity of amacrine cells allows for the combination of 
diverse visual features, we propose that these effects can now be understood in terms of three 
basic functions of sensory inhibitory interneurons, to generate the primary feature sensed by a 
neuron, to create a context that acts on specific other sensory features, and to use that context to 
gate a neuron’s output. These effects may represent the general actions of sensory inhibitory 
interneurons. 

 
 
Methods 
 
 
Electrophysiology 

Visual Stimulation 

Visual stimuli were projected onto the retina from a video monitor, at a photopic mean intensity 
of 8 mW/m2, and at a frame rate of 63 Hz. The video monitor was calibrated using a photodiode to 
ensure the linearity of the display. Stimuli were spatially uniform and were drawn from a white noise 
Gaussian distribution with a constant mean intensity. Contrast was defined as the standard 
deviation divided by the mean of the intensity values. Contrast was fixed throughout the experiment, 
and ranged 0.06–0.25 across recording sessions. The duration of stimuli was 300–1200 s. By 
keeping the mean light intensity and contrast constant throughout the experiment, we avoided any 
contributions from light or contrast adaptation22,43.  

Multielectrode Recording 

To record the spike trains of retinal ganglion cells, the retina of the larval tiger salamander 
was isolated intact and was placed on a dialysis membrane attached to a plastic holder. Then the 
holder was lowered onto a flat array of 61 microelectrodes (Multichannel Systems) and bathed in 
oxygenated Ringer's solution buffered with bicarbonate94,95. Extracellular electrodes were spaced 
100 μm apart. Electrical signals from the array of electrodes were digitized at 10 kHz and recorded 
to a computer. Results included 153 recorded ganglion cells, which comprised biphasic Off-type, 
monophasic Off-type, biphasic on-type, and On–Off cells classified with a uniform field visual 
stimulus. 

Simultaneous intracellular and multielectrode recording 

Simultaneous intracellular recordings were made with sharp electrodes from eleven amacrine 
cells with a resting membrane potential −55 ± 4 mV (mean ± SEM), including sustained (n=8) and 
transient (n=3) Off amacrine cells. Amacrine cells were identified by their light responses, the 
presence of an inhibitory surround, and their inhibitory transmission to Off-type ganglion cells with 
overlapping receptive field centers. The retina was held in place over the electrode array under a 
100-μm layer of 0.6% agarose, covered by a dialysis membrane containing several 100-μm holes. 
The intracellular electrode was then guided under infrared light through a hole and the agarose 
layer to penetrate the retina from the photoreceptor side. Intracellular electrodes (150–250 MΩ 
impedance) were filled with 1–2 M potassium acetate.  
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Current Stimulation 

Current was injected through sharp microelectrodes (150–250 MΩ) with an amplifier operating 
in bridge mode, into individual amacrine cells. Current and the visual stimulus were aligned in time 
within 0.1 ms, to allow reproducible recordings across the same visual and current stimuli 
presentations. The current amplitudes were chosen so they maintain the membrane potential within 
a physiological range. The estimated membrane resistance measured by using pulses of current 
was 40 ± 17 MΩ, and the measured membrane time constant was 17 ± 7 ms (n = 6). The current 
filtered to a 0–50 Hz bandwidth was convolved with an exponential filter of the appropriate 
amplitude to estimate the resulting membrane potential standard deviation (9.6 ± 3.63 mV)22. 

Measuring linear-nonlinear cascade models of the recorded responses 

Recordings were used to produce LN models of visual responses and of responses to current 
injection43. The input to the model could be a visual stimulus or a current stimulus, and the output 
of the model could be either the predicted ganglion cell’s firing rate or the predicted amacrine cell’s 
membrane voltage. The estimated linear filters ranged from 200 to 600 ms in duration, and were 
estimated using white noise stimuli of length 300-1200 s. 

To estimate the parameters of the LN model we used a semiparametric approach, in which 
the filter 𝑓(𝑡) and the nonlinearity 𝑁(𝑔) were computed at once. For a Gaussian white noise input, 
the optimal linear filter is indeed the Wiener system solution, which was computed in the Fourier 
domain by equation (1)44,96.  

𝐹,(𝜔) = 〈"̃∗(%)'̃(%)〉
〈"̃∗(%)"̃(%)〉

,  (1) 

where s(̃ω) is the Fourier transform of the stimulus s(t), s*̃(ω) its complex conjugate, r(̃ω) is the 
Fourier transform of the response r(t), and á…ñ denotes averaging over 1 s segments spaced every 
0.1 s throughout the recording. The stimulus intensity 𝑠(𝑡) was adjusted to have a zero mean. The 
denominator is the input auto-correlation, which corrects for possible deviation from the white 
Gaussian solution due to possible correlation structures in the input. For fitting of the ganglion cell 
spiking response, spike trains were converted into a continuous firing rate by binning the spike 
times in 1 ms intervals. 

The predicted linear ganglion cell’s firing rate response or the amacrine cell’s membrane 
voltage 𝑔(𝑡) was computed by convolving 𝑓(𝑡) with the stimulus 𝑠(𝑡). 

𝑔(𝑡) = ∫𝐹(𝜏)𝑠(𝑡 − 𝜏) 𝑑𝜏  (2) 

Then, a nonlinear function 𝑁(𝑔) mapping the response to the linear prediction 𝑔(𝑡) was found 
by computing the average value of 𝑟(𝑡) over bins of 𝑔(𝑡) containing an equal number of points. The 
output of 𝑁(𝑔) determines the instantaneous firing rate97. 

The amplitude of the filter was normalized such that the variance of the filtered stimulus, 𝑔(𝑡), 
was equal to the variance of the stimulus, 𝑠(𝑡) (equation (3)), to avoid the ambiguity existing in the 
scaling of linear filter y-axis and the nonlinearity x-axis. 

∫𝑔) (𝜏) 𝑑𝜏 = ∫ 𝑠) (𝜏) 𝑑𝜏  (3) 

With this normalization, 𝑓(𝑡) summarizes temporal processing, and 𝑁(𝑔) captures the sensitivity 
of the stimulus. 

Finally, the prediction of the LN model was calculated as  

𝑟*(𝑡) = 𝑁(𝑔(𝑡)) = 𝑁(∫𝐹(𝜏)𝑠(𝑡 − 𝜏) 𝑑𝜏)  (4) 
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Spikes are then assumed to be generated by a Poisson process with a rate equal to 𝑁(𝑔). 

Computation of amacrine pathway filter or feature 

Amacrine visual response LN models were constructed using a white noise visual stimulus 
with a Gaussian distribution and the amacrine’s membrane potential recorded intracellularly (Fig. 
S1A). Similarly, a linear filter corresponding to amacrine cell transmission was computed by 
correlating the white noise Gaussian current signal with the spiking response of the ganglion cell, 
and then a static nonlinearity was computed by comparing the current linear prediction and the 
firing rate of the ganglion cell. These linear and nonlinear stages together were called the amacrine 
cell’s transmission LN model (Fig. S1B). Since the injected current and the visual stimulus were 
uncorrelated, the visual stimulus could be excluded in computing the amacrine transmission filter. 

The output of the first LN model was the amacrine cell’s membrane voltage, which has already 
passed through the filtering of the amacrine cell’s membrane time constant. However, the input to 
the second LN model was the white noise Gaussian current injected to the amacrine cell, which is 
also filtered through the amacrine cell’s membrane time constant before inducing a voltage across 
the amacrine cell’s membrane. To compensate for this double counting of the membrane time 
constant, we deconvolved the transmission filter computed by reverse correlation by the amacrine’s 
membrane time constant (equation (5))22. The membrane time constant of the cell was measured 
by applying current pulses of 1 s. An exponential filter (equation (5)) was fit to the voltage response 
with membrane time constant τ.  

𝐹+(𝑡) = 𝑒,-//   (5) 

Computing the output of amacrine pathway 

Once the complete amacrine pathway model was obtained, the output signal of the amacrine 
pathway was computed during the current injection, which was used to study the effect of the 
amacrine pathway on the response of the ganglion cells. During current injection, the amacrine 
membrane voltage was produced by two sources of currents including the white noise Gaussian 
current injected to the amacrine cell and the current generated by the visual stimulation of the 
amacrine cell. We assumed for these two currents to be linearly combined in the amacrine cell 
before transmission to the ganglion cell, where the magnitude of their individual contributions (linear 
weights) was obtained by an additive least-squares model. This summed current was then 
convolved with the voltage transmission filter and then passed through the transmission 
nonlinearity.  

STA and STC analysis 

The STA represents the difference between the mean (center of mass) of the spike-triggered 
ensemble and the mean of the raw stimulus ensemble and is estimated as follows assuming that 
the raw stimuli have zero mean: 

𝐴8 = 0
1
∑ 𝑠1
230 (𝑡2),   (6) 

where 𝑡2 is the time of the 𝑛th spike, 𝑠(𝑡2) is a vector representing the stimuli preceding 𝑡2, and 𝑁 
is the total number of spikes. The stimulus 𝑠(𝑡2) consisted of 60 stimulus values preceding a spike 
at a frame rate of 63 Hz and extending back in time 960 ms. 

For a neuron with a single linear filter, the STA provides an unbiased estimate of the neuron’s 
linear filter (as obtained by reverse correlation in equation (1)), provided that the input has a 
spherically symmetric distribution, like a white Gaussian stimulus60,96–98, and the nonlinearity of the 
model is such that it leads to a shift in the mean of the spike-triggered ensemble relative to the raw 
stimulus ensemble. 
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To capture multiple features, the spike-triggered covariance (STC) technique was used62,98, 
where additional filters were recovered by seeking directions in the stimulus space in which the 
variance of the spike-triggered ensemble differs from that of the raw ensemble. Unlike the change 
in the mean that defines a single dimension, the variance can recover many dimensions at once.  

The covariance matrix is formed from the outer product of the stimulus histories averaged 
across all spikes as follows.  

𝐶845"- =
0

1,0
∑ =𝑠(𝑡2) − 𝐴8>=𝑠(𝑡2) − 𝐴8>

6 ,1
230    (7) 

where 𝑡2 is the time of the 𝑛th spike, 𝑠(𝑡2) is a vector representing the stimuli preceding 𝑡2, and 𝑁 
is the total number of spikes, and 𝐴8 is the STA (as computed in equation (6)). 

𝐶845"- contains the multidimensional variance structure of the spike-triggered stimulus 
ensemble, such that the variance of the STE along any direction 𝑢 (𝑢 is a unit vector) is 𝑢6𝐶845"-𝑢. 
We were interested in finding the features in the stimulus space for which the variance changes 
from that of the prior distribution of stimuli, which is Gaussian along all stimulus dimensions, 
independent of the response. We first construct the covariance difference matrix by subtracting 
𝐶84'75' from 𝐶845"-,   

∆𝐶 = 𝐶845"- − 𝐶84'75',   (8) 

where 𝐶84'75' = ∑ 𝑠(𝑡2)𝑠(𝑡2)62 . 

Then the posterior second moment matrix 𝐶845"- can in general only differ from 𝐶84'75' in 
directions spanned by the model filters49. An eigenvector analysis of this matrix can determine the 
stimulus directions that account for most of the variance.  

Computation of orthogonal features 

To model the other parts of the circuit feeding into the ganglion cell, we focused on the subset 
of stimuli that were not encoded by the amacrine cell pathway. This procedure isolates the 
subspace of the visual stimulus that has zero output through the amacrine cell pathway, called the 
null space of the amacrine pathway feature46,47. To do this, we orthogonalized the stimulus space 
with respect to the direction of the total amacrine pathway feature using a Gram-Schmidt 
procedure. Then we computed the ganglion cell’s STA in this new stimulus space as follows, 

𝐴′B = 0
1
∑ 𝑠′CC⃗1
230 (𝑡2),   (9) 

where 𝑠′CC⃗ = 𝑠 − 〈𝑠, 𝑓〉𝑓/G𝑓G, á…ñ denotes the inner products of two vector arguments, and 𝑓 
represents the amacrine pathway feature. We refer to 𝐴′B  as ganglion cell’s orthogonal STA (oSTA). 

Similarly, we used the STC approach to recover the entire linear subspace representing the space 
spanned by the features encoded by the multiple pathways feeding into a ganglion cell that does 
not include the amacrine pathway feature. To find such features, we first projected out the amacrine 
pathway feature from the stimulus space, and constructed the sample second moment matrix of 
the spike-triggered ensemble in the new stimulus space and the difference covariance matrix. Then 
we found its eigenvectors and corresponding eigenvalues as explained above. 

These eigenvectors identify the dimensions in the stimulus space along which the variance of 
spike-triggered stimulus distribution changes from that of the prior distribution of stimuli. Therefore, 
each eigenvector of this matrix represents a visual feature that might elicit spikes in the ganglion 
cell. The associated eigenvalue is equal to the variance of spike-triggered stimuli along this feature 
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direction. Because the prior stimulus covariance matrix is subtracted from the posterior stimulus 
covariance matrix, an eigenvalue of zero corresponds to the prior variance and indicates that its 
associated eigenvector is not a relevant feature for ganglion cell response. Thus to find the relevant 
subspace, we extract the eigenvalues of the difference covariance matrix that are significantly 
different from zero. The number of significant eigenvalues gives an estimate for the dimensionality 
of the relevant stimulus space. 

Assessing the number of significant orthogonal ganglion cell features  

Figure S5 shows the eigenvalue profile for a sample amacrine–ganglion cell pair, in which the 
eigenvalues of the covariance difference matrix were sorted from large to small values. The majority 
of the eigenvalues descend gradually indicating random fluctuations due to finite sampling (the 
white noise covariance difference matrix should have had constant eigenvalues at zero).  

To assess the significance of eigenvalues we adopted a variety of significance tests, as sometimes 
the insufficient number of samples along some dimensions due to the low firing rate of the neuron, 
caused noisy estimations for the confidence intervals. In general, we preferred more qualitative 
definitions of significance, i.e., choose all eigenvectors corresponding to eigenvalues, which appear 
qualitatively different in magnitude from the “bulk spectrum” (Fig. S5). However, due to 
orthogonalization there were cases where we could detect eigenvalues that were significantly 
below or above the gradually descending region, but with arbitrary associated eigenvectors. For 
these cases, we used quantitative significance tests by computing the eigenvalue spectrum as a 
function of the number of spikes for a range of data fractions. Eigenvalues that were stable with 
respect to the number of spikes used in the analysis were judged to be significant (green trace in 
(Fig. S6A). We also used a nested hypotheses testing approach to determine the number of 
relevant dimensions corresponding to significant increases or decreases in variance52 (Fig. S6B). 
The significance level was chosen to be (p < 0.05). To get more accurate results, we only included 
ganglion cells from which we recorded at least 1200 spikes, being at least 20 spikes per temporal 
dimension for 60-dimensional linear temporal filters.  

Parameterization of amacrine nonlinear effects 

Our goal was to find a model of modulatory functions of amacrine cells, which is consistent 
with a set of experimentally estimated correlations between the stimulus and neuron’s response, 
and at the same time imposes as little structure as possible for the nonlinear interactions among 
different pathways. 

To this end, we estimated the ganglion nonlinear response function using a nonlinear 
regression framework defined as 

𝑓8(𝑔) = 	𝛼 +min(max=0, 𝛽(𝑔 − 𝛾)>, 𝛿),       (10) 

meaning that 𝑓8(𝑔) is the linear function 	𝛼 + 𝛽(𝑔 − 𝛾), except that it is limited to have a minimum 
value of 𝛼 and maximum of 𝛼 + 𝛿. Here 𝛼, 𝛽, 𝛾, and 𝛿 represent respectively the response baseline, 
sensitivity, threshold and gain, 𝑔 represents the filtered stimulus by each ganglion cell’s visual 
feature identified using the STC analysis, and 𝑓8(∙) denotes the ganglion cell firing rate response, 
which can vary as a function of the output of the amacrine pathway indicated by 𝑎. The estimated 
parameters 𝛼, 𝛽, 𝛾, and 𝛿 change depending on the output of the amacrine pathway, which in turn 
depends on the specific stimulus sequence. Thus the set of parameters,	𝛼, 𝛽, 𝛾, and 𝛿 is controlled 
by the amacrine pathway, and describe the immediate ganglion cell visual response to light. The 
parameters 𝛼, 𝛽, 𝛾, and 𝛿 were found through a constrained nonlinear least-squares optimization.  
𝛼 and 𝛽 were bounded to 0 from below and to the maximum value of the binned spiking probability 
of a ganglion cell representing its firing rate from above. 𝛾 was bounded between the minimum and 
maximum values of the filtered stimulus values for each ganglion cell’s feature, and 𝛽 was 
unconstrained. Because the nonlinearities for some amacrine–ganglion cell’s feature pairs were 
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strongly nonmonotonic, as a goodness-of-fit criterion, only the amacrine–ganglion cell’s feature 
pairs with adjusted r-square values greater than 0.7 (75th percentile) across all four levels of 
amacrine pathway polarization were included in the analysis. Because the STC analysis gives 
orthogonal features, each ganglion cell feature may be created by multiple neural pathways, and 
thus each nonlinearity may reflect combined effects of the amacrine cell on those pathways. 

The gain-sensitivity modulation (GSM) index was defined as the Pearson correlation 
coefficient between the amacrine pathway output and the ratio of gain to sensitivity, 𝛿 |𝛽|⁄ , where 
the parameters 𝛿 and 𝛽 were taken from (equation 10) fit as above to nonlinearities at four different 
levels of amacrine output. Because amacrine cells were inhibitory, negative value of the GSM index 
show a greater reduction of ganglion cell gain than sensitivity, and positive values show greater 
reduction of sensitivity than gain. 

Consistency of amacrine effects with possible presynaptic or postsynaptic modulation 

To assess whether modulatory control over different visual features associated with individual 
amacrine–ganglion cell pairs might act separately on specific visual features or act more similarly 
on all features, the pairwise Pearson correlation between vectors of effect types was computed. 
Each effect type vector represents the change in parameters of sensitivity, gain, and threshold for 
the fitted sigmoidal nonlinearities associated with each amacrine-ganglion cell pair falling in any of 
the two modulation classes. The amacrine-ganglion cell pairs for which at least three visual features 
with a nonlinear fit performance greater than 70% and the threshold and GSM modulation 
magnitudes greater than 0.2 were obtained, were included in this analysis. Note that some 
amacrine-ganglion cell pairs may appear in both classes, but distinct subsets of the visual features 
of the ganglion cell fall in each of the two classes. This suggests that individual amacrine cells can 
modulate the same ganglion cell using differential modulatory computations at multiple synaptic 
locations. The larger average correlation value suggests more similar effect type vectors across all 
the ganglion cell’s features for individual amacrine-ganglion cell pairs given a modulation class. 
The more similar effect type vectors indicates the greater similarity of the impact of a certain 
amacrine cell on multiple features of the same ganglion cell, and can be interpreted as a 
postsynaptic modulation by that amacrine cell. On the other hand, the less similar effect type 
vectors may imply that the impact from a particular amacrine cell is delivered to different presynaptic 
terminals that could have different nonlinear properties. 

 
Data and code availability  
The datasets generated and analyzed in this study will be available on public repositories upon the 
acceptance of the paper. 
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Figures 
 

 
 
Figure 1. Measuring responses and transmission in an amacrine cell pathway. (A) Diagram 
of experimental setup for simultaneous intracellular and multielectrode array recording: a uniform 
field randomly flickering visual stimulus with a white noise Gaussian distribution is projected through 
a video monitor onto an intact isolated salamander retina. Simultaneously, Gaussian white noise 
current (orange trace) was injected intracellularly into an amacrine cell (current condition) or the 
amacrine cell membrane voltage (green trace) was recorded intracellularly using a sharp 
microelectrode (control condition). A multielectrode array of 60 extracellular electrodes recorded 
spiking activities of multiple ganglion cells simultaneously. Multiple traces on the left represent 
spiking response of multiple ganglion cells to a single stimulus trial during the control condition 
(orange spikes) and current condition (green spikes). (B) The membrane potential response of a 
sustained Off-type amacrine cell (top row), the response of a transient On–Off type amacrine cell 
(middle row), to a uniform field flashing stimulus (bottom row). (C) (Top) Receptive fields of a single 
amacrine cell and multiple ganglion cells. Each oval indicates one standard deviation of a two-
dimensional Gaussian fit to the receptive field mapped using a white noise checkerboard stimulus. 
Red oval indicates an amacrine cell receptive field; black ovals indicate ganglion cells affected by 
current injection into the amacrine cell. Grey ovals are unaffected ganglion cells. (Bottom) Temporal 
filters computed for recorded cells, including: amacrine visual filter (red), computed by correlating 
a uniform-field visual stimulus and the amacrine cell membrane potential; ganglion cell visual filters, 
computed by correlating the  visual stimulus and ganglion spikes for the affected ganglion cells 
(black) and all other recorded ganglion cells (grey); and an amacrine transmission filter, between 
the amacrine cell and one affected ganglion cell (blue) computed by correlating a white noise 
current stimulus injected into the amacrine cell and the ganglion cell’s spikes.  
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Figure 2. Contributions of amacrine cells to the average ganglion cell visual feature. (A) 
Illustration of a model containing two main pathways, an amacrine pathway whose feature is shown 
by the red linear filter, and another pathway representing other ganglion cell features whose 
average is shown by the blue linear filter. The outputs of these two pathways are combined by a 
two-dimensional nonlinear function to generate the ganglion cell’s firing rate. (B) (Left column, top) 
Sample amacrine–ganglion cell pair for which amacrine pathway feature (red curve) contributed to 
the ganglion cell’s STA (black curve) as indicated by the observation that the STA and the oSTA 
(blue curve) are different. (Left column, bottom) The raw stimulus distribution (light grey) and the 
spike-triggered stimulus ensemble distribution (black), as well as the amacrine pathway nonlinear 
response function (computed as a quotient of the spike-triggered and raw stimulus distributions) 
(green), when the stimulus is projected onto the amacrine pathway feature (red). (Right column) 
Same as left column for an amacrine cell for which the oSTA was similar to the STA. (C) Histogram 
of center-surround weighting for STA (black) and oSTA (blue) across 39 amacrine–ganglion cell 
pairs, expressed as the signed area curve of their STA and oSTA filters.  (D) Histogram of the 
observed difference between the STA and oSTA for 39 amacrine–ganglion cell pairs, expressed 
as the angle difference in degrees. Colored symbols indicate the angle differences corresponding 
to the sample cell pairs shown in (B). (E) Relationship between difference between the time to peak 
of an amacrine pathway filter and the target ganglion cell STA (y-axis) versus the difference 
between STA and oSTA across 39 amacrine–ganglion cell pairs.  
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Figure 3. Differential modulation of multiple distinct ganglion cell visual features by an 
amacrine cell. (A) The multi-pathway model: The space of visual features encoded by a ganglion 
cell was decomposed into its principal components (light blue traces) using STC analysis on the 
stimulus space when the amacrine pathway feature is projected out. Then for each of the ganglion 
cell’s feature dimensions and the amacrine pathway’s feature dimension, a two-dimensional 
nonlinear firing rate function is computed. (B) (Left) Illustrates a nonlinear interaction between the 
amacrine pathway and one of the orthogonal STC features in (A) for a pair of an amacrine cell and 
a ganglion cell. Red trace represents the amacrine pathway feature; black trace represents the 
orthogonal STC feature; and green traces show one-dimensional nonlinear response functions 
computed from the two-dimensional instantaneous firing rate nonlinearity for four bins of amacrine 
pathway output values specified by the colorbar. (C) Amacrine–ganglion cell’s features nonlinearity 
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characterization: (Top) Orthogonal STC significant dimensions representing the ganglion cell’s 
other features, excluding the amacrine pathway feature, for a sample amacrine–ganglion cell pair. 
(Middle) Two-dimensional firing rate nonlinearity as a function of the amacrine pathway output (y-
axis) and the projection of the stimulus on each orthogonal feature (x-axis). The y-axis is the 
projection of stimuli on the amacrine pathway feature, and the x-axis is the projection of the stimuli 
on the corresponding ganglion cell’s visual feature. The two-dimensional instantaneous firing rate 
was computed as a quotient of the spike-conditional and raw stimulus distributions. Lighter regions 
correspond to higher ganglion cell firing rate (FR) in the two-dimensional stimulus subspace. 
(Bottom) One-dimensional slices of each two-dimensional firing rate as a function of the projected 
stimulus onto the corresponding ganglion cell’s feature (x-axis) for different levels of the amacrine 
cell’s feature output. Trace color indicates different levels of the amacrine feature output, indicated 
by green bars in the middle row. Because the amacrine cell is inhibitory (its transmission filter has 
a negative peak), a high level of the amacrine pathway’s preferred feature roughly corresponds to 
the amacrine cell being more hyperpolarized (darker green colors).  
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Figure 4. Two types of modulatory effects of amacrine cells on the ganglion cell population. 
(A) Firing rate response nonlinearities from example amacrine–ganglion cell’s feature pairs, 
representing five different types of nonlinear modulatory effects observed across 321 amacrine–
ganglion cell’s feature pairs. The amacrine cell’s nonlinear effects include combinations of additive 
and multiplicative transformations of the ganglion cell’s nonlinear response function as the output 
of the amacrine pathway varied from weaker to stronger inhibition. (B) Illustrations of how changes 
in threshold, sensitivity, gain, or offset and polarity reversal as shown for sample amacrine–
ganglion cell’s feature pairs in (A) can be obtained by simple additive or multiplicative operations 
on the ganglion cell’s nonlinear response function. (C) Distribution of different types of nonlinear 
modulatory effects identified by a multi-pathway model framework across 321 amacrine–ganglion 
cell’s feature pairs, which include changes in the response gain, sensitivity, threshold, and gain-
sensitivity modulation (GSM) index, estimated via fitting a piecewise linear approximation of a 
sigmoidal function to the ganglion cell’s nonlinear response function. Dashed lines indicate the 
median of each histogram. (D) Center heatmap shows the joint distribution of response threshold 
modulation and gain-sensitivity modulation index, showing how these response variables change 
together when inhibition from the amacrine pathway gets stronger. Each data point (n = 321) 
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represents the Pearson correlation coefficient between different levels of amacrine pathway 
polarization and the corresponding values of each response variable. Inset nonlinear functions 
illustrate changes in the nonlinear properties of a ganglion cell’s response to distinct visual features, 
associated with the two types of functional effects of amacrine cells, sensitivity modulation (top left), 
and gain modulation (bottom right). (E)  The correlation coefficient of the change in the response 
nonlinearity parameters across visual features of each ganglion cell for each type of modulatory 
effect in (D) (median±SEM), showing variation of the effect across different modulated features for 
the same amacrine–ganglion cell pair. 
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Figure 5. Amacrine cells create two types of context-dependent modulation of ganglion 
cells. Schematic diagram of how visual features of different amacrine cells represent a context that 
drives two types of modulation. The first is the control of input sensitivity of visual features prior to 
summation within the ganglion cell. The second is control of the output gain of the ganglion cell, 
which acts similarly on all visual features of the ganglion cell. Colors used for differentiating different 
connections match those used in figure 4D-F. 
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